删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

A note on scalar meson dominance

本站小编 Free考研考试/2022-01-01

闂傚倸鍊搁崐鐑芥嚄閸撲礁鍨濇い鏍仜缁€澶嬩繆閵堝懏鍣圭紒鐘靛█閺岀喖骞戦幇闈涙闂佸憡淇洪~澶愬Φ閸曨垰妫橀柛顭戝枓閹稿啴姊洪崨濠庢畷鐎光偓閹间礁绠栨俊銈呮噺閺呮煡骞栫€涙ḿ绠橀柣鈺佹捣缁辨挻鎷呮搴ょ獥闂侀潻缍囩紞浣割嚕婵犳碍鍋勯柣鎾虫捣椤ρ囨⒑閸忚偐銈撮柡鍛箞閹繝宕掗悙绮规嫼缂備礁顑堝▔鏇㈡倿閸ф鐓欓柛鎴欏€栫€氾拷2婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犳壆绱掔€n偓绱╂繛宸簻鎯熼梺鍐叉惈椤戝洨绮欒箛娑欌拺闁革富鍘奸崝瀣亜閵娿儲顥㈢€规洜鏁婚崺鈧い鎺戝閳锋垿鏌涘☉姗堝伐濠殿噯绠戦湁婵犲﹤鎳庢禒杈┾偓瑙勬礃濡炰粙寮幘缁樺亹鐎规洖娲ら獮妤呮⒒娓氣偓濞佳呮崲閸儱纾归柡宓偓濡插牏鎲搁弮鍫濊摕闁挎繂顦悞娲煕閹板吀绨奸柛锝勫嵆濮婅櫣鎷犻垾铏闂佹悶鍎滈崶褎鏆梻鍌欑劍鐎笛呮崲閸屾娲閵堝懐锛涢梺鍦劋椤ㄥ棝鍩涢幋锔界厱婵犻潧妫楅鈺呮煃瑜滈崜娆戠礊婵犲洤绠栭梺鍨儐缂嶅洭鏌嶉崫鍕簽婵炶偐鍠栧铏规崉閵娿儲鐝㈤梺鐟板殩閹凤拷
婵犵數濮烽弫鍛婃叏娴兼潙鍨傜憸鐗堝笚閸嬪鏌曡箛瀣偓鏇㈡倷婵犲嫭鍠愮€广儱妫欓崣蹇涙煏閸繍妲归柍閿嬪灴閺屾稑鈽夊鍫濅紣缂備焦顨嗙敮妤佺┍婵犲浂鏁冮柨婵嗘处閸掓稑顪冮妶鍐ㄧ仾婵☆偄鍟幈銊╁焵椤掑嫭鐓忛柛顐g箖閿涘秵淇婇銏狀伃闁哄矉绲鹃幆鏃堫敍濠婂憛锝夋⒑閸濄儱校闁绘濮撮悾鐑藉閵堝懐顔掑銈嗘⒒閺咁偊宕㈤幖浣光拺闁告稑锕ョ粈瀣箾娴e啿娲﹂崐鍫曟煥濠靛棙顥撳ù婊勭矒閺岀喓鈧稒岣跨粻鏍ь熆鐠哄搫顏紒杈ㄥ笧閳ь剨缍嗘禍璺何熼埀顒勬⒑缁洘鏉归柛瀣尭椤啴濡堕崱妤€娼戦梺绋款儐閹瑰洭寮诲鍥ㄥ珰闁哄被鍎卞鏉库攽閿熺姷鐣哄ù婊冪埣瀵顓奸崼顐n€囬梻浣告啞閹稿鎮烽埡浣烘殾妞ゆ牗绋戦閬嶆倵濞戞顏呯椤栨埃鏀介柣鎰级閳绘洖霉濠婂嫮绠炵€殿喗鐓¢、妤呭礋椤掆偓閳ь剙鐖奸弻锝夊箛椤旇姤姣勯梺纭呮閸婂潡寮诲☉銏犖ч柛銉仢閵忋倖顥嗗璺侯儑缁♀偓婵犵數濮撮崐鎼佸汲閿濆棎浜滈幖娣焺濞堟洟鏌曢崶褍顏柛鈺冨仱椤㈡﹢鎮欏顔荤棯濠电姵顔栭崹閬嶅箰閹惰棄钃熼柨鐔哄Т閻愬﹪鏌嶆潪鎵妽闁诲繋绶氬娲川婵犲嫭鍠涢梺绋款儐閹瑰洤顫忕紒妯诲闁告縿鍎虫婵犵數鍋橀崠鐘诲幢閹邦亝鐫忛梻浣虹帛閸旀寮崫銉т笉闁哄啫鐗婇悡娆撴煙椤栧棗鑻▓鍫曟⒑瀹曞洨甯涙慨濠傜秺楠炲牓濡搁妷搴e枔閹风娀骞撻幒婵囨祰闂傚倷鐒﹂幃鍫曞磹瑜忕划濠氬箻鐠囪尪鎽曢梺缁樻濞咃綁鎯屽▎鎾寸厵缂佸鐏濋銏ゆ煙椤旂晫鎳囨慨濠勫劋鐎电厧鈻庨幋鐘樻粎绱撴担鍝勑i柣妤佹礋椤㈡岸鏁愭径妯绘櫇闂佸啿鐏堥弲婊堟倵婵犳碍鈷戠憸鐗堝笒娴滀即鏌涘Ο鍝勨挃缂侇喗鐟╁畷鐔碱敍濞戞帗瀚奸梻浣告贡鏋繛瀵稿厴閸┿儲寰勯幇顓犲幐闂佸壊鍋掗崑鍕櫠鐎电硶鍋撶憴鍕缂傚秴锕ユ穱濠傤潰瀹€濠冃┑鐘愁問閸ㄤ即濡堕幖浣歌摕婵炴垶菤濡插牊鎱ㄥΔ鈧悧濠囧极閸撗呯=濞达絽鎼牎闁汇埄鍨抽崑銈夊春閳ь剚銇勯幒鍡椾壕闂佽绻戦懝楣冣€﹂崹顕呮建闁逞屽墴楠炲啳顦圭€规洖宕湁闁哄瀵ч崰妯尖偓瑙勬礈鏋摶鏍归敐澶嬫珳闁汇儺浜缁樻媴娓氼垱鏁梺瑙勬た娴滎亜顫忔禒瀣妞ゆ牗绋掑▍鏍⒑閸濆嫮鈻夐柛妯圭矙閹ょ疀濞戞瑧鍘遍梺鏂ユ櫅閸燁垳绮堥埀顒€顪冮妶蹇曞矝闁哄棙绔糴婵犵數濮烽弫鍛婃叏娴兼潙鍨傞柛锔诲幘缁€濠傗攽閻樺弶鎼愰柣鎺戠仛閵囧嫰骞掑鍫濆帯闂佹剚鍨卞ú鐔煎蓟閺囥垹骞㈡俊銈傚亾闁哄棴缍侀弻锛勪沪閸撗勫垱濡ょ姷鍋炵敮锟犵嵁鐎n喗鍊婚柛鈩冿供濡冣攽閿涘嫬浜奸柛濠冪墱閺侇噣鎮欓崫鍕崶闂佸綊鍋婇崰姘舵儗濞嗗繆鏀介柣妯哄级婢跺嫰鏌涚€n偄濮嶉柡宀嬬秮婵偓闁靛繆鍓濆В鍕煛娴e摜澧︽慨濠勭帛閹峰懐绮欓幐搴♀偓顖氣攽閻橆喖鐏柨鏇樺灩閻g兘顢涘☉姗嗗殼闁诲孩绋掗敋濞存粠鍨跺娲川婵犲嫮鐣垫繝娈垮灥妞存悂骞嗛弮鍫濐潊闁挎稑瀚倴濠碉紕鍋戦崐鏍礉濡ゅ懎绐楅幖娣灮椤╂彃螖閿濆懎鏆為柣鎾寸洴閺屾盯濡烽敐鍛瀴闂佹眹鍔嶉崹鍧楀蓟閿濆鍋勯柛娆忣槹閻濇棃姊虹€圭姵顥夋い锔炬暬閻涱喖螣閼测晝顦╅梺缁樏畷顒勵敆閵忊€茬箚闁绘劦浜滈埀顒佺墪鐓ゆ繝闈涙閺嬪秹鏌¢崶鈺佷憾缂傚倹宀搁悡顐﹀炊閵娧€妲堥悗鐟版啞缁诲啴濡甸崟顖氱婵°倐鍋撻柛鐕佸灦椤㈡瑩鏁撻敓锟�20濠电姴鐥夐弶搴撳亾濡や焦鍙忛柣鎴f绾惧鏌eΟ娆惧殭缂佺姴鐏氶妵鍕疀閹炬惌妫″銈庡亝濞叉ḿ鎹㈠┑瀣棃婵炴垵宕崜鎵磽娴e搫校闁搞劌娼″濠氬Χ閸℃ê寮块梺褰掑亰閸忔﹢宕戦幘婢勬棃鍩€椤掑嫬鐓濋柡鍐ㄧ墕椤懘鏌eΟ鐑橆棤闁硅櫕鎹囬妶顏呭閺夋垹顦ㄩ梺鍐叉惈閿曘儵鏁嶉崨顖滅=闁稿本鐟чˇ锔姐亜閿旇鐏︽い銏″哺椤㈡﹢濮€閻橀潧濮︽俊鐐€栧濠氬磻閹惧绡€闁逞屽墴閺屽棗顓奸崨顖ょ幢闂備胶绮濠氬储瑜斿鍛婄瑹閳ь剟寮婚弴銏犻唶婵犲灚鍔栨晥闂備胶枪妤犲摜绮旇ぐ鎺戣摕婵炴垯鍨归崡鎶芥煏婵炲灝鍔氭い顐熸櫊濮婄儤瀵煎▎鎴犳殸缂傚倸绉撮敃顏堢嵁閸愩剮鏃堝礃閳轰焦鐎梻浣告啞濞诧箓宕f惔銊ユ辈闁跨喓濮甸埛鎴︽煕濠靛棗顏い銉﹀灴閺屾稓鈧綆鍋呭畷灞炬叏婵犲啯銇濈€规洦鍋婂畷鐔煎垂椤愬诞鍥ㄢ拺闁告稑锕ラ埛鎰版煟濡ゅ啫鈻堟鐐插暣閺佹捇鎮╅搹顐g彨闂備礁鎲″ú锕傚礈濞嗘挻鍋熷ù鐓庣摠閳锋垿姊婚崼鐔恒€掔紒鐘冲哺閺屾盯骞樼€靛摜鐤勯梺璇″枓閳ь剚鏋奸弸搴ㄦ煙闁箑鏋ゆい鏃€娲樼换婵嬪閿濆棛銆愬銈嗗灥濡稓鍒掗崼銉ョ劦妞ゆ帒瀚崐鍨箾閸繄浠㈡繛鍛Ч閺岋繝鍩€椤掑嫬纭€闁绘垵妫楀▓顐︽⒑閸涘﹥澶勯柛瀣浮瀹曘儳鈧綆鍠楅悡鏇㈡煛閸ャ儱濡兼鐐瓷戞穱濠囧矗婢跺﹦浼屽┑顔硷攻濡炶棄鐣烽锕€绀嬫い鎰枎娴滄儳霉閻樺樊鍎滅紓宥嗙墪椤法鎹勯悜妯绘嫳闂佺ǹ绻戠划鎾诲蓟濞戙埄鏁冮柨婵嗘椤︺劑姊洪崫鍕闁告挾鍠栭獮鍐潨閳ь剟骞冨▎鎾搭棃婵炴垶顨呴ˉ姘辩磽閸屾瑨鍏屽┑顔炬暩閺侇噣鍨鹃幇浣圭稁婵犵數濮甸懝楣冩倷婵犲洦鐓ユ繝闈涙閸gǹ顭跨憴鍕婵﹥妞介幊锟犲Χ閸涱喚鈧儳鈹戦悙鎻掔骇闁搞劌娼¢獮濠偽旈崘鈺佺/闁荤偞绋堥崜婵嬫倶娓氣偓濮婅櫣娑甸崨顔兼锭闂傚倸瀚€氭澘鐣烽弴銏犵闁挎棁妫勯埀顒傛暬閺屻劌鈹戦崱娑扁偓妤侇殽閻愮榿缂氱紒杈ㄥ浮閹晛鐣烽崶褉鎷伴梻浣告惈婢跺洭宕滃┑鍡╁殫闁告洦鍋€濡插牊绻涢崱妤佺濞寸》鎷�
Y. ünal 1,2,
, Ulf-G. Mei?ner 1,3,4,
, 1.Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universit?t Bonn, D-53115 Bonn, Germany
2.Physics Department, ?anakkale Onsekiz Mart University, 17100 ?anakkale, Turkey
3.Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany
4.Tbilisi State University, 0186 Tbilisi, Georgia
Received Date:2019-08-13
Available Online:2019-10-01
Abstract:We consider chiral perturbation theory with an explicit broad σ-meson and study its contribution to the scalar form factors of the pion and the nucleon. Our goal is to learn more about resonance saturation in the scalar sector.

HTML

--> --> -->
1.Introduction
The lowest-lying resonance in QCD is the broad $ \sigma $-meson (also called $ f_0(500) $), with its parameters precisely determined from various dispersion-theoretical analyses of pion-pion scattering, see e.g. [1, 2]. Still, due to its large width, the $ \sigma $ (and other scalar mesons) plays a rather different role in the low-energy effective field theory of QCD than the vector or axial-vector mesons. The latter clearly saturate the low-energy constants to which they can contribute, as known since long [3, 4]. In the scalar sector, the heavier mesons like the $ f_0(980) $ and $ a_0(980) $ are considered in the studies of resonance saturation, but their contribution to the low-energy constants is small, except for $ L_5 $ and $ L_8 $, which, however, are used to fix certain scalar couplings [3]. Later, it was argued in Ref. [5] that the imaginary part of the pion scalar form factor can be understood in terms of a broad scalar meson, building upon the detailed investigations in [6, 7]. Further, in Ref. [8] it was shown that the dimension-two low-energy constant $ c_1 $, that parametrizes the leading explicit chiral symmetry breaking in the effective pion-nucleon Lagrangian, can be saturated by scalar meson exchange for a particular value of the ratio $ M_{\sigma}/g_{\sigma NN} $, with $ M_{\sigma} $ the mass of the $ \sigma $ and $ g_{\sigma NN} $ the coupling of the $ \sigma $ to nucleons. Note that in the two-nucleon system the $ \sigma $-meson essentially parametrizes the nuclear binding (in the one-boson-exchange approximation). In fact, for some particular boson-exchange model, this ratio is close to the one required by resonance exchange saturation. For details, the reader is referred to Ref. [8].
In this note, we want to reconsider the $ \sigma $-meson contribution to the scalar form factors of the pion and the nucleon in a chiral perturbation theory calculation at one loop, where the effective Lagrangian is supplemented by an explicit broad scalar meson. A comparison with the existing precision calculations of these form factors will allow us to draw a conclusion about the role of the $ f_0(500) $ in the context of resonance saturation. We also note that our approach is not the scale-chiral perturbation theory proposed in Ref. [9], which considers the broken conformal symmetry of QCD. The effective Lagrangian approach to that phenomenon was originally developed in Refs. [10, 11].
The paper is organized as follows: In Sec. 2 we give the basic definitions of the scalar form factors under investigation. Then, in Sec. 3 we calculate the imaginary part of the pion scalar form factor and compare with the precise determination based on dispersion theory. Sec. 4 contains the analogous calculation of the nucleon scalar form factor and the comparison with the corresponding nucleon spectral function at two loops in heavy baryon chiral perturbation theory. We end with a short summary.
2.Scalar form factors
The scalar form factor of the pion and the nucleon are defined via the matrix element of the scalar quark density $ \bar{q}q $ in the isospin symmetry limit
$ \begin{split} F_{\pi}^{S}(t) = &\;\left\langle {\pi(p_{f})|\hat{m}(\bar{u}u+\bar{d}d)|\pi(p_i)} \right\rangle\; ,\\ \sigma(t) =& \;\frac{1}{2m_N}\left\langle {N(p_{f})|\hat{m}(\bar{u}u+\bar{d}d)|N(p_i)} \right\rangle, \end{split} $
(1)
with $ t = (p_f-p_i)^2 $ the invariant momentum transfer squared, $ m_N $ the nucleon mass and $ \hat{m} = (m_u+m_d)/2 $ the average light quark mass. The scalar form factor of the nucleon satisfies the once-subtracted dispersion relation
$ \sigma(t)\; = \;\sigma_{\pi N}+\frac{t}{\pi} \int_{t_0}^{\infty} {\rm d}t'\frac{{\rm Im} \sigma(t')}{t'(t'-t)} $
(2)
where $ t_0 $ is the threshold energy for hadronic intermediate states. The $ \pi N $ $ \sigma $-term $ \sigma_{\pi N} = \sigma(0) $ is defined via the Feynman-Hellman theorem at t = 0, similar to the form factor $ F_{\pi}^S $, which gives the pion $ \sigma $-term at zero momentum transfer. It is known that $ F_{\pi}^S (0) = (0.99\pm 0.02)M_{\pi}^2 $ [7], so in what follows we consider the normalized scalar pion form factor $ F_{\pi}^S (t)/M_{\pi}^2 $. Here, $ M_{\pi} $ denotes the charged pion mass. In this paper, we want to investigate the $ \sigma $-meson contribution to these scalar form factors and draw some conclusion on the related issue of scalar meson dominance.
3.The scalar form factor of the pion
In this section, we want to calculate the imaginary part of the scalar pion form factor with a particular emphasis on the contribution from the broad $ \sigma $-meson, cf. Fig. 1(a). For definiteness, we use
Figure1. σ-meson contribution to the isoscalar scalar form factors of the pion (a) and the nucleon (b, c). Dashed and solid lines denote pions and nucleons, respectively. The double dashed lines and the cross represent the σ-meson and the scalar source, respectively. The light dots represent leading order vertices while the heavy dot characterizes a dimension-two pion-nucleon vertex.

$ M_{\sigma} = 478~ {\rm MeV}\; ,\; \; \; \; \Gamma_{\sigma} = 324~ {\rm MeV}\; \; . $
(3)
Further, we adopt the choice in [12] for $ \sigma $-propagator,
$ S_{\sigma}(t) = \frac{1}{t-M_{\sigma}^2+i\Gamma_{\sigma}(t)M_{\sigma}} $
where the co-moving width $ \Gamma_{\sigma}(t) $ is given by
$ \Gamma_{\sigma}(t) = \Gamma_{\sigma}\frac{M_{\sigma}}{\sqrt{t}}\frac{\sqrt{t/4-M_{\pi}^2}}{\sqrt{M_{\sigma}^2/4-M_{\pi}^2}} $
(4)
with momentum transfer squared t, see also the discussion in Ref. [13].
The following power counting rules for the loop diagrams are used (we consider here the pion and the nucleon case together to keep the presentation compact): vertices from $ {\cal L}^{(n)} $ count as $ {\cal O}(q^n) $, so we count the nucleon propagator as $ {\cal O}(q^{-1}) $, and the sigma and pion propagators as $ {\cal O}(q^{-2}) $. Thus the chiral order of the diagram in Fig. 1(a) is $ {\cal O}(q^3) $, as only lowest order vertices from $ {\cal L}^{(2)}_{\pi\pi} $ are involved, and the diagrams in Fig. 1(b)-(c) are $ {\cal O}(q^4) $ at low energies, i.e. for small t (for precise definitions of the pion-nucleon Lagrangian, see Sec. 4).
Let us briefly discuss the kinematics for evaluating the diagrams shown in Fig. 1. We start with the nucleon case, as it is more general. We work in the center-of-momentum frame of the nucleon pair with $ q = \big(-2E_p,\; \vec{0}\,\big) $. The initial and the final momentum of the nucleons are, respectively, $ p_i = \big(E_p,\; \vec{p}\,\big) $, $ p_f = \big(-E_p,\; \vec{p}\,\big) $, with $ |\vec{p}\,| = (t/4 - m_N^2)^{1/2} $ and $ E_p = (m_N^2+|\vec{p}\,|^2)^{1/2} $. The imaginary part of the loop diagram corresponds to a cut diagram for the momentum transfer squared $ t \geq 4M_{\pi}^2 $. For this calculation, we perform a reduction to scalar loop integrals and thus require the basic scalar loop integrals of one- and two- point functions, respectively,
$ \begin{split}A_0(m^2) =& \frac{(2 \pi \mu)^{4-n}}{i \pi^2}\int \frac{{\rm d}^nk}{k^2-{m}^2+i\epsilon^+}, \\ B_0(q^2, m_1^2, m_2^2) =& \frac{(2 \pi \mu)^{4-n}}{i \pi^2}\! \int\! \frac{{\rm d}^nk}{[k^2\!-\!m_1^2 \!+\!i\epsilon^+][(k\!+\!q)^2\!-\!m_2^2\!+\!i\epsilon^+]}\end{split}$
(5)
with $ q^2 = t = (p_f-p_i) $ and $ \epsilon^+ $ stands for $ \epsilon \to 0^+ $. For the pion case, we need to consider these functions with $ m = m_1 = m_2 = M_{\pi} $ and the corresponding kinematical variables are simply obtained by the substitution $ m_N \to M_{\pi} $ in the above-mentioned formulas.
The one-loop contribution depicted in Fig. 1(a) is readily evaluated
$ \begin{split} {\rm Im}\; F_{\pi}^S(t)\;= \frac{B g_{\sigma} g_{\sigma \pi \pi} \Big(A_0(M_{\pi}^2)(12 t-14 M_{\pi}^2)+(15M_{\pi}^2 t-6M_{\pi}^4-6t^2 )\, {\rm Re}[{B_0(t, M_{\pi}^2, M_{\pi}^2)}]\Big)}{3F_{\pi}^4 \pi^2} \times \frac{-M_{\sigma} \Gamma_{\sigma}(t) }{t^2+M_{\sigma}^4-2 M_{\sigma}^2 t + M_{\sigma}^2 \Gamma_{\sigma}^2 (t) } \end{split}$
(6)
where
$ \begin{split}& A_0(m^2) = -2 m^2 \log\Big(\frac{m}{\mu}\Big), \\ & B_0(t,m_1^2,m_2^2) = 1-2 \log\Big(\frac{m_{1}}{{\mu}}\Big)-\frac{(t-m_1^2+m_2^2)\log\Big(\displaystyle\frac{m_{2}}{{m_1}}\Big)}{t} \\ &\quad - \frac{2m_1 m_2 \sqrt{1-\displaystyle\frac{(m_1^2+m_2^2-t)^2}{4m_1^2 m_2^2}} {\rm arccos} \Big[\displaystyle\frac{m_1^2+m_2^2-t}{2 m_1 m_2}\Big]}{t}. \end{split} $
The following values for the various masses and couplings constants are: $ M_{\pi} = 0.139 $ GeV, $ F_{\pi} = 0.092 $ GeV, and $ g_{\sigma \pi \pi} = 2.52\,{\rm GeV} $ from the experimental value of $ \sigma $ width. Further, we use B = 0.7 GeV, but note that its precise value depends on the choice of the average quark mass. The coupling $ g_{\sigma} $ is merely used for normalization.
In Fig. 2 we show the imaginary part of the scalar pion form factor in our approach in comparison to the dispersion-theoretical analysis of Ref. [14]. Up to $ \sqrt{t} \simeq 0.6 $ GeV, the curves are very similar, but of course the $ f_0(980) $ contribution that causes the dip at $ \sqrt{t} \simeq 1$ GeV is not captured in our approach. Still, the visible enhancement due to the broad $ \sigma $ is clearly reflected in the imaginary part.
Figure2. (color online) Imaginary part of the scalar pion form factor based on Eq. (6) (solid red line) in comparison to the dispersion-theoretical result of Ref. [14] (dashed black line).

4.The scalar form factor of the nucleon
In this section we focus on the calculation of the imaginary part of the isoscalar nucleon scalar form factor generated from the $ \pi\pi $ intermediate states based on relativistic two-flavor baryon chiral perturbation theory. At lowest order in the quark mass and momentum expansion, the relevant interaction Lagrangians are given by [3, 15, 16]
$ \begin{split} {\cal L}^{(1)}_{\pi N} =& \frac{g_A}{2}\bar{\Psi}\gamma^{\mu}\gamma_{5}u_{\mu}\Psi, \\ {\cal L}^{(2)}_{\pi N} = & c_1\langle\chi_{+}\rangle\bar{\Psi}\Psi-\frac{c_2}{4m_{N}^2}\langle u_{\mu}u_{\nu}\rangle (\bar{\Psi}D^{\mu}D^{\nu} \Psi+h.c) \end{split} $
$ \begin{split} & +\frac{c_3}{2}\langle u_{\mu}u^{\mu}\rangle \bar{\Psi} \Psi-\frac{c_4}{4}\bar{\Psi}\gamma_{\mu} \gamma_{\nu}[u^{\mu},u^{\nu}]\Psi + ..., \\ {\cal L}^{(2)}_{\sigma \pi \pi} =& g_{\sigma \pi \pi} \sigma \langle{u_\mu u^\mu}\rangle \,\, . \end{split} $
(7)
Here, $ \Psi $ denotes the nucleon doublet, $ \chi_{+} = u^\dagger \chi u^\dagger+u\chi^{\dagger}u $, with $ \chi = 2B_0({\cal M}+ s) $ where s represents the external scalar source and $ \langle \ldots \rangle $ denotes the trace in flavor space. Further, $ g_A $ is the nucleon axial-vector coupling, $ g_A \simeq 1.27 $, and the low-energy constants $ c_2, c_3 $ and $ c_4 $ are taken as $ c_{2} = 3.13 m_N^{-1} $, $ c_{3} = -5.61 m_N^{-1} $ and $ c_{4} = 4.26 m_N^{-1} $ [17]. These LECs are not affected by a contribution from the $ \sigma $, see Ref. [8]. As already discussed in the introduction, the $ \sigma $-meson contributes to the LEC $ c_{1} $. We consider two extreme cases, namely $ c_{1} = 0 $, which corresponds to a complete saturation of this LEC by the light scalar meson and $ c_{1} = 0.55 m_N^{-1} $, which is half of the value given in Ref. [17]. This latter scenario leaves room for other contributions to this particular LEC.
In addition to the scalar loop integrals in Eq. (5) we also need the integral of three-point function as
$ \begin{split}C_0(p_i^2, (p_f-p_i)^2, p_f^2, m_1^2, m_2^2, m_3^2) = \frac{(2 \pi \mu)^{4-n}}{i \pi^2}\int \frac{{\rm d}^nk}{[k^2-m_1^2 +i\epsilon^+][(k-p_i)^2-m_2^2+i\epsilon^+][(k-p_f)^2-m_3^2+i\epsilon^+]} \end{split} $
(8)
with $ q^2 = t = (p_f-p_i) $ and $ \epsilon^+ $ stands for $ \epsilon \to 0^+ $. From these, the expressions for the imaginary part of the scalar form factor, which has dimension [mass], is given as
$ \begin{split} {\rm Im}\; \sigma_{N}(t)\; =& \frac{B g_{\sigma} g_{\sigma \pi \pi}}{6 F_{\pi}^4 {\pi}^2 m_N} \Bigg(\frac{18 g_A^2 m_{N}^3}{4m_{N}^2-t}\Big((8m_{N}^2-2t)A_0(m_{N}^2)+(2M_{\pi}^2-t)(4m_N^2 M_{\pi}^2-2 m_N^2 t) {\rm Re}[{C_0(m_N^2, t, m_N^2, m_N^2, M_{\pi}^2, M_{\pi}^2)}]\\ &-t (2M_{\pi}^2-t)\, {\rm Re}[{B_0(t, M_{\pi}^2, M_{\pi}^2)}]+(16m_{N}^2 M_{\pi}^2-4m_N^2 t-2M_{\pi}^2 t) B_0(m_N^2, m_N^2,M_{\pi}^2)\Big)- 6 \Big (2 m_N^2 M_{\pi}^2(24 c_1-5c_2-24c_3)\end{split} $
(9)
$ \begin{split}\\ \quad&+2t(m_N^2 c_2-M_{\pi}^2 c_2+6 m_N^2 c_3)+c_2 t^2 \Big) A_0(M_{\pi}^2)-\Big(8m_N^2 M_{\pi}^2(6c_1-c_2-3c_3)+2t(m_N^2 c_2+M_{\pi}^2c_2+6m_N^2c_3)+c_2 t^2\Big)(6M_{\pi}^2-3 t)\\&\times{\rm Re}[{B_0(t, M_{\pi}^2, M_{\pi}^2)}]+c_2\Big(66 m_N^2 M_{\pi}^4 + 4 m_N^2 t^2+8 M_{\pi}^2 t^2-32m_N^2 M_{\pi}^2 t-12 M_{\pi}^4 t-t^3 \Big)\Bigg)\\ &\times \frac{-M_{\sigma} \Gamma_{\sigma}(t) }{t^2+M_{\sigma}^4-2 M_{\sigma}^2 t + M_{\sigma}^2 \Gamma_{\sigma}^2 (t)}\end{split} $
(9)
where the $ A_0(m^2) $ and $ B_0(m_1^2, m_1^2, m_2^2) $ functions are real.
The resulting weighted spectral function $ M_{\pi}^4 \,{\rm Im}\; \sigma(t)/t^2 $ is shown in Fig. 3 for the case of complete saturation $ c_1 = 0 $ (lower solid red line) and the one of partial saturation ($ c_1 = -0.55 m_N^{-1} $) (upper solid red line) in comparison to the two-loop heavy baryon chiral perturbation theory results of Ref. [18]. We see that the explicit $ \sigma $-meson contribution drops faster than the pion loop contribution, showing that the $ \sigma $ does not saturate this imaginary part.
Figure3. (color online) $ \sigma$-meson contribution (solid lines) to the isoscalar spectral function of the scalar nucleon form factor multiplied with $ M_\pi^4/t^2$, compared with the two-loop chiral perturbation theory result of Ref. [18] (black dashed line). The lower (upper) solid line refers to the case of complete (partial) saturation of the LEC $ c_1$ as discussed in the text.

5.Summary
In this note, we have considered the broad $ \sigma $-meson contribution to the scalar form factors of the pion and the nucleon, respectively. In the pion case, the imaginary part clearly exhibits the $ f_0(500) $ contribution, but below $ \sqrt{t} \simeq 1 $ GeV, one also needs to include the $ f_0(980) $. The latter is responsible for the pronounced dip in the imaginary part. Concerning resonance saturation, just including the scalar mesons around 1 GeV is not sufficient, though one can produce the light scalar as a rescattering effect through pion loop resummation. This, however, requires a non-perturbative framework. Similarly, for the scalar nucleon form factor, we find that the $ \sigma $-meson saturates the imaginary part at low invariant momenta but drops faster than the two-loop contribution. This is similar to the findings in Ref. [8], where it was shown that the leading scalar-isoscalar low-energy constant $ c_1 $ can only be explained in terms of scalar meson exchange for a very special combination of ratio of the sigma-nucleon coupling constant to the $ \sigma $ mass. As the calculations presented here underline, the broad $ \sigma $-meson enjoys a very special role in low-energy QCD.
We thank Norbert Kaiser and Bastian Kubis for providing us with their results. We are also grateful for the referee for a pertinent comment.
相关话题/scalar meson dominanc