刘静1,
吴超2,
杨有恒1
1.燕山大学电气工程学院 秦皇岛 066004
2.燕山大学信息科学与工程学院 秦皇岛 066004
基金项目:河北省自然科学基金(F2019203320, E2018203398)
详细信息
作者简介:刘彬:男,1953年生,教授,研究方向为计算机视觉
刘静:女,1996年生,硕士生,研究方向为计算机视觉
吴超:男,1990年生,博士生,研究方向为计算机视觉
杨有恒:男,1996年生,硕士生,研究方向为机器学习
通讯作者:刘彬 liubin311@163.com
中图分类号:TN911.73; TP391计量
文章访问数:409
HTML全文浏览量:126
PDF下载量:12
被引次数:0
出版历程
收稿日期:2020-06-29
修回日期:2020-12-05
网络出版日期:2020-12-16
刊出日期:2021-08-10
Correntropy Extreme Learning Machine Based on Spatial Pyramid Matching and Local Receptive Field
Bin LIU1,,,Jing LIU1,
Chao WU2,
Youheng YANG1
1. School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
2. School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
Funds:The Natural Science Foundation of Hebei Province (F2019203320, E2018203398)
摘要
摘要:针对空间金字塔词袋模型中空间特征分布信息利用效率低,各类特征融合不充分的问题,该文提出空间金字塔与局部感受野相结合的相关熵极限学习机(SR-CELM)。在特征提取部分,利用多尺度局部感受野对生成的多层级的字典特征分布图进行卷积,并引入局部位置特征和全局轮廓特征。在特征分类部分,提出一种新的网络以融合各部分特征。同时在传统极限学习机训练方法的基础上利用相关熵准则构建判别性约束,推导出权重更新公式以求解网络的输出权重。为验证SR-CELM的有效性,该文分别在数据库Caltech 101, MSRC和15 Scene上进行实验。实验表明SR-CELM能够充分利用特征中可辨识信息,提高分类正确率。
关键词:图像分类/
词袋模型/
局部感受野/
极限学习机/
相关熵
Abstract:Considering the problems of inefficient use of spatial information between features and inadequate fusion of different features, a Correntropy Extreme Learning Machine based on Spatial pyramid matching and local Receptive field(SR-CELM) is proposed. In feature extraction part, multi-scale local receptive fields are used to convolve the generated multi-level dictionary feature distribution map, and local position features and global contour features are introduced. In feature classification part, a new network is proposed to fuse the features of each part. Based on the traditional extreme learning machine training method, a discriminative constraint is constructed by using the relevant entropy criterion, and the weight update formula is used to solve the output weight of the new network. In order to verify the effectiveness of the SR-CELM, experiments are performed on the databases Caltech 101, MSRC and 15 Scene. The experiments show that SR-CELM can make full use of the identifiable information in the features and improve the classification accuracy.
Key words:Image classification/
Bag of words model/
Local receptive field/
Extreme learning machine/
Correntropy
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=251c7784-e349-423b-86af-5635ded5625a