1.Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China 2.University of Chinese Academy of Sciences, Beijing 100049, China 3.TIANFU Cosmic Ray Research Center, Chengdu, Shichuan, China 4.University of Science and Technology of China, 230026 Hefei, Anhui, China 5.Tsinghua University, 100084 Beijing, China 6.National Astronomical Observatories, Chinese Academy of Sciences, 100101 Beijing, China 7.National Space Science Center, Chinese Academy of Sciences, 100190 Beijing, China 8.School of Physics, Peking University, 100871 Beijing, China 9.Center for Astrophysics, Guangzhou University, 510006 Guangzhou, Guangdong, China 10.Sun Yat-sen University, 519000 Zhuhai, Guangdong, China 11.Shool of Physics and Technology,Guangxi University, 530004 Nanning, Guangxi, China 12.Hebei Normal University, 050024 Shijiazhuang, Hebei, China 13.School of Physics and Engineering, Zhengzhou University, 450001 Zhengzhou, Henan, China 14.Nanjing University, 210023 Nanjing, Jiangsu, China 15.Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210034 Nanjing, Jiangsu, China 16.Institute of Frontier and Interdisciplinary Science, Shandong University, 266237 Qingdao, Shandong, China 17.Shanghai Astronomical Observatory, Chinese Academy of Sciences, 200030 Shanghai, China 18.School of Physical Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China 19.Sichuan University, 610065 Chengdu, Sichuan, China 20.Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, 850000 Lhasa, Tibet, China 21.School of physics and technology, Wuhan university, 430072 Wuhan, China 22.Yunnan University, 650091 Kunming,Yunnan,China 23.Yunnan Astronomical Observatories, Chinese Academy of Sciences, 650216 Kunming, Yunnan, China 24.Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia 25.Département de Physique Nucléaire et Corpusculaire, Faculté de Sciences, Université de Genéve, Geneva, Switzerland 26.Department of Physics, Faculty of Science, Mahidol University, Bangkok, Thailand 27.Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland 28.Max-Planck-Institut fijr Kernphysik P.O. Box 103980, 69029 Heidelberg, Germany 29.Dipartimento di Fisica dell'Universit\`a di Napoli "Federico II'', Complesso Universitario di Monte Sant'Angelo, via Cinthia, 80126 Napoli, Italy. Received Date:2019-07-22 Accepted Date:2020-02-11 Available Online:2020-06-01 Abstract:The Water Cherenkov Detector Array (WCDA) is a major component of the Large High Altitude Air Shower Array Observatory (LHAASO), a new generation cosmic-ray experiment with unprecedented sensitivity, currently under construction. WCDA is aimed at the study of TeV $\gamma$-rays. In order to evaluate the prospects of searching for TeV $\gamma$-ray sources with WCDA, we present a projection of the one-year sensitivity of WCDA to TeV $\gamma$-ray sources from TeVCat using an all-sky approach. Out of 128 TeVCat sources observable by WCDA up to a zenith angle of $45^\circ$, we estimate that 42 would be detectable in one year of observations at a median energy of 1 TeV. Most of them are Galactic sources, and the extragalactic sources are Active Galactic Nuclei (AGN).
HTML
--> --> -->
3.Fast simulationApart from the Crab-centered simulation, we performed a fast simulation of the array exposure across its field of view (FOV) to calculate the detection significance of all sources in TeVCat①. In this work, the FOV of WCDA is defined as the portion of the sky with a zenith angle $ \leqslant 45^{\circ} $. We project this FOV in local coordinates (zenith and azimuth), in which the zenith angle ($ \theta $) is binned in $ 0.08^{\circ} $ bins and the azimuth ($ \phi $) is binned in $ \frac{0.08^{\circ}}{\sin\theta} $ bins, so that each window contains the same steradian units for the solid angle $ \Omega = 1.95\times10^{-6} $. Also, the sidereal day is divided into 3600 time bins, in other words, one day contains 3600 maps with an exposure time of 24 seconds. The predicted number of cosmic rays or diffuse $ \gamma $ rays in a window $ (t,\theta,\phi) $ is calculated as
where $ \Omega $ is the solid angle in steradian units, and $ \delta t $ is the period of one map, that is 24 seconds. In the case when i stands for CRs, $ A_{i}(\theta,E) $ is the differential effective area of cosmic rays, $ \phi_{i}(E) $ is the cosmic ray spectrum [21], and $ \eta_{i} $ is the efficiency of CRs which passed the photon/hadron criterion. When i stands for the diffuse $ \gamma $-rays, these parameters are the values for $ \gamma $ rays. We take the diffuse $ \gamma $-rays spectra from Ref. [22]. We track every source located in FOV and calculate the number of $ \gamma $-ray events from each source. The predicted number in a window $ (t,\theta,\phi) $ is calculated as
$ N_{\gamma}(t,\theta,\phi) = \eta_{\gamma}\int_{E} \phi(E)_{\gamma}A_{\gamma}(\theta,E)\, {\rm d}E\delta t . $
(2)
The meaning of each parameter is the same as in Eq. (1), but represent $ \gamma $-rays excluding the solid angle. The spectra of the sources used are listed in Tables 1, 2, 3, 4. The spectra of sources are described by a power law with a fixed index $ \phi(E) = N_{0}(\frac{E}{E_{0}})^{-\beta} $, where $ N_0 $ is the differential flux at $ E_0 $, and $ \beta $ is the spectral index. If the spectra of the sources are measured with an exponential energy cut, they are in the form $ \phi(E) = (\frac{E}{E_{0}})^{-\beta}{\rm e}^\frac{-E}{E_{\rm cut}} $, where $ E_{\rm cut} $ is the exponential cutoff energy of the sources. For the extended sources, the extension is determined by fitting the excess map with a two-dimensional (2D) Gaussian convoluted with PSF [34]. Therefore, we use the 2D Gaussian model to produce the morphologies of the extended sources. The parameters for each source are listed in Tables 1,2,3,4.
a: Identified as the counterpart of the Cygnus Cocoon at TeV energies, whose spectrum exhibits an exponential cutoff at 40 TeV.
Table1.Significance of superbubbles, SNRs, Shells, Binaries. $\sigma$ is the significance of the sources, $N_0$ the differential flux at $E_0$, $\beta$ the spectral index, and Extension is the extended angular radius (in degrees) assuming the two-dimensional Gaussian model.
Table2.Significance of PWN. $\sigma$ is the significance of the sources, $N_0$ the differential flux at $E_0$, $\beta$ the spectral index, and Extension is the extended angular radius (in degrees) assuming the two-dimensional Gaussian model.
f: The spectrum of this source is in a flare state.
Table3.Significance of AGN. $\sigma$ is the significance of sources, $N_0$ the differential flux at $E_0$, $\beta$ the spectral index, and $E_{\rm cut}$ is the exponential cutoff energy of the sources.
Table4.Significance of unidentified sources (UID). $\sigma$ is the significance of sources, $N_0$ the differential flux at $E_0$, $\beta$ the spectral index, and Extension is the extended angular radius (in degrees) assuming the two-dimensional Gaussian model.
4.Analysis methodSince the events in each pixel contain the $ \gamma $-ray signals and the background CRs, the key point is to estimate the background properly and test whether there is a significant excess. We use the All-Sky analysis method to estimate the background events, which has been successfully used in the Tibet AS $ \gamma $ experiment [37]. The detection efficiency largely depends on the zenith angle, because more inclined events pass through a greater atmospheric depth. However, the efficiency in one zenith belt is independent of the azimuth angle given that WCDA is sitting almost in a horizontal plane. In the estimate of the background events in a window in the fast simulation, the window is called the "on-source window", and the sideband windows in the same zenith angle belt are referred to as the "off-source windows". The background events in the "on-source window" are estimated from the average number of "off-source windows". FOV in equatorial coordinates is divided into small pixels which measure $ 0.1^\circ \times 0.1^\circ $, and each window marked as $ (t,\theta,\phi) $ in the fast simulation corresponds to a pixel marked as $ (i,j) $ in equatorial coordinates. The number of events in the on-source window is denoted as $ N_{t,\theta,\phi} $ and the relative intensity as $ I_{i,j} $, the number of events in the $ \phi' $-th off-source window as $ N_{t,\theta,\phi'} $ and the relative intensity as $ I_{i',j'} $ , and we have $ \frac{N_{t,\theta,\phi}}{I_{i,j}} = <\frac{N_{t,\theta,\phi'}}{I_{i',j'}}> $. For the FOV of WCDA,
Here, $ n_{\theta} $ represents the number of windows in the $ \theta $ zenith belt. We get the relative intensity $ I_{i,j} $ and the estimated error $ \delta I_{i,j} $ by minimizing $ \tilde{\chi}^2 $. The background in each pixel is $ N_{bkg i,j} = \frac{N_{i,j}}{I_{i,j}} $. The relative intensity gives the deviation in the number of events from the backgrounds expectation. The significance of deviation is calculated as $ \sigma = \frac{I_{i,j}-1}{\delta I_{i,j}} $. In the fast simulation, the skymap contains $ \gamma $-rays from the sources and the diffuse emissions. However, the signal counts from the sources near the Galactic plane may have an underlying diffuse component. We adopt the likelihood ratio method to decompose the two components [11].
In the analysis, the signal model considers the signal counts from two components, $ M_{i,j} = $$ N^{'}_{i,j} + N^{'}_f $. $ N^{'}_{i,j} $ is the source contribution to the pixel $ (i,j) $ derived from the source flux and the detector response. The morphology of the point sources is described by PSF, and that of the extended sources can be characterized by the extended source shapes (2D Gaussian model) convoluted with PSF. To evaluate the maximum possible contribution of the diffuse emission to the source signal counts, we assume that $ N^{'}_f $ is a constant number for each pixel in a circular $ 3^\circ $ region of interest (ROI) centered on our source. Therefore, the signal likelihood is $ {\cal{L}}({\rm signal\; model})\! = \sum_{i,j} \ln P_{i,j}$$\! (N_{i,j},N_{bkg i,j}\!+\!M_{i,j}) $, where $ P_{i,j} $ is the Poisson probability of observing $ N_{i,j} $ counts given the expectation $ N_{bkg i,j}+M_{i,j} $. As for the null model, the expectation only considers the background counts $ N_{bkg i,j} $. We use the Minuit library [38] to maximize the likelihood ratio.