HTML
--> --> -->The vacuum energy from the quantum field theory or the cosmological constant from general relativity can be considered as a kind of dark energy, for its equation of state
We generalize the pole dark energy model and propose a multi-pole one, in which the kinetic term may have multiple poles. Poles can come from the super-gravity theory due to the non-minimal coupling to the gravitational field or the geometric properties of the K?hler manifold [13, 14]. The k-essence model [15] is a dark energy model with non-canonical kinetic terms. Here, we treat it phenomenologically similar to what has been done in Ref. [12]. We find that the poles can place some restrictions on the values of the original scalar field, which implies that the original scalar field does not need to change considerably when its corresponding transformed field with canonical kinetic term changes significantly. The later time evolution of the universe is obtained explicitly for the two pole model, while the dynamical analysis is performed for the multiple pole model. We find that it does have a stable solution, which corresponds to the universe dominated by the potential energy of the scalar field.
In Sec. 2, we introduce the multi-pole dark energy model. The relation between the original scalar field that has two poles in its kinetic term and the transformed canonical one will be shown, and the properties of the transformed potential will also be presented. The cosmological evolution driven by the two pole model will be given in Sec. 3. For a general multi-pole dark energy, we will perform the dynamical analysis in Sec. 4. In Sec. 5 discussions and conclusions will be presented.
$ \begin{split} {\cal{L}} = -\frac{1}{2}\frac{k^2}{f^2(\sigma)}(\partial\sigma)^2 - V(\sigma)\,, \end{split} $ ![]() | (1) |
2
2.1.Two poles
After performing the transformation $ \begin{split} {\cal{L}} = -\frac{1}{2}(\partial \phi)^2 - V(\sigma(\phi))\,. \end{split} $ ![]() | (2) |
$ \begin{array}{l} f(\sigma) = \sigma^{p/2}(1 -\beta\sigma^q) \,, \end{array} $ ![]() | (3) |
$ \begin{split} \phi = -\frac{2}{p-2} \sigma^{1-\frac{p}{2}} \, _2F_1\left(1,\frac{1-\frac{p}{2}}{q};\frac{1-\frac{p}{2}+q}{q};\beta \sigma^q\right) \,, \end{split} $ ![]() | (4) |
$ \phi = \frac{k}{q}\ln\bigg(\frac{\sigma^q}{1-\beta\sigma^q} \bigg)\,, $ ![]() | (5) |
$ \sigma = \left(\frac{1}{{\rm e}^{-q\phi/k}+\beta } \right)^{1/q} \,. $ ![]() | (6) |
$ \begin{array}{l} f = {\rm e}^{\phi/k}\bigg( 1+\beta {\rm e}^{q\phi/k}\bigg)^{-1-\frac{1}{q}} \,. \end{array} $ ![]() | (7) |
In the case of power law potential, we have
$ \begin{array}{l} V \sim \sigma^n \,, \rightarrow V \sim (\beta + {\rm e}^{-q\phi/k})^{-n/q} \,. \end{array} $ ![]() | (8) |
$ \begin{split} V|_{\phi\rightarrow\infty} \sim \beta^{-\frac{n}{q}}\left(1-\frac{n}{q\beta}{\rm e}^{-q\phi/k}\right)\,, \end{split} $ ![]() | (9) |
$ \begin{split} \frac{V_\phi}{V} \equiv \frac{{\rm d}V/{\rm d}\phi}{V} = \frac{n}{k} \frac{ {\rm e}^{-q\phi/ k}}{\beta + {\rm e}^{-q\phi/k}} \,. \end{split} $ ![]() | (10) |
In the case of a dilaton potential, we have
$ \begin{array}{l} V\sim {\rm e}^{-\alpha\sigma}\,,\rightarrow V\sim {\rm e}^{-\alpha (\beta + {\rm e}^{-q\phi/k})^{-1/q} }\,, \end{array} $ ![]() | (11) |
$ \begin{split} \frac{V_\phi}{V} = \frac{\alpha}{k} \frac{ {\rm e}^{-q\phi/k}}{\beta + {\rm e}^{-q\phi/k}} \frac{1}{(\beta + {\rm e}^{-q\phi/k})^{1/q}}\,. \end{split} $ ![]() | (12) |
In fact, for a general potential
$ \begin{split} \frac{V_\phi}{V} = \frac{V_\sigma}{V}\frac{f}{k} = \frac{V_\sigma}{V} \frac{{\rm e}^{-q\phi/k}}{(\beta + {\rm e}^{-q\phi/k})^{1/q+1}}\,. \end{split} $ ![]() | (13) |
2
2.2.Multiple poles
When the function $ \begin{split} H^2 = \frac{1}{3M_p^2}\left(\rho_m + \frac{1}{2}\dot\phi^2 + V(\phi)\right) \,, \end{split} $ ![]() | (14) |
$ \ddot \phi + 3H\dot \phi +\frac{{\rm d}V}{{\rm d}\phi} = 0\,. $ ![]() | (15) |
$ \dot H = -\frac{1}{2} (\rho_m + \dot\phi^2)\,. $ ![]() | (16) |
$ \psi = \frac{\phi}{M_p}\,, \quad U = \frac{V}{3H_0^2M_p^2}\,, $ ![]() | (17) |
$ E^2 \left( 1-\frac{1}{6}\psi'^2\right) = \Omega_{m0} {\rm e}^{-3x} + U \,, $ ![]() | (18) |
$ EE' = -\frac{3}{2}\Omega_{m0} {\rm e}^{-3x} + \frac{1}{2} E^2\psi'^2\,. $ ![]() | (19) |
$ \begin{split} \bigg(\Omega_{m0} {\rm e}^{-3x} + U\bigg)\left( \psi'' + \frac{1}{2} \psi'^3 +3\psi'\right) +3\left( 1-\frac{1}{6}\psi'^2\right)\left(\frac{{\rm d}U}{{\rm d}\psi}-\frac{1}{2}\Omega_{m0} {\rm e}^{-3x}\psi'\right) = 0\,. \end{split} $ ![]() | (20) |
$ \begin{split} w = \frac{\dot\phi^2/2-V}{\dot\phi^2/2+V} = -1+2\left[1+\frac{U\left( 6-\psi'^2\right)}{(\Omega_{m0} {\rm e}^{-3x} + U)\psi'^2}\right]^{-1} \,. \end{split} $ ![]() | (21) |
For
$ U = U_0(\beta + {\rm e}^{-q\psi/k})^{-2/q}\,,\quad U_0 = \frac{m^2}{6H_0^2}\,, $ ![]() | (22) |

As can be seen in Fig. 1,



The evolution of the equation of state


Now we take the potential as
$ \begin{split} U = U_0{\rm e}^{-\alpha (\beta + {\rm e}^{-q\psi/k})^{-1/q} } \,,\quad U_0 = \frac{V_0}{6H_0^2}, \end{split} $ ![]() | (23) |


In this section, we will treat the
2
4.1.Dyanamical equations
From Eq. (15) and using $ \begin{split} \ddot \sigma-\frac{{\rm d}f}{f{\rm d}\sigma}\dot \sigma^2+3H\dot \sigma + \frac{{\rm d}V}{{\rm d}\sigma}\frac{f^2}{k^2} = 0\,. \end{split} $ ![]() | (24) |
$ X = \frac{k\dot\sigma}{\sqrt{6}fH}\,,\quad Y = \frac{\sqrt{V}}{\sqrt{3} H} \,,\quad \lambda = \frac{f}{k}\frac{V_\sigma}{V}\,, $ ![]() | (25) |
$ 1 = \Omega_m + X^2+Y^2 \,, \quad \Omega_m = \frac{\rho_m}{3H^2}\,, $ ![]() | (26) |
$\frac{{\rm d}X}{{\rm d}x} = -3X- \sqrt{\frac{3}{2}} \lambda Y^2+ \frac{3}{2}X(1+X^2-Y^2) \,, $ ![]() | (27) |
$ \frac{{\rm d}Y}{{\rm d}x} = Y\left[ \sqrt{\frac{3}{2}} \lambda X +\frac{3}{2}(1+X^2-Y^2)\right]\,, $ ![]() | (28) |
$ \frac{{\rm d}\lambda}{{\rm d}x} = \sqrt{6}X\lambda \left( \Gamma -\lambda \right)\,, $ ![]() | (29) |
$ \Gamma \equiv \frac{f_\sigma}{k} + \lambda \frac{VV_{\sigma\sigma}}{ V_\sigma^2}\,, $ ![]() | (30) |
$ w = \frac{X^2-Y^2}{X^2+Y^2}\,. $ ![]() | (31) |
$ \frac{{\rm d}f/{\rm d}\sigma}{f} = \frac{{\rm d}V/{\rm d}\sigma}{V}-\frac{{\rm d}^2V/{\rm d}\sigma^2}{{\rm d}V/{\rm d}\sigma}\,. $ ![]() | (32) |
$ \phi = \int \frac{{\rm d}\sigma}{f} \sim \int \frac{{\rm d}V}{V{\rm d}\sigma}{\rm d}\sigma = \ln V\,, $ ![]() | (33) |
$ (0,0)\,, (1,0)\,,(-1,0) \,,\left(-\frac{\lambda_c}{\sqrt{6}},\sqrt{1-\frac{\lambda_c^2}{6}}\right)\,,\left(-\sqrt{\frac{3}{2}}\frac{1}{\lambda_c},\sqrt{\frac{3}{2}}\frac{1}{\lambda_c}\right)\,. $ ![]() | (34) |
When
$ \frac{{\rm d}\Gamma}{{\rm d}x} = \frac{f_{\sigma\sigma}f}{k^2}\sqrt{6}X + \frac{{\rm d}\lambda}{{\rm d}x} \frac{VV_{\sigma\sigma}}{ V_\sigma^2} + \lambda \frac{{\rm d}}{{\rm d}x}\left( \frac{VV_{\sigma\sigma}}{ V_\sigma^2}\right)\,. $ ![]() | (35) |
By introducing the following variables:
$ \Gamma_{A(1)} = \frac{f^{\sigma} }{k}, $ ![]() | (36) |
$ \Gamma_{A(n)} = \frac{f^{(n)} f^{n-1}}{f_\sigma^{n}} \,, \quad \Gamma_{B(n)} = \frac{V^{(n)} V^{n-1}}{V_\sigma^{n}} \,, \quad n\geqslant 2\,, $ ![]() | (37) |
$ \begin{array}{l} \Gamma = \Gamma_{A(1)} + \lambda\Gamma_{B(2)} \,; \end{array} $ ![]() | (38) |
$ \begin{split} \frac{{\rm d}\Gamma_{A(1)}}{{\rm d}x} =& \frac{f^{(2)}}{k}\frac{\dot\sigma}{H} = \sqrt{6}X\frac{f^{(2)}f}{k^2} = \sqrt{6}X\Gamma_{A(1)}^2\frac{f^{(2)}f}{f_\sigma^2} \\=& \sqrt{6}X\Gamma_{A(1)}^2\Gamma_{A(2)} \,, \end{split} $ ![]() | (39) |
$ \begin{split} \frac{{\rm d}\Gamma_{A(2)}}{{\rm d}x} =& \left( \frac{f^{(3)}f}{f_\sigma^2} + \frac{f^{(2)}f_\sigma}{f_\sigma^2}-2\frac{(f^{(2)})^2f}{f_\sigma^3}\right) \frac{\dot\sigma}{H} \\=& \sqrt{6}X\Gamma_{A(1)} \bigg(\Gamma_{A(3)}+\Gamma_{A(2)}-2\Gamma_{A(2)}^2\bigg)\,, \end{split} $ ![]() | (40) |
$ \begin{split} \frac{{\rm d}\Gamma_{A(n)}}{{\rm d}x} =& \left(\frac{f^{(n+1)} f^{n-1}}{f_\sigma^{n}}+(n-1)\frac{f^{(n)} f^{n-2}}{f_\sigma^{n-1}}-n\frac{f^{(n)} f^{n-1} f^{(2)}}{f_\sigma^{(n+1)}}\right)\frac{\dot\sigma}{H} \\ =& \sqrt{6}X\Gamma_{A(1)}\bigg(\Gamma_{A(n+1)}+(n-1)\Gamma_{A(n)}-n\Gamma_{A(n)}\Gamma_{A(2)}\bigg)\,, \end{split} $ ![]() | (41) |
$ \begin{split} \frac{{\rm d}\Gamma_{B(n)}}{{\rm d}x} =& \left( \frac{V^{(n+1)} V^{n-1}}{V_\sigma^{n}} + (n-1)\frac{V^{(n)} V^{n-2}}{V_\sigma^{(n-1)}} - n \frac{V^{(n)} V^{n-1}V^{(2)}}{V_\sigma^{(n+1)}} \right) \frac{\dot\sigma}{H} \\ = & \sqrt{6}X\lambda\bigg(\Gamma_{B(n+1)}+ (n-1)\Gamma_{B(n)} - n \Gamma_{B(n)}\Gamma_{B(2)}\bigg)\,, \end{split} $ ![]() | (42) |
Note that
$ \begin{array}{l} (0,0,0)\,, (0,1,0)\,, (1,0,0)\,, (-1,0,0)\,, \end{array} $ ![]() | (43) |
$ (0,0,\lambda_c)\,,\left(-\frac{\lambda_c}{\sqrt{6}},\sqrt{1-\frac{\lambda_c^2}{6}},\lambda_c\right)\,,\left(-\sqrt{\frac{3}{2}}\frac{1}{\lambda_c},\sqrt{\frac{3}{2}}\frac{1}{\lambda_c},\lambda_c\right)\,, $ ![]() | (44) |
$ \begin{array}{l} \Gamma_{A(1)} = 0\,, \end{array} $ ![]() | (45) |
$ \begin{array}{l} \Gamma_{B(2)} = 1\,, \end{array} $ ![]() | (46) |
$ \begin{array}{l} \Gamma_{B(n+1)} = \Gamma_{B(n)}\bigg[ n \Gamma_{B(2)}- (n-1)\bigg] = \Gamma_{B(n)} = 1\,,~~ n\geqslant 2\,. \end{array} $ ![]() | (47) |
2
4.2.Perturbations around the critical points
When the critical points have $ \frac{{\rm d}\delta\Gamma_{A(1)}}{{\rm d}x} = \sqrt{6}X\Gamma_{A(1)}^2\delta\Gamma_{A(2)}\,, $ ![]() | (48) |
$ \frac{{\rm d}\delta \Gamma_{A(n)}}{{\rm d}x} = \sqrt{6}X\Gamma_{A(1)}\bigg(\delta \Gamma_{A(n+1)}+(n-1)\delta \Gamma_{A(n)}\bigg)\,,\quad n\geqslant 2 \,, $ ![]() | (49) |
$ \frac{{\rm d}\delta \Gamma_{B(n)}}{{\rm d}x} = 0\,,\quad n\geqslant 2\,. $ ![]() | (50) |
$ \frac{{\rm d}\delta \lambda}{{\rm d}x} = \sqrt{6}X \Gamma_{A(1)} \delta \lambda\,, $ ![]() | (51) |
$ \begin{split} \frac{{\rm d}\delta X}{{\rm d}x} = & -3\delta X- \sqrt{\frac{3}{2}} Y^2\delta \lambda + \frac{3}{2}\delta X(1+X^2-Y^2) \\&+ 3(X\delta X-Y\delta Y) \,, \end{split} $ ![]() | (52) |
$ \begin{split} \frac{{\rm d}\delta Y}{{\rm d}x} = & \frac{3}{2}(1+X^2-Y^2)\delta Y + Y\left[ \sqrt{\frac{3}{2}} \delta\lambda X\right. +3(X\delta X-Y \delta Y)\Bigg]\,. \end{split} $ ![]() | (53) |
$ \quad\quad\quad\quad \frac{{\rm d}\delta X}{{\rm d}x} = - \frac{3}{2}\delta X \,, $ ![]() | (54) |
$ \quad\quad\quad\quad \frac{{\rm d}\delta Y}{{\rm d}x} = \frac{3}{2}\delta Y , $ ![]() | (55) |
$ \quad\quad\quad\quad \frac{{\rm d}\delta X}{{\rm d}x} = -3\delta X- \sqrt{\frac{3}{2}} \delta \lambda -3\delta Y \,, $ ![]() | (56) |
$ \quad\quad\quad\quad \frac{{\rm d}\delta Y}{{\rm d}x} = - 3\delta Y, $ ![]() | (57) |
The critical point
Let
$ \quad\quad\quad\quad \frac{{\rm d}r}{{\rm d}x} = r R(\theta,\eta) + o(r)\,, $ ![]() | (58) |
$ \quad\quad\quad\quad \frac{{\rm d}\theta}{{\rm d}x} = R(\theta,\eta) \cot\theta + o(r)\,, $ ![]() | (59) |
$ \quad\quad\quad\quad \frac{{\rm d}\eta}{{\rm d}x} = \Xi(\theta,\eta) + o(r) , $ ![]() | (60) |
$ R(\theta,\eta) \equiv -\frac{1}{2}\bigg[ \left(\sqrt{6}\sin\theta\cos\eta+\cos\theta\right)^2 +4\sin^2\theta - 1 \bigg] \,, $ ![]() | (61) |
$ \Xi(\theta,\eta) \equiv -\frac{1}{2}\cos (2\eta) \csc \eta \left(\sqrt{6} \cot \theta+3 \cos \eta\right)\,. $ ![]() | (62) |
$ \frac{{\rm d}r}{r{\rm d}\theta} = \tan\theta \,, $ ![]() | (63) |
$ \begin{split} \frac{{\rm d}r}{r{\rm d}\eta} = & \frac{R(\theta,\eta)}{\Xi(\theta,\eta)}\\ =& \frac{\sin \eta \left(\sin ^2\theta (6 \sec (2 \eta)+3)+\sqrt{6} \sin (2 \theta ) \cos \eta \sec (2 \eta)\right)}{\sqrt{6} \cot \theta +3 \cos\eta}\,. \end{split}$ ![]() | (64) |

The critical points (
$ \quad\quad\quad\quad\frac{{\rm d}\delta X}{{\rm d}x} = 3X\delta X \,, $ ![]() | (65) |
$ \quad\quad\quad\quad \frac{{\rm d}\delta Y}{{\rm d}x} = 3\delta Y \,, $ ![]() | (66) |
$ \quad\quad\quad\quad \frac{{\rm d}\delta \lambda}{{\rm d}x} = \sqrt{6} X \Gamma_{A(1)} \delta \lambda \,. $ ![]() | (67) |
$ \begin{array}{l} f(\sigma) = \sqrt{\dfrac{1}{2m^2V_s}} \dfrac{{\rm d}V_s}{{\rm d}\phi}\bigg(\phi = V_s^{-1}(m^2\sigma^2/2) \bigg)\,, \end{array} $ ![]() | (68) |
The whole dynamical system of Eqs. (27)-(29), Eq. (39), and Eqs. (41)-(42) seems to have infinite dimensions, since there is always a new variable
In conclusion, we have proposed a multi-pole dark energy model. The cosmological evolution is obtained explicitly for the two pole model, while dynamical analysis on the whole system is performed for the multi-pole model. We find that this kind of dark energy model could have a stable solution, which corresponds to the universe dominated by the potential energy of the scalar field. Thus, the multi-pole dark energy model appears worthy of future investigation.
CJF would like to thank Prof. Eric V. Linder for very helpful comments.