1. 西安建筑科技大学材料与矿资学院,陕西 西安 710043;2. 西安西北有色地质研究院有限公司,陕西 西安 710054
收稿日期:
2017-10-09修回日期:
2017-11-03出版日期:
2018-06-22发布日期:
2018-06-06通讯作者:
李慧基金资助:
国家自然科学基金青年项目Influence Mechanism of Al3+ from Recycled Water of Mineral Processing on Floatability of Molybdenite
Hui LI1, Tingshu HE1*, Jianping JIN2, Chonghui ZHANG1, Zhen WANG1, Hang YUAN11. College of Material and Resource, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710043, China;2. Xi?an Northwest Geological Institute Company of Nonferrous Metals Co., Ltd., Xi?an, Shaanxi 710054, China
Received:
2017-10-09Revised:
2017-11-03Online:
2018-06-22Published:
2018-06-06摘要/Abstract
摘要: 通过辉钼矿浮选实验、Zeta电位测试、Al3+溶液化学分析及X射线光电子能谱分析(XPS),研究了选钼回水中的Al3+对辉钼矿可浮性的影响及其作用机制. 结果表明,铝离子会恶化辉钼矿的浮选指标,并导致其表面Zeta电位显著偏移,表明辉钼矿表面有Al3+吸附;Al3+在溶液中主要以铝离子、羟基铝离子、氢氧化铝沉淀形式存在,后两者具有极强的极性,能吸附在辉钼矿活泼的“棱”上,铝离子与辉钼矿“棱”氧化生成的MoO42?反应生成钼酸铝沉淀;由于辉钼矿“棱”的面积比“面”的面积小很多,而铝离子主要吸附在“棱”上,因此铝元素含量不多,但其确实能吸附在辉钼矿表面,且既有物理吸附也有化学吸附.
引用本文
李慧 何廷树 靳建平 张崇辉 王真 袁航. 选钼回水中铝离子对辉钼矿可浮性的影响机制[J]. 过程工程学报, 2018, 18(3): 595-599.
Hui LI Tingshu HE Jianping JIN Chonghui ZHANG Zhen WANG Hang YUAN. Influence Mechanism of Al3+ from Recycled Water of Mineral Processing on Floatability of Molybdenite[J]. Chin. J. Process Eng., 2018, 18(3): 595-599.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217347
http://www.jproeng.com/CN/Y2018/V18/I3/595
参考文献
[1]张帆,李晔,张一敏.混凝沉淀法处理蓝晶石矿选矿废水的实验研究[J].环境科学与技术,2011,34(1):159-162. Zhang F, Li Y, Zhang Y M. Experimental study on treatment of kyanite beneficiation wastewater by coagulation-precipitation[J]. Environmental science & technology, 2011, 34(1):159-162. [2]祁强,王秀艳,赵文辉,等.选矿废水处理技术研究进展[J].山西化工,2014,149(1):42-47. Qi Q, Wang X Y, Zhao W H, et, al. The technology research progress on the mineral separation wastewater treatment [J]. Shanxi chemical industry, 2014, 149(1):42-47. [3]罗仙平,谢明辉.金属矿山选矿废水净化与资源化利用现状与研究发展方向[J].中国矿业,2006,15(10):51-56. Luo X P, Xie M H. Situation of purifying and comprehensive utilizing mineral processing wastewater and its development trend in nonferrous metal ore mining[J]. China mining magazine, 2006,15(10):51-56. [4]李洪帅,刘殿文,宋凯伟,等.选矿废水对浮选的影响[J].矿冶,2012,21(2):94-97. Li H S, Liu D W, Song K W, et, al. Impact of mineral processing wastewater on flotation process [J]. Mining metallurgy, 2012, 21(2):94-97. [5] 袁致涛,张其东,刘炯天等.金属离子对辉钼矿浮选的影响及机理研究[J].东北大学学报(自然科学版),2016,37(7):1013-1016. Yuan Z T, Zhang Q D, Liu J T, et, al. Influence and mechanism of metal ions on flotation of molybdenite[J]. Journal of Northeastern University( Natural Science), 2016,37(7):1013-1016. [6] 冯其明,刘谷山,喻正军等.铁离子和亚铁离子对滑石浮选的影响及作用机理[J].中南大学学报(自然科学版),2006,37(3):476-480. Feng Q M , Liu G S, Yu Z J, et, al. Influence and mechanism of ferric and ferrous ions on flotation of talc[J]. Journal of Central South University(Science and Technology), 2006,37(3):476-480. [7] Zheng, X., Franzidis, J.P., Johnson, N.W. An evaluation of different models of water recovery in flotation[J]. Minerals Engnieering, 2006, 19(9): 871-882. [8] 袁致涛, 赵利勤, 韩跃新, 刘新华, 粱月明. 混凝法处理朝阳新华钼矿尾矿水的研究[J].矿冶, 2007, (2): 57-60. Yuan Z T,Zhao L Q, Han Y X, et, al. Study on tailing water treatment of Chaoyang Xinhua molybdenum mine with coagulation[J]. Mining metallurgy, 2007, (2): 57-60. [9] Yin, W.Z., Zhang, L.R., Ding, Y.Z. Research on potential control flotation of molybdenite[J]. Advanced materials research, 2009, 58: 147-153. [10] Lu, J., Ma, Y.F., Liu, Y.R., Li, M.H. Treatment of hyper saline wastewater by a combined neutralization–precipitation with ABR-SBR technique[J]. Desalination, 2011, 277(1-3): 321-324 [11]倪浩,李义连,崔瑞萍,逯雨,杨国栋. 白云石矿物对水溶液中Cu2+、Pb2+吸附的动力学和热力学[J]. 环境工程学报,2016,(06):3077-3083. Ni H, L Y L, Cui R P, et, al. Kinetics and thermodynamics of Cu2+ and Pb2+ adsorption from aqueous solutions onto dolomite adsorbent [J]. Chinese Journal of Environmental Engineering, 2016,(06):3077-3083. [12]王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1988.5. Wang D Z, Hu Y H. Flotation solution chemistry [M]. Changsha: Hunan science and technology press, 1988.5. [13]马晶,张文钲,李枢本.钼矿选矿[M].冶金工业出版社,2008,13. Ma J, Zhang W Z, Li S B. Molybdenum ore beneficiation [M]. Metallurgical industry press, 2008,13. [14]范春辉,马宏瑞,花莉,王家宏,王海军. FTIR和XPS对沸石合成特性及Cr(Ⅲ)去除机制的谱学表征[J]. 光谱学与光谱分析, 2012, (02):324-329. Fan C H, Ma H R, Hua L, et, al. FTIR and XPS Analysis of characteristics of synthesized zeolite and removal mechanisms for Cr(III) [J]. Spectroscopy and spectral analysis, 2012, (02):324-329. [15]徐妍,孙宝利,马超,张平,蔡梦玲,吴学民. 超分散剂在莠去津颗粒表面吸附的XPS和SEM分析[J]. 光谱学与光谱分析,2011,(09):2569-2573. Xu Y, Sun B L, Ma C, et, al. XPS and SEM Spectroscopy study of hyperdispersanton atrazine surface[J]. Spectroscopy and spectral analysis, 2012, (02):324-329. [16]马玲玲,秦志宏,张露,刘旭,陈航. 煤有机硫分析中XPS分峰拟合方法及参数设置[J]. 燃料化学学报,2014,(03):277-283. Ma L L, Qin Z H, Zhang L, et, al. Peak fitting methods and parameter settings in XPS analysis for organic sulfur in coal [J].Journal of Fuel Chemistry and Technology,2014,(03):277-283. [17]吴刚. 材料结构表征与应用 [M]. 北京:化学工业出版社,2002,356. Wu G. Structural characterization and application of materials [M]. Beijing: chemical industry press, 2002,356. |
相关文章 5
[1] | 崔冰 陈继 杨在志 赵伟雨 邓玉军 郁倩 刘娟 徐东. (Ca, Ta)共掺杂TiO2陶瓷巨介电性能及机理[J]. 过程工程学报, 2021, 21(2): 210-218. |
[2] | 施帅 何廷树 李慧. Ca2+和Mg2+对辉钼矿可浮性的影响对比[J]. 过程工程学报, 2021, 21(2): 153-159. |
[3] | 荀婧雯 王宇斌 汪潇 王真 王妍. Cu2+对磁化蒸馏水改善辉钼矿浮选效果的影响[J]. 过程工程学报, 2020, 20(3): 332-337. |
[4] | 徐海清刘代云刘慧勇. 电氧化湿法分解钼中矿工艺[J]. , 2010, 10(3): 554-558. |
[5] | 符剑刚;钟宏;彭斌. 超声强化电氧化法湿法分解辉钼矿[J]. , 2005, 5(4): 389-393. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3071