删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于Khatri-Rao积的三维前视声呐空间方位估计技术

本站小编 Free考研考试/2022-01-03

周天1, 2, 3,
沈嘉俊1, 2, 3,
杜伟东1, 2, 3,,,
周曹韵1, 2, 3,
宋金阳4,
陈宝伟1, 2, 3,
李海森1, 2, 3
1.哈尔滨工程大学水声技术重点实验室 哈尔滨 150001
2.哈尔滨工程大学海洋信息获取与安全工信部重点实验室 哈尔滨 150001
3.哈尔滨工程大学水声工程学院 哈尔滨 150001
4.中国电子科技集团第三十六研究所 嘉兴 314000
基金项目:后勤科研重点项目(BY119C008),国家自然科学基金(U1709203, 41976176, U1906218),中央高校基本业务费(3072020CFT0501),黑龙江省博士后科研发展基金(LBH-Q18042),黑龙江省自然科学基金(ZD2020D001)

详细信息
作者简介:周天:男,1980年生,教授,研究方向为水声信号处理、水声目标探测
沈嘉俊:男,1993年生,博士生,研究方向为水声阵列信号处理
杜伟东:男,1984年生,讲师,研究方向为水声信号处理
通讯作者:杜伟东 duweidong@hrbeu.edu.cn
中图分类号:TB566

计量

文章访问数:435
HTML全文浏览量:124
PDF下载量:25
被引次数:0
出版历程

收稿日期:2019-08-29
修回日期:2020-12-18
网络出版日期:2021-02-22
刊出日期:2021-03-22

DOA Estimation Technology Based on Khatri-Rao Product for 3D Forward-looking Sonar

Tian ZHOU1, 2, 3,
Jiajun SHEN1, 2, 3,
Weidong DU1, 2, 3,,,
Caoyun ZHOU1, 2, 3,
Jinyang SONG4,
Baowei CHEN1, 2, 3,
Haisen LI1, 2, 3
1. Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China
2. Key Laboratory of Marine Information Acquisition and Security, Harbin Engineering University, Harbin 150001, China
3. College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China
4. No. 36 Research Institute of CETC, Jiaxing 314000, China
Funds:The Logistics Study Program(BY119C008), The National Natural Science Foundation of China (U1709203, 41976176, U1906218), The Fundamental Research Funds for the Central Universities(3072020CFT0501), The Postdoctoral Scientific Research Developmental Fund of Heilongjiang(LBH-Q18042), The Natural Science Foundation of Heilongjiang Province(ZD2020D001)


摘要
摘要:为了提高3维前视声呐的方位分辨能力,同时避免2维(2D)方位估计(DOA)方法失效,该文提出1维(1D)空间角估计方法、基于Vernier法的垂直角估计方法和基于最小角定理的水平角方位估计方法。首先基于不同子阵构造互协方差矩阵避免2维方位估计模型失效,再利用Khatri-Rao积进行虚拟孔径扩展;将扩展后的阵列导向矢量和观测向量模型用于2维方位估计。与原阵列的导向矢量相比,虚拟阵元数量约增加1倍,阵列的孔径得到有效扩展。仿真实验表明,与单观测向量波束形成2维方位估计方法相比,所提方法在2维方位估计问题中具有更高的分辨能力,均方根误差更低;水池实验进一步验证了该文所提方法的工程实用性。
关键词:3维前视声呐/
2维方位估计/
虚拟孔径扩展/
Khatri-Rao积/
Vernier法
Abstract:In order to obtain higher resolution and avoid the failure of Two-Dimensional (2D) of Direction-Of-Arrival (DOA) estimation, One-Dimensional (1D) spatial DOA estimation method, vertical DOA estimation via Vernier method and horizontal DOA estimation method via minimum angle theorem are proposed. First, covariance matrices are constructed based on various subarrays to alleviate the failure of 2D model, and the Khatri-Rao product is adopted to extend the virtual array aperture. Second, the extended observation models and corresponding array steer vector are exploited for 2D DOA estimation. Compared with the steer vector of the original array, the number of virtual array elements is doubled, and thus the array aperture is extended. Simulation results show that the proposed method has better resolution and lower RMSE performance in 2D DOA estimation problem compared with the Single Measured Vector Beamforming method. The tank experiment further verifies the engineering practicability of the proposed method.
Key words:3D forward-looking sonar/
2D Direction-Of-Arrival (DOA) estimation/
Virtual aperture extension/
Khatri-Rao product/
Vernier method



PDF全文下载地址:

https://jeit.ac.cn/article/exportPdf?id=d83c8d12-b171-4812-a142-895fb0d38d30
相关话题/哈尔滨工程大学 观测 实验 科研 博士生