HTML
--> --> -->For closed heavy flavors, one can neglect the parton creation-annihilation fluctuations and describe their static properties with non-relativistic potential models [2]. The study is directly extended from vacuum to hot medium by taking the heavy quark potential from lattice QCD at finite temperature [3, 4]. Solving the two-body Schr?dinger equation for a
For heavy flavor baryons with a typical radius of
The covariant wave equation proposed by Sazdjian [15, 16] provides an approach to find relativistic bound-state wave functions. The interaction potential and the wave function of the bound-state are related in a definite way to the kernel and the wave function of the Bethe-Salpeter equation [15, 17]. Crater and Alstine developed the two-body Dirac equation [7, 8, 18, 19] for mesons, which covariantly converts the Dirac equation with 16 degrees of freedom to a Klein-Gordon-like equation with highly disentangled degrees of freedom. In this framework, one can clearly see the relativistic corrections to the non-relativistic potential model through the Darwin term and numerous spin interaction terms. Subsequently, the three-body Dirac equation for baryons was developed by Whitney and Crater [20], which combines Sazdjian's N-body relativistic potential model with the two-body Dirac equation.
To systematically describe heavy flavor mesons and baryons in a relativistic potential model at finite temperature, we first improve the method to solve the three-body Dirac equation. We expand the baryon wave functions in terms of the two-body spherical harmonic oscillator states, which guarantees the completeness and orthogonality of the expansion, increases the accuracy of the calculation, and can be used to study both the ground and excited baryon states. We also assume a universal set of model parameters for both mesons and baryons. This makes the calculation more self-consistent and predictable. With the improved method, we then solve the two- and three-body Dirac equations in hot medium, and determine the heavy flavor dissociation temperatures by calculating their binding energies and averaged radii.
$ \left[\sum\limits_{i = 1}^{3} {{ p}_i^2\over 2\epsilon_i} + \sum\limits_{i<j}^3{\epsilon_i + \epsilon_j\over 2\epsilon_i \epsilon_j}{\cal V}_{ij}\right]\Psi = E\Psi, $ ![]() | (1) |
$ M = 3\epsilon_i + \sum\limits_{j\neq i}{m_i^2-m_j^2\over \epsilon_i+\epsilon_j}. $ ![]() | (2) |
$ \begin{split} {\cal V}_{ij} = & 2m_{ij}S+S^2+2\epsilon_{ij}A-A^2+\Phi_D\\ &+{{ \sigma}}_i\cdot{{ \sigma}}_j\Phi_{SS}+{ L}_{ij}\cdot({{ \sigma}}_i+{{ \sigma}}_j)\Phi_{SO}\\ &+({{ \sigma}}_i\cdot\hat{ r}_{ij})({{ \sigma}}_j\cdot\hat{ r}_{ij}){ L}_{ij}\cdot({{ \sigma}}_i+{{ \sigma}}_j)\Phi_{SOT}\\ &+{ L}_{ij}\cdot({{ \sigma}}_i-{{ \sigma}}_j)\Phi_{SOD}+{\rm i}{ L}_{ij}\cdot({{ \sigma}}_i\times{{ \sigma}}_j)\Phi_{SOX}\\ &+(3({{ \sigma}}_i\cdot\hat{ r}_{ij})({{ \sigma}}_j\cdot\hat{ r}_{ij})-{{ \sigma}}_i\cdot{{ \sigma}}_j)\Phi_T, \end{split} $ ![]() | (3) |
Solving the baryon mass M and wave function
To solve the Schr?dinger-like equation for the multi-body bound state problem, a typically employed approach is to expand the wave function in terms of known functions. While in some special cases, for instance the ground state, one can use variational method and expand the state in terms of Gaussian wave packets [24], a general and systematic study including both ground and excited states must be carried out in a complete and orthogonal Hilbert space. We employ a numerical framework similar to Ref. [25] to treat the three-body bound state problem. We solve the baryon mass and wave function in the Hilbert space constructed by spherical harmonic oscillator states, which are by definition complete and orthogonal. Considering the mass difference among the three quarks in a general baryon state, we take different constituent masses in constructing the spherical harmonic oscillator states. This is different from Ref. [25], where all the three constituents have the same mass. In such a framework, we can study both the ground and excited states.
As in a two-body problem, we factorize the three-body motion into a center-of-mass motion and a relative motion. To this end, we introduce the coordinates
$ \begin{split} { R} =& (\epsilon_1{ r}_1+\epsilon_2{ r}_2+\epsilon_3{ r}_3)/(\epsilon_1+\epsilon_2+\epsilon_3),\\ {{\rho}} =& \sqrt{\epsilon_1\epsilon_2/(\overline m(\epsilon_1+\epsilon_2))}({ r}_1-{ r}_2),\\ {{\lambda}} =& \sqrt{\epsilon_3/(\overline m(\epsilon_1+\epsilon_2)(\epsilon_1+\epsilon_2+\epsilon_3))}\\ &\times(\epsilon_1({ r}_3-{ r}_1)+\epsilon_2({ r}_3-{ r}_2)), \end{split} $ ![]() | (4) |
We now focus on the relative motion of the three-body problem, which controls the inner structure of the bound state. We expand the relative wave function in terms of two-body spherical harmonic oscillator states. For a single spherical harmonic oscillator, its Schr?dinger equation with potential
The two-body spherical harmonic oscillator states are defined as a direct product of two single spherical harmonic oscillator states,
$ \left| n_\rho l_\rho m_\rho n_\lambda l_\lambda m_\lambda \right> = \left|n_\rho l_\rho m_\rho\right>\left|n_\lambda l_\lambda m_\lambda\right> $ ![]() | (5) |
The above defined two-body spherical harmonic oscillator states are exact solutions of a three-body bound state problem with interaction potential
$ \Phi(|{ r}_{ij}|) = {\epsilon_i^2 \epsilon_j^2 \omega^2\over (\epsilon_i+\epsilon_j)(\epsilon_1+\epsilon_2+\epsilon_3)} r_{ij}^2. $ ![]() | (6) |
$ \left| \Psi_{FSC} \right> = \left| F \right> \times \left| S \right> \times \left| n_\rho l_\rho m_\rho n_\lambda l_\lambda m_\lambda \right>. $ ![]() | (7) |
$ \left| \Psi \right> = \sum\limits_{FSC} C_{FSC} \left| \Psi_{FSC} \right>. $ ![]() | (8) |
$ H_{FSC,F'S'C'} = \left< \Psi_{FSC} \right| H \left| \Psi_{F'S'C'} \right>. $ ![]() | (9) |
$ \sum\limits_{F'S'C'} H_{FSC,F'S'C'} \, C_{F'S'C'} = E \, C_{FSC} $ ![]() | (10) |
$ \begin{split} H_{FSC,F'S'C'} =& \int {\mathrm{d}}^3{{\rho}}\,{\mathrm{d}}^3{{\lambda}}\,\Psi_{n_\rho l_\rho m_\rho}^*({{\rho}})\Psi_{n_\lambda l_\lambda m_\lambda}^*({{\lambda}})\\ &\times\left< F \right|\left< S\right|K +W\left|S' \right> \left| F'\right>\Psi_{n'_\rho l'_\rho m'_\rho}({{\rho}}) \Psi_{n'_\lambda l'_\lambda m'_\lambda}({{\lambda}}). \end{split} $ ![]() | (11) |
$ \begin{split} \Psi_{n_\rho l_\rho m_\rho}({{\rho}}) \Psi_{n_\lambda l_\lambda m_\lambda}({{\lambda}})= \sum\limits_{\widetilde n_\rho \widetilde l_\rho \widetilde m_\rho \widetilde n_\lambda \widetilde l_\lambda \widetilde m_\lambda} D_{\widetilde n_\rho \widetilde l_\rho \widetilde m_\rho \widetilde n_\lambda \widetilde l_\lambda \widetilde m_\lambda}^{n_\rho l_\rho m_\rho n_\lambda l_\lambda m_\lambda}\Psi_{\widetilde n_\rho \widetilde l_\rho \widetilde m_\rho}(\widetilde{{{\rho}}})\Psi_{\widetilde n_\lambda \widetilde l_\lambda \widetilde m_\lambda}(\widetilde{{\lambda}}), \end{split} $ ![]() | (12) |
For a baryon ground state, the
$ {\partial E\over \partial \alpha} = 0,\ \ \ \ \ \ {\partial^2 E\over \partial\alpha^2}>0, $ ![]() | (13) |
The number of the oscillator states or the size of the Hilbert space is controlled by the total principal quantum number

To self-consistently describe both the meson and baryon states, we assume a universal set of parameters by fitting the heavy flavor meson and baryon masses. The parameters we used, including the vacuum quark masses and coupling strengths
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
Table1.Universal set of parameters of potential model.
The calculated heavy flavor meson mass
meson | ![]() ![]() | ![]() ![]() | ![]() ![]() | ![]() ![]() |
![]() ![]() | ![]() ![]() | 1.865 | 1.940 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 2.007 | 2.066 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 1.870 | 1.940 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 2.010 | 2.066 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 1.968 | 2.028 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 2.112 | 2.157 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 2.984 | 2.990 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 3.637 | 3.609 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 3.525 | 3.506 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 3.097 | 3.123 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 3.686 | 3.701 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 3.415 | 3.442 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 3.511 | 3.504 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 3.556 | 3.519 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 5.279 | 5.326 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 5.325 | 5.371 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 5.280 | 5.326 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 5.325 | 5.371 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 5.367 | 5.408 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 5.415 | 5.458 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 9.399 | 9.378 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 9.999 | 9.964 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 9.899 | 9.918 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 9.460 | 9.507 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 10.023 | 10.025 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 9.859 | 9.878 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 9.893 | 9.912 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 9.912 | 9.929 | ![]() ![]() |
Table2.Experimentally measured [27] and calculated heavy flavor meson masses
The baryon masses and the comparison with experimental data are listed in Table 3. For doubly charmed baryons
baryon | ![]() ![]() | ![]() ![]() | ![]() ![]() | ![]() ![]() |
![]() ![]() | ![]() ![]() | 2.286 | 2.440 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 2.454 | 2.413 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 2.453 | 2.413 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 2.454 | 2.413 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 2.468 | 2.557 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 2.471 | 2.557 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 2.577 | 2.566 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 2.579 | 2.566 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 2.695 | 2.681 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 3.621 | 3.632 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 3.619 | 3.632 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 3.745 | ||
![]() ![]() | ![]() ![]() | 2.518 | 2.429 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 2.518 | 2.429 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 2.518 | 2.429 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 2.646 | 2.567 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 2.646 | 2.567 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 2.766 | 2.689 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 3.644 | ||
![]() ![]() | ![]() ![]() | 3.644 | ||
![]() ![]() | ![]() ![]() | 3.754 | ||
![]() ![]() | ![]() ![]() | 4.784 | ||
![]() ![]() | ![]() ![]() | 5.620 | 5.793 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 5.811 | 5.769 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 5.769 | ||
![]() ![]() | ![]() ![]() | 5.816 | 5.769 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 5.792 | 5.913 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 5.795 | 5.913 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 5.792 | 5.903 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 5.795 | 5.903 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 6.046 | 6.021 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 10.210 | ||
![]() ![]() | ![]() ![]() | 10.210 | ||
![]() ![]() | ![]() ![]() | 10.319 | ||
![]() ![]() | ![]() ![]() | 5.832 | 5.781 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 5.781 | ||
![]() ![]() | ![]() ![]() | 5.835 | 5.781 | ![]() ![]() |
![]() ![]() | ![]() ![]() | 5.915 | ||
![]() ![]() | ![]() ![]() | 5.915 | ||
![]() ![]() | ![]() ![]() | 6.033 | ||
![]() ![]() | ![]() ![]() | 10.221 | ||
![]() ![]() | ![]() ![]() | 10.221 | ||
![]() ![]() | ![]() ![]() | 10.331 | ||
![]() ![]() | ![]() ![]() | 14.499 |
Table3.Experimentally measured [27] and calculated heavy flavor baryon masses
With the expansion method in a complete and orthogonal Hilbert space, we can calculate not only the baryon ground states, but also the excited states. Table 4 shows the result for
baryon | experiment | model | ![]() ![]() | |||
![]() ![]() | ![]() ![]() | ![]() ![]() | ![]() ![]() | |||
![]() ![]() | ![]() ![]() | 2.695 | ![]() ![]() | 2.681 | ![]() ![]() | |
![]() ![]() | ![]() ![]() | 2.766 | ![]() ![]() | 2.689 | ![]() ![]() | |
![]() ![]() | 3.000 | ![]() ![]() | 2.990 | ![]() ![]() | ||
![]() ![]() | 3.050 | ![]() ![]() | 3.052 | ![]() ![]() | ||
![]() ![]() | 3.065 | ![]() ![]() | 3.074 | ![]() ![]() | ||
![]() ![]() | 3.090 | ![]() ![]() | 3.085 | ![]() ![]() | ||
![]() ![]() | 3.119 | ![]() ![]() | 3.252 | ![]() ![]() |
Table4.Experimentally measured and model calculated ground and excited states of
$ \begin{split} A_{q\bar q}(r,T) =& -{\alpha_{q\bar q} \over r}{\rm e}^{-\mu r}\,, \\ S_{q\bar q}(r,T) =& {\sigma_{q\bar q} \over \mu}\left[{\Gamma(1/4) \over 2^{3/2}\Gamma(3/4)}-{\sqrt{\mu r} \over 2^{3/4}\Gamma(3/4)} K_{1/4}(\mu^2 r^2) \right]\\ &-\alpha_{q\bar q} \mu\,, \end{split} $ ![]() | (14) |
From the definition of the dissociation temperature
$ \begin{split} \epsilon(T_{\rm d}) = 0,\quad \langle r(T_{\rm d})\rangle = \infty. \end{split} $ ![]() | (15) |
$ \epsilon(T) = M(\infty, T)-M(T). $ ![]() | (16) |
$ M(\infty,T) = V_{q\bar q}(\infty, T)+\sqrt{V_{q\bar q}^2(\infty, T)+(m_1+m_2)^2}. $ ![]() | (17) |
$ {1\over 6}\sum\limits_{ij}{\epsilon_j^2 - m_j^2\over \epsilon_i} = \sum\limits_{i<j}\frac{\epsilon_i+\epsilon_j}{2\epsilon_i\epsilon_j} {\cal V}_{ij}(\infty,T) $ ![]() | (18) |
$ {\cal V}_{ij}(\infty,T) = {2m_im_j\over \epsilon_i+\epsilon_j} V_{qq}(\infty,T) + V_{qq}^2(\infty,T) $ ![]() | (19) |
$ \epsilon_i = {M(\infty, T) \over 3} + {1\over 3}\sum\limits_{j\neq i}{m_i^2-m_j^2\over \epsilon_i+\epsilon_j}. $ ![]() | (20) |


![]() ![]() | ![]() ![]() | ![]() ![]() | ![]() ![]() | ![]() ![]() | ![]() ![]() | ![]() ![]() | |
![]() ![]() | 1.42 | ? | ? | 1.14 | 1.10 | 1.10 | 1.08 |
![]() ![]() | 3.09 | 1.30 | 1.24 | 2.50 | 1.98 | 2.35 | 1.80 |
![]() ![]() | ![]() ![]() | ![]() ![]() | ![]() ![]() | ![]() ![]() | ![]() ![]() | ||
![]() ![]() | 1.15 | 1.06 | 1.05 | 1.03 | 1.02 | 1.02 | |
![]() ![]() | 2.18 | 1.63 | 1.54 | 1.41 | 1.39 | 1.37 |
Table5.Scaled dissociation temperatures
We thank Mr. Tiecheng Guo for the collaboration in the beginning of the work and Profs. Charles Gale and Sangyong Jeon for helpful discussions. Computations were partially made on the supercomputer Belúga, managed by Calcul Québec and Compute Canada.
$ \tag{A1} \begin{split}& -\left< n_\rho' l_\rho' m_\rho' n_\lambda' l_\lambda' m_\lambda'|\nabla_a^2|n_\rho l_\rho m_\rho n_\lambda l_\lambda m_\lambda \right> = \delta_{l_\rho}^{l_\rho'}\,\delta_{m_\rho}^{m_\rho'}\,\delta_{n_\lambda}^{n_\lambda'}\,\delta_{l_\lambda}^{l_\lambda'}\,\delta_{m_\lambda}^{m_\lambda'}\alpha^2 \left[(2n_a+l_a+3/2)\delta_{n_a}^{n_a'}+\sqrt{n_a(n_a+l_a+1/2)}\delta_{n_a}^{n_a'+1}+\sqrt{(n_a+1)(n_a+l_a+3/2)}\delta_{n_a}^{n_a'-1}\right],\\ &\left< n_\rho' l_\rho' m_\rho' n_\lambda' l_\lambda' m_\lambda'|a^2|n_\rho l_\rho m_\rho n_\lambda l_\lambda m_\lambda \right> = \delta_{l_\rho}^{l_\rho'}\,\delta_{m_\rho}^{m_\rho'}\,\delta_{n_\lambda}^{n_\lambda'}\,\delta_{l_\lambda}^{l_\lambda'}\,\delta_{m_\lambda}^{m_\lambda'}\alpha^{-2} \left[(2n_a+l_a+3/2)\delta_{n_a}^{n_a'}-\sqrt{n_a(n_a+l_a+1/2)}\delta_{n_a}^{n_a'+1}-\sqrt{(n_a+1)(n_a+l_a+3/2)}\delta_{n_a}^{n_a'-1}\right], \end{split} $ ![]() | (A1) |
For the potential
$ \tag{A2} \left< n_\rho' l_\rho' m_\rho' n_\lambda' l_\lambda' m_\lambda' |\Phi(|{ r}_{12}|)| n_\rho l_\rho m_\rho n_\lambda l_\lambda m_\lambda \right> = \delta_{l_\rho}^{l_\rho'}\,\delta_{m_\rho}^{m_\rho'}\,\delta_{n_\lambda}^{n_\lambda'}\,\delta_{l_\lambda}^{l_\lambda'}\,\delta_{m_\lambda}^{m_\lambda'}\int \rho^2 {\mathrm{d}}\rho\, \psi_{n_\rho l_\rho}(\rho) \psi_{n_\rho' l_\rho'}(\rho)\Phi\left(\sqrt{{\overline m(\epsilon_1+\epsilon_2)\over \epsilon_1\epsilon_2}}\rho\right). $ ![]() | (A2) |
The orbital angular momentum dependent terms and tensor term in
$ \tag{A3} \begin{split} \left|F\right>_{S/A} & = \left[\left|q_1q_2q_3\right>\pm \left|q_2q_1q_3\right> + \left|q_2q_3q_1\right>\pm\left|q_3q_2q_1\right> + \left|q_3q_1q_2\right>\pm\left|q_1q_3q_2\right>\right]/\sqrt 6,\\ \left|F\right>_{M1S/A} & = \left[-2\left|q_1q_2q_3\right> \mp 2\left|q_2q_1q_3\right >+\left|q_2q_3q_1\right>\pm\left|q_3q_2q_1\right> + \left|q_3q_1q_2\right> \pm \left|q_1q_3q_2\right>\right]/\sqrt {12},\\ \left|F\right>_{M2S/A} & = \left[\left|q_2q_3q_1\right>\pm \left|q_3q_2q_1\right> - \left|q_3q_1q_2\right>\mp\left|q_1q_3q_2\right> \right]/\sqrt 4, \end{split} $ ![]() | (A3) |
$ \tag{A4} \begin{split}\left|S\right>_{S1/2} & = \left|\pm 1/2,\pm 1/2,\pm 1/2\right> = \left|1,\pm 1\right>_{12}\left|\pm 1/2\right>_3 = \left|1,\pm 1\right>_{23}\left|\pm 1/2\right>_1 = \left|1,\pm 1\right>_{31}\left|\pm 1/2\right>_2, \\ \left|S\right>_{S3/4} & = \left[\left|\pm 1/2,\pm 1/2,\mp 1/2\right>+\left|\pm 1/2,\mp 1/2,\pm 1/2\right>+\left|\mp 1/2,\pm 1/2,\pm 1/2\right>\right]/\sqrt 3 = \sqrt {1/3}\left|1,\pm 1\right>_{12}\left|\mp 1/2\right>_3+\sqrt{2/3}\left|1,0\right>_{12}\left|\pm 1/2\right>_3\\ & = \sqrt {1/3}\left|1,\pm 1\right>_{23}\left|\mp 1/2\right>_1+\sqrt{2/3}\left|1,0\right>_{23}\left|\pm 1/2\right>_1 = \sqrt {1/3}\left|1,\pm 1\right>_{13}\left|\mp 1/2\right>_2+\sqrt{2/3}\left|1,0\right>_{13}\left|\pm 1/2\right>_2,\\ \left|S\right>_{MS1/2} & = \left[2\left|\pm 1/2,\pm 1/2,\mp 1/2\right>-\left|\pm 1/2,\mp 1/2,\pm 1/2\right>-\left|\mp 1/2,\pm 1/2,\pm 1/2\right>\right]/\sqrt 6 = \sqrt{2/3}\left|1,\pm 1\right>_{12}\left|\mp 1/2\right>_3-\sqrt{1/3}\left|1,0\right>_{12}\left|\pm 1/2\right>_3\\& = \sqrt{3/4}\left|0,0\right>_{23}\left|\pm 1/2\right>_1-\sqrt{1/12}\left|1,0\right>_{23}\left|\pm 1/2\right>_1+\sqrt{1/6}\left|1,\pm 1\right>_{23}\left|\mp 1/2\right>_1\\&= -\sqrt{3/4}\left|0,0\right>_{13}\left|\pm 1/2\right>_2-\sqrt{1/12}\left|1,0\right>_{13}\left|\pm 1/2\right>_2+\sqrt{1/6}\left|1,\pm 1\right>_{13}\left|\mp 1/2\right>_2,\\ \left|S\right>_{MA1/2} & = \left[\left|\pm 1/2,\mp 1/2,\pm 1/2\right>-\left|\mp 1/2,\pm 1/2,\pm 1/2\right>\right]/\sqrt 2 = \left|0,0\right>_{12}\left|\pm 1/2\right>_3 = -{1/2}\left|0,0\right>_{23}\left|\pm 1/2\right>_1 + {1/2}\left|1,0\right>_{23}\left|\pm 1/2\right>_1-\sqrt{1/2}\left|1,\pm 1\right>_{23}\left|\mp 1/2\right>_1\\ & = -{1/2}\left|0,0\right>_{13}\left|\pm 1/2\right>_2 - {1/2}\left|1,0\right>_{13}\left|\pm 1/2\right>_2+\sqrt{1/2}\left|1,\pm 1\right>_{13}\left|\mp 1/2\right>_2, \end{split} $ ![]() | (A4) |
Employing the algebraic method used in quantum mechanics for the single spin operator
$\tag{A5} \begin{split} {\hat r}_z \left|l,m\right> & = \sqrt{{(l+l'+1)^2 - 4m^2\over 4(2l+1)(2l'+1)}}\left(\delta_{l'}^{l+1} + \delta_{l'}^{l-1}\right)\left|l',m\right>,\\ {\hat r}^\pm \left|l,m\right> & \!=\! \mp\left[\sqrt{\frac{(l+1\pm m)(l'+1\pm m)}{2(2l+1)(2l'+1)}}\delta_{l'}^{l+1}\!-\! \sqrt{\frac{(l \mp m)(l' \mp m)}{2(2l\!+\!1)(2l'\!+\!1)}}\delta_{l'}^{l-1}\right]\left|l',m\pm1\right>. \end{split} $ ![]() | (A5) |
$\tag{A6} H_{LS,L'S'}^{SS} = \left[2S(S+1)-3\right]\delta_{l_\rho}^{l'_\rho}\delta_{m_\rho}^{m'_\rho}\delta_S^{S'}\delta_{S_z}^{S'_z} $ ![]() | (A6) |
$\tag{A7} H_{LS,L'S'}^{SO} \!=\! \left[2 m_\rho S_z \delta_{m_\rho}^{m'_\rho} \delta_{S_z}^{S'_z}\!+\!D_{l_\rho}^{m_\rho} D_{S'}^{S'_z} \delta_{m_\rho+1}^{m'_\rho}\delta_{S_z\!-\!1}^{S'_z}\!+\!D_{l'_\rho}^{m'_\rho} D_S^{S_z} \delta_{m_\rho-1}^{m'_\rho}\delta_{S_z\!+\!1}^{S'_z}\right]\delta_{l_\rho}^{l'_\rho} \delta_S^{S'} $ ![]() | (A7) |
$\tag{A8} \begin{split} H_{LS,L'S'}^{SOD/X} =& \Big[2 m_\rho \left((1-S)\delta_{S+1}^{S'} \pm (S^2-S_z^2)\delta_{S-1}^{S'}\right)\delta_{m_\rho}^{m'_\rho}\delta_{S_z}^{S'_z}\\ &+\sum\limits_\pm \pm\sqrt{(S\mp S_z-1)(S\mp S_z-2)} D_{l_\rho}^{m_\rho} \\&\times\left((1-S)\delta_{S+1}^{S'} \mp S\delta_{S-1}^{S'}\right)\delta_{m_\rho\pm 1}^{m'_\rho}\delta_{S_z\mp 1}^{S'_z}\Big]\delta_{l_\rho}^{l'_\rho} \end{split} $ ![]() | (A8) |
$ \tag{A9} \begin{split} H_{LS,L'S'}^T = & \delta_{S}^{S'}\delta_{S_z}^{S'_z}\delta_{m_\rho}^{m'_\rho}\left[6S_z^2-2S(S+1)\right] \left[\frac{l_\rho^2+l_\rho-3m_\rho^2}{4l_\rho^2+4l_\rho-3}\delta_{l_\rho}^{l'_\rho} +\frac{3}{2} \sqrt{\frac{((l_\rho+l'_\rho)^2-4m_\rho^2)((l_\rho+l'_\rho+2)^2-4m_\rho^2)}{16(2l_\rho+1)(2l'_\rho+1)(l_\rho+l'_\rho+1)^2}}\left(\delta_{l_\rho+2}^{l'_\rho} +\delta_{l_\rho-2}^{l'_\rho}\right)\right]\\ & -\sum\limits_{\pm}\left\{\sqrt{1\over 2}\delta_S^{S'}\delta^{S'_z}_{S_z\mp 1} \delta_{m_\rho\pm 1}^{m'_\rho}(S\pm S_z)(2S\mp 3S_z)\left[ \sqrt{\frac{(l_\rho \mp m_\rho+1)\Gamma(l_\rho \pm m_\rho+4) /\Gamma(l_\rho \pm m_\rho+1)}{(2l_\rho+1)(2l'_\rho+1)(l_\rho+l'_\rho+1)^2}} \delta_{l_\rho+2}^{l'_\rho}\right.\right. \\ &\left.+\sqrt{\frac{(l_\rho \pm m_\rho)\Gamma(l_\rho \mp m_\rho+1) /\Gamma(l_\rho \mp m_\rho-2)}{(2l_\rho+1)(2l'_\rho+1)(l_\rho+l'_\rho+1)^2}} \delta_{l_\rho-2}^{l'_\rho}\pm \frac{(m_\rho+m'_\rho)\sqrt{(l_\rho \pm m_\rho+1)(l_\rho \mp m_\rho)}}{4l_\rho^2+4l_\rho-3}\delta_{l_\rho}^{l'_\rho}\right]\\ & +\delta_{S}^{S'}\delta^{S'_z}_{S_z\mp 2} \delta_{m_\rho\pm 2}^{m'_\rho}\sqrt{2(S\pm S_z)(S\pm S_z-1)} \left[\frac{\sqrt{((l_\rho+1)^2-(\pm m_\rho+1)^2)(l_\rho^2-(\pm m_\rho+1)^2)}}{4l_\rho^2+4l_\rho-3}\delta_{l_\rho}^{l'_\rho}\right.\\ & \left.\left.+\sqrt{\frac{\Gamma(l_\rho \pm m_\rho+5) /\Gamma(l_\rho \pm m_\rho+1)}{4(2l_\rho+1)(2l'_\rho+1)(l_\rho+l'_\rho+1)^2}} \delta_{l_\rho+2}^{l'_\rho} -\sqrt{\frac{\Gamma(l_\rho \mp m_\rho+1) /\Gamma(l_\rho \mp m_\rho-3)}{4(2l_\rho+1)(2l'_\rho+1)(l_\rho+l'_\rho+1)^2}} \delta_{l_\rho-2}^{l'_\rho} \right]\right\} \end{split} $ ![]() | (A9) |
$ \tag{A10} H_{LS,L'S'}^{SOT} = {1\over 3}\sum \left(H_{L'S',L^{''}S^{''}}^T+H_{L'S',L^{''}S^{''}}^{SS}\right)H_{L^{''}S^{''},LS}^{SO} $ ![]() | (A10) |