删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一种新型单层递归神经网络解决非光滑伪凸优化问题

本站小编 Free考研考试/2022-01-03

喻昕1, 3,
卢惠霞1,
伍灵贞2,,,
徐柳明1
1.广西大学计算机与电子信息学院 南宁 530004
2.桂林航天工业学院计算机科学与工程学院 桂林 541004
3.广西多媒体通信与网络技术重点实验室 南宁 530004
基金项目:国家自然科学基金(61862004, 61462006)

详细信息
作者简介:喻昕:男,1973年生,教授,博士,研究方向为人工神经网络、互联网络、优化计算
卢惠霞:女,1993年生,硕士生,研究方向为神经网络、优化计算
伍灵贞:女,1995年生,硕士,研究方向为神经网络、优化计算
徐柳明:男,1994年生,硕士生,研究方向为神经网络、优化计算
通讯作者:伍灵贞 327467000@qq.com
中图分类号:TP183

计量

文章访问数:387
HTML全文浏览量:210
PDF下载量:53
被引次数:0
出版历程

收稿日期:2020-07-07
修回日期:2020-12-06
网络出版日期:2020-12-16
刊出日期:2021-08-10

A New One-layer Recurrent Neural Network for Solving Nonsmooth Pseudoconvex Optimization Problems

Xin YU1, 3,
Huixia LU1,
Lingzhen WU2,,,
Liuming XU1
1. Department of Computer and Electronic Information, Guangxi University, Nanning 530004, China
2. School of Computer Science and Engineering, Guilin University of Aerospace Technology, Guilin 541004, China
3. Guangxi Key Laboratory of Multimedia Communications and Network Technology, Nanning 530004, China
Funds:The National Natural Science Foundation of China (61862004, 61462006)


摘要
摘要:非光滑伪凸优化问题是一类比较特殊的非凸优化问题,常出现在各类科学与工程应用中,因此具有很大的研究价值。针对现有神经网络模型解决非光滑伪凸优化问题存在的不足,该文基于微分包含理论,提出一种新型单层递归神经网络模型。通过理论分析,证明了神经网络状态解在有限时间内收敛到可行域,且永驻其中,最终神经网络状态解收敛于原优化问题的最优解。最后,通过数值实验,验证了所提理论的有效性。与现有的神经网络相比,该文所提神经网络模型结构简单仅为单层,不需要提前计算罚参数,且对初始点选取没有任何特殊的要求。
关键词:神经网络/
非光滑伪凸优化/
收敛/
最优解
Abstract:Pseudoconvex optimization problems are a special kind of nonconvex optimization problems, which often appear in various scientific and engineering applications, so they have great research value. Considering the shortcomings of the existing neural network model to solve the nonsmooth pseudoconvex optimization problem, a new single-layer recurrent neural network model based on differential inclusion theory is proposed. Through theoretical analysis, it is proved that the state solution of the neural network converges to the feasible region within a limited time and stays in it forever. Finally, the state solution of the neural network converges to the optimal solution of the original optimization problem. At the end of the article, the validity of the proposed theory is verified through numerical experiments. Compared with existing neural networks, the neural network model proposed in this paper is simple in structure, does not need to calculate penalty parameters in advance, and has no special requirements for the selection of initial points.
Key words:Neural network/
Nonsmooth pseudoconvex optimization/
Convergence/
Optimal solution



PDF全文下载地址:

https://jeit.ac.cn/article/exportPdf?id=810737a9-c309-48a4-8efa-e7619534f325
相关话题/优化 计算 广西大学 工程 计算机科学