删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于深度生成对抗网络的海杂波数据增强方法

本站小编 Free考研考试/2022-01-03

丁斌1,,,
夏雪2,
梁雪峰1, 3
1.西安文理学院 西安 710065
2.西安石油大学 西安 710065
3.西安电子科技大学 西安 710071
基金项目:西安市科技计划(2019KJWL30)

详细信息
作者简介:丁斌:男,1980年生,博士,高级工程师,研究方向为智能信息处理、图像解译与智慧遥感
夏雪:女,1985年生,博士,研究方向为信号与信息处理
梁雪峰:男,1973年生,博士,教授,博士生导师,研究方向为视觉认知计算(心理学)、计算机视觉、视觉大数据挖掘、智能算法
通讯作者:丁斌 xadb2005@163.com
中图分类号:TN959.72; TP391

计量

文章访问数:642
HTML全文浏览量:286
PDF下载量:129
被引次数:0
出版历程

收稿日期:2020-06-02
修回日期:2021-02-27
网络出版日期:2021-03-04
刊出日期:2021-07-10

Sea Clutter Data Augmentation Method Based on Deep Generative Adversarial Network

Bin DING1,,,
Xue XIA2,
Xuefeng LIANG1, 3
1. Xi’an University, Xi’an 710065, China
2. Xi’an Shiyou University, Xi’an 710065, China
3. Xidian University, Xi’an 710071, China
Funds:Xi’an Science and Technology Plan (2019KJWL30)


摘要
摘要:海杂波数据稀缺,获取海杂波数据成本高、周期长,极大地限制了海杂波特性研究及海洋遥感应用。该文主要研究了基于深度生成性对抗网络(GAN)的海杂波数据生成方法,通过扩展传统的GAN框架,形成了1维海杂波数据生成和鉴别模型,基于实测海杂波数据集,进行对抗网络生成和鉴别模型训练,分析了生成模型所生成的海杂波数据的幅度分布特性和时间、空间相关性。基于实测数据验证了该方法能够生成更多、更多样、与真实海杂波数据分布相近的海杂波数据。
关键词:生成性对抗网络/
海杂波/
幅度分布特性/
时间相关性
Abstract:Due to the scarcity of sea clutter data, the high cost and long period of obtaining sea clutter data greatly limit the research of sea clutter characteristics and the application of ocean remote sensing. The method of sea clutter data generation based on the Generative Adversarial Networks (GAN) is studied. By extending the traditional GAN framework, a one-dimensional sea clutter data generation and identification model is formed. Based on the radar measured sea clutter data set, the generation and identification model training in the adversarial network is carried out. The amplitude distribution characteristics and time and spatial correlation of the sea clutter data generated by the model are analyzed. Based on the measured data, it is verified that the method can generate more sea clutter data with more variety, and similar distribution to the real sea clutter data.
Key words:Generative Adversarial Networks(GAN)/
Sea clutter/
Amplitude distribution characteristics/
Temporal correlation



PDF全文下载地址:

https://jeit.ac.cn/article/exportPdf?id=d8f53195-8194-4e5e-912a-a5ffaa7cf45c
相关话题/数据 网络 博士 视觉 遥感