段仪浓,
杜佳浩,
刘才华,
1.中国民航大学计算机科学与技术学院 天津 300300
2.中国民航大学中国民航信息技术科研基地 天津 300300
基金项目:天津市自然科学基金(18JCYBJC85100),中央高校基本科研业务基金项目中国民航大学专项(3122018C024),中国民航大学科研启动项目(2017QD16X)
详细信息
作者简介:徐涛:男,1962年生,教授、博士生导师,研究方向为智能信息处理、图像处理
段仪浓:男,1994年生,硕士生,研究方向为计算机视觉与模式识别
杜佳浩:男,1994年生,硕士生,研究方向为计算机视觉与模式识别
刘才华:女,1987年生,讲师、博士,研究方向为机器学习与计算机视觉
通讯作者:刘才华 chliu@cauc.edu.cn
中图分类号:TN911.73; TP391.4计量
文章访问数:349
HTML全文浏览量:173
PDF下载量:65
被引次数:0
出版历程
收稿日期:2020-04-28
修回日期:2020-10-12
网络出版日期:2020-10-16
刊出日期:2021-06-18
Crowd Counting Method Based on Multi-Scale Enhanced Network
Tao XU,Yinong DUAN,
Jiahao DU,
Caihua LIU,
1. College of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300, China
2. Information Technology Base of Civil Aviation Administration of China, Civil Aviation University of China, Tianjin 300300, China
Funds:The Natural Science Foundation of Tianjin (18JCYBJC85100), The Fundamental Research Funds for the Central Universities from the Civil Aviation University of China (3122018C024), The Scientific Research Startup Project of the Civil Aviation University of China (2017QD16X)
摘要
摘要:人群计数研究普遍使用欧几里得损失函数,易造成图像局部相关性缺失,且现有研究方法未能充分提取人群图像中连续变化的尺度特征,影响了人群计数模型的性能。针对上述问题,该文提出一种基于多尺度增强网络的人群计数模型(MSEN)。首先,在多分支结构生成网络中引入区域性判别网络,将二者组合形成嵌入式GAN模块,以增强生成图像的局部相关性;之后,基于金字塔池化结构设计了尺度增强模块,将该模块连接在嵌入式GAN模块之后,进一步从不同区域提取不同尺度的局部特征,以最大程度地应对人群图像局部尺度连续变化的问题,从而增强整体模型的泛化能力。最后,在3个具有挑战性的人群计数公共数据集上进行了广泛的实验。实验结果表明,该文所述模型可有效提升人群计数问题的准确性和鲁棒性。
关键词:人群计数/
图像局部相关性/
多尺度特征/
嵌入式GAN模块/
尺度增强模块
Abstract:The performance of the crowd counting methods is degraded due to the commonly used Euclidean loss ignoring the local correlation of images and the limited ability of the model to cope with multi-scale information. A crowd counting method based on Multi-Scale Enhanced Network(MSEN) is proposed to address the above problems. Firstly, an embedded GAN module with a multi-branch generator and a regional discriminator is designed to initially generate crowd density maps and optimize their local correlation. Then, a well-designed scale enhancement module is connected after the embedded GAN module to extract further local features of different scales from different regions, which will strengthen the generalization ability of the model. Extensive experimental results on three challenging public datasets demonstrate that the performance of the proposed method can effectively improve the accuracy and robustness of the prediction.
Key words:Crowd counting/
Image local correlation/
Multi-scale feature/
Embedded GAN module/
Scale-enhancement module
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=d7acf50b-948c-4a85-bd8d-a12c05266da8