韩悦1,,,
张正1,
曲洪斌2,
高国飞3,
陈明钿3,
李博1
1.北方工业大学信息学院 北京 100144
2.中国石油管道局工程有限公司国际事业部 北京 065000
3.北京城建设计发展集团股份有限公司城市轨道交通绿色与安全建造技术国家工程实验室 北京 100037
基金项目:北京市自然科学基金(4192002),北方工业大学科研启动基金
详细信息
作者简介:董小伟:女,1978年生,博士,研究方向为高速信号处理
韩悦:女,1996年生,硕士生,研究方向为人工智能与图像处理
张正:男,1983年生,副研究员,研究方向为人工智能与图像处理
曲洪斌:男,1976年生,工程师,研究方向为信息化应用
高国飞:男,1983年生,高级工程师,研究方向为城市轨道交通安全
陈明钿:男,1991年生,工程师,研究方向为城市轨道交通安全
李博:男,1995年生,硕士生,研究方向为人工智能与图像处理
通讯作者:韩悦 hanyue_428@163.com
中图分类号:TN911.73计量
文章访问数:614
HTML全文浏览量:221
PDF下载量:551
被引次数:0
出版历程
收稿日期:2020-06-02
修回日期:2020-10-18
网络出版日期:2020-10-21
刊出日期:2021-07-10
Metro Pedestrian Detection Algorithm Based on Multi-scale Weighted Feature Fusion Network
Xiaowei DONG1,Yue HAN1,,,
Zheng ZHANG1,
Hongbin QU2,
Guofei GAO3,
Mingdian CHEN3,
Bo LI1
1. School of Information Science and Technology, North China University of Technology, Beijing 100144, China
2. International Business Department, China Petroleum Pipeline Engineering Co., Ltd., Beijing 065000, China
3. Beijing Urban Construction Design and Development Group Co., Ltd., National Engineering Laboratory for Green and Safe Construction Technology of Urban Rail Transit, Beijing 100037, China
Funds:Beijing Natural Science Foundation (4192002), The Scientific Research Foundation of North University of Technology
摘要
摘要:随着地铁乘客的大量增加,实时准确地监测地铁站内客流量对于保证乘客安全具有重要意义。针对地铁场景复杂、行人目标小等特点,该文提出了多尺度加权特征融合(MWF)网络,实现地铁客流量的精准实时监测。在数据预处理阶段,该文提出过采样目标增强算法,对小目标占比不足的图片进行拼接处理,增加小目标在训练时的迭代频率。其次,在单镜头多核检测器(SSD)网络基础上添加了基于VGG16网络的特征提取层,将不同尺度的特征层以不同方式进行加权融合,并选出最优的特征融合方式。最终,结合小目标过采样增强算法,得到多尺度加权特征融合模型。实验证明,该方法与SSD网络相比,在保证实时性的同时,检测精度提升了5.82%。
关键词:目标检测/
小目标/
深度网络/
加权特征融合
Abstract:With the large increase of passengers in metro stations, precise and real-time monitoring of passenger flow in subway stations is of great significance for ensuring passenger safety. Based on the features of complicated subway scenes and small pedestrian targets, a Multi-scale Weighted Feature (MWF) fusion network to achieve accurate real-time monitoring of subway passengers is proposed. In the data preprocessing stage, an oversampling target enhancement algorithm is proposed to stitch the pictures with an insufficient proportion of small targets to increase the iteration frequency of small targets during training. Secondly, feature extraction layers based on the VGG16 network are added to the Single Shot multibox Detector (SSD) network. The feature layers of different scales are weighted and fused in different ways, and the optimal feature fusion method is selected. Finally, combined with the small target oversampling enhancement algorithm, a multi-scale weighted feature fusion model is obtained. Experiments show that the detection accuracy of this method has improved by 5.82 percent compared with the SSD network and doesn’t reduce the speed of detection.
Key words:Target detection/
Small target/
Deep network/
Weighted feature fusion
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=3c167fa2-7b1f-4d5a-ab60-765a63184e85