昆明理工大学冶金与能源工程学院,复杂有色金属资源清洁利用省部共建国家重点实验室,真空冶金国家工程实验室,云南省高校硅冶金硅材料工程技术研究中心,云南 昆明 650093
收稿日期:
2017-09-21修回日期:
2017-11-03出版日期:
2018-06-22发布日期:
2018-06-06通讯作者:
吕国强基金资助:
过共晶铝硅合金电磁分离过程多场驱动下传输特性及强化机理研究Preparation of Low-silicon Aluminum Alloy from High-silicon Aluminum Alloy Melts by Electromagnetic Separation Process
Yufeng ZHANG, Guoqiang LV*, Wenhui MA*, Yun LEI, Yunfei HE, Guangjie XIEFaculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, State Key Lab of Complex Nonferrous Metal Resources Cleaning Utilization, National Engineering Lab for Vacuum Metallurgy, Engineering Research Center for Silicon Metallurgy and Silicon Materials of Yunnan Provincial Universities, Kunming, Yunnan 650093, China
Received:
2017-09-21Revised:
2017-11-03Online:
2018-06-22Published:
2018-06-06摘要/Abstract
摘要: 在不考虑杂质元素的情况下研究了含铝45wt%的铝硅合金熔体电磁分离过程中电流频率、下拉速度、保温温度及坩埚材质对初晶硅相分离效果的影响. 结果表明,在电流频率3 kHz、保温温度1000℃、下拉速度10 ?m/s的条件下,以石墨坩埚为容器,可使合金的硅铝质量比降至0.0939. 保温温度对合金中硅的去除影响最大,相同条件下1500℃时合金硅铝质量比为0.11439;低频交变电流能强化电磁搅拌从而加强传质,降低下拉速度对降低合金中硅含量有一定作用,且可使分离界面更平坦.
引用本文
张玉峰 吕国强 马文会 雷云 何云飞 谢广杰. 电磁分离高硅铝硅合金制备低硅铝硅合金[J]. 过程工程学报, 2018, 18(3): 582-589.
Yufeng ZHANG Guoqiang LV Wenhui MA Yun LEI Yunfei HE Guangjie XIE. Preparation of Low-silicon Aluminum Alloy from High-silicon Aluminum Alloy Melts by Electromagnetic Separation Process[J]. Chin. J. Process Eng., 2018, 18(3): 582-589.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217340
http://www.jproeng.com/CN/Y2018/V18/I3/582
参考文献
[1]张洪峰,田光辉,熊运昌,等. 铝硅合金铸造新工艺的研究与应用 [J]. 铸造, 2008, 57(9): 892-892.Zhang H F, Tian G H, Xiong Y C, et al. Research and Application of New Casting Technique for Al-Si Alloy [J]. Foundry, 2008, 57(9): 892-892. [2]张万福. 利用俄罗斯技术建设我国的电热铝硅合金工厂 [J]. 中国有色金属学报, 1998, 8(0): 424-427.Zhang W F. Using of Russian Technology to Build our Country's Electric Aluminum Silicon Alloy Factory [J]. The Chinese Journal of Nonferrous Metals, 1998, 8(0): 424-427. [3]张卫文,尹志民,赵阳,等. 过共晶高硅铸造铝合金磷—稀土双重变质处理 [J]. 中国有色金属学报,1995, 5(1): 59-62. Zhang W W, Yin Z M, Zhao Y, et al. Double-Metamorphic Treatment of Phosphorus-rare Earth in Hypereutectic High Silicon Casting Aluminum Alloy [J]. The Chinese Journal of Nonferrous Metals, 1995, 5(1): 59-62. [4]尤晶. 由电热法生产的一次铝硅合金制取铸造用铝硅合金的研究 [D]. 沈阳: 东北大学, 2008, 5-10.You J. Study of Making Casting Grade Al-Si Alloys with Coarse Al-Si Alloy Produced by Electrothemal Reduction of Aluminous Ore [D]. Shenyang: Northeastern University, 2008, 5-10. [5]赵劭. 铝硅合金的生产方法 [J]. 铝镁通讯, 2002,0(3): 32-34.Zhao S. Production Methods of Al-Si Alloy [J]. Lv Mei Tong Xun, 2002,0(3): 32-34. [6]周祥宇. 用一次铝硅合金制取铸造铝硅合金的研究 [D]. 沈阳: 东北大学, 2007, 6-10.Zhou X Y. Study on Casting Al-Si Alloy by Aluminum-Silicon Alloy [D]. Northeastern University, 2007, 6-10. [7]王耀武,冯乃祥,孙挺,等. 自然沉降法去除铝硅合金中铁相的机制探讨 [J]. 稀有金属, 2010, 34(1): 28-33.Wang Y W, Feng N X, Sun T, et al. Mechanism of Removing Iron Phase in Al-Si Alloy by Natural Deposition [J]. Chinese Journal of Rare Metals, 2010, 34(1): 28-33. [8]You J, Wang Y W, Feng N X, et al. Preparation of Casting aAlloy ZL101 with Coarse Aluminum-Silicon Alloy [J]. Transactions of Nonferrous Metals Society of China, 2008, 18(1): 116-120. [9]Xu C L, Jiang Q C. Morphologies of Primary Silicon in Hypereutectic Al–Si Alloys with Melt Overheating Temperature and Cooling Rate [J]. Materials Science & Engineering A, 2006, 437(2): 451-455. [10]Morita K, Miki T. Thermodynamics of Solar-Grade-Silicon Refining [J]. Intermetallics,2003, 11(11): 1111–1117. [11]Yoshikawa T, Morita K. Refining of Si by the Solidification of Si-Al Melt with Electromagnetic Force [J]. ISIJ International, 2005, 45(7): 967-971. [12]Yoshikawa T, Morita K. Removal of B from Si by Solidification Refining with Si-Al Melts [J]. Metallurgical & Materials Transactions B, 2005, 36(36): 731-736. [13]Yoshikawa T, Morita K. Refining of Silicon During its Solidification from a Si–Al Melt [J]. Journal of Crystal Growth, 2009, 311(3): 776-779. [14]Nishi Y, Kang Y, Morita K. Control of Si Crystal Growth During Solidification of Si-Al Melt [J]. Materials Transactions, 2010, 51(7): 1227-1230. [15]Xue H Y, Lv G Q, Ma W H, et al. Separation Mechanism of Primary Silicon from Hypereutectic Al-Si Melts under Alternating Electromagnetic Fields [J]. Metallurgical and Materials Transactions A, 2015,46 (7): 2922-2932. [16]Lei Y, Sun L E, Ma W H, et al. Enhancing B Removal from Si with Small Amounts of Ti in Electromagnetic Solidification Refining with Al-Si Alloy [J]. Journal of Alloys and Compounds, 2016, 666(0): 406-411. [17]Li J Y, Ni P, Wang L, et al. Influence of Direct Electric Current on Solidification Process of Al-Si Alloy [J]. Materials Science in Semiconductor Processing, 2017, 61(0): 79-84. [18]陈杭,王志,池汝安,等. Al-Si合金熔析结晶过程中界面稳定性与硅晶体生长的控制 [J]. 过程工程学报, 2015, 15(3): 435-442. Chen H, Wang Z, Chi R A, et al. Control of the Stability of Solid-Liquid Interface and Growth of Si Crystal During Solvent Refining Process of A1-Si Alloy [J].The Chinese Journal of Process Engineering, 2015, 15(3): 435-442. [19]Huang L G, Li G, Fu D J, et al. Effects of Electromagnetic Field on Primary Si Phase of Hypereutectic Al-18%Si Alloy [J]. Journal of Materials Engineering, 2010 , 24 (1): 32-33. [20]Li P J, Nikitin V I, Kandalov E G, et al. Effect of Melt Overheating Cooling and Solidification Rates on Al-16wt.%Si Alloy Structure [J]. Materials Science and Engineering, 2002, 332(1): 371-374. |
相关文章 3
[1] | 鲍雨 赵世民 吕国强 王毅博 肖庭 马文会. 电磁分离一次铝硅合金中的富铁相[J]. 过程工程学报, 2019, 19(2): 309-316. |
[2] | 王耀武冯乃祥尤晶杨栋. 碳电热还原法熔炼一次铝硅合金的反应过程[J]. , 2009, 9(3): 531-535. |
[3] | 周萍;周乃君;梅炽;姜昌伟;蔡祺风. 铝电解槽内铝液电磁搅拌流动的数值模拟[J]. , 2003, 3(4): 0-0. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3069