HTML
--> --> -->In this work, we apply the covariant light-front approach to investigate the production of
Figure1. Diagram of the meson transition processes
According to Ref. [49], the relevant form factors are calculated in terms of Feynman loop integrals, which are manifestly covariant. The constituent quarks inside a hadron are off-shell, i.e. the incoming (outgoing) meson has the momentum
$ p_{1}^{\prime+}=x_{1}P^{\prime+}, \quad\quad\quad p^+_2 = x_2P^{\prime+}, $ | (1) |
$ p_{1\bot}^{\prime}=x_{1}P^{\prime}_{\bot}+ p^{\prime}_{\bot}, \quad p_{2\bot}=x_{2}P^{\prime}_{\bot}- p^{\prime}_{\bot}, $ | (2) |
$ M_0^{\prime2}=(e_1^{\prime}+e_2)^2=\frac{p_{\bot}^{\prime2}+m_1^{\prime2}}{x_1} +\frac{p_{\bot}^{\prime2}+m_2^{2}}{x_2}, $ | (3) |
$ \tilde{M}_{0}^{\prime}=\sqrt{M_{0}^{\prime2}-(m_1^{\prime}-m_2)^2}, $ | (4) |
$ e_{1}^{\prime}=\sqrt{m_1^{\prime2}+p_{\bot}^{\prime2}+p_z^{\prime2}}, \quad e_{2}=\sqrt{m_2^{2}+p_{\bot}^{\prime2}+p_z^{\prime2}}, $ | (5) |
$ p_z^{\prime}=\frac{x_2 M_0^{\prime}}{2}-\frac{m_2^2+p_{\bot}^{\prime2}}{2x_2M_0^{\prime}}, $ | (6) |
In Ref. [35], the form factors for semileptonic decays of bottom mesons into S -wave and P -wave charmed mesons were obtained within the framework of the covariant light-front quark model. In the following, we adopt the same approach to deduce the form factors for the production of D -wave charmed/charmed-strange mesons by semileptonic decays of bottom/bottom-strange mesons. Here, D -wave
In the heavy quark limit
$ |D_{(s){5\over2}} \rangle\equiv\left|2, {5\over2}\right\rangle=\sqrt{\frac{3}{5}}\left|D^{*}_{(s)2}\right\rangle+\sqrt{\frac{2}{5}}\left|D^{*\prime}_{(s)2}\right\rangle, $ | (7) |
$ |D'_{(s){3\over2}}\rangle\equiv\left|2, {3\over2}\right\rangle=-\sqrt{\frac{2}{5}}\left|D^{*}_{(s)2}\right\rangle+\sqrt{\frac{3}{5}}\left|D^{*\prime}_{(s)2}\right\rangle. $ | (8) |
One can write the general definition of the matrix elements for the production of D -wave
$ \begin{split} & \left\langle D^{*}_{(s)1}(P'', \epsilon'')\left|V_{\mu}\right|B_{(s)}(P^\prime)\right\rangle=\epsilon_{\mu\nu\alpha\beta}\epsilon''^{*\nu}P^{\alpha}q^{\beta}g_D(q^{2}), \\ &\left\langle D^{*}_{(s)1}(P'', \epsilon'')\left|A_{\mu}\right |B_{(s)}(P^\prime)\right\rangle=\\ &\quad-i\left\{\epsilon''^{*}_{\mu}f_D(q^2)+\epsilon''^{*}\cdot P\left[P_{\mu} a_{D+}(q^2)+q_{\mu}a_{D-}(q^2)\right]\right\}, \end{split} $ | (9) |
$ \begin{split} &\left\langle D^{*}_{(s)2}(P'', \epsilon'')\left|A_{\mu}\right|B_{(s)}(P')\right\rangle=-\epsilon_{\mu\nu\alpha\beta}\epsilon''^{*\nu\lambda}P_{\lambda}P^{\alpha}q^{\beta}n(q^2), \\ &\left\langle D^{*}_{(s)2}(P'', \epsilon'')\left|V_{\mu}\right|B_{(s)}(P')\right\rangle=\\ &\quad i\left\{m(q^2)\epsilon''^{*}_{\mu\nu}P^{\nu}+\epsilon''^{*}_{\alpha\beta}P^{\alpha}P^{\beta} \left[P_{\mu}z_{+}(q^2)+ q_{\mu}z_{-}(q^2)\right]\right\}, \end{split}$ | (10) |
$ \begin{split} &\left\langle D^{*\prime}_{(s)2}(P'', \epsilon'')\left|A_{\mu}\right|B_{(s)}(P')\right\rangle=-\epsilon_{\mu\nu\alpha\beta}\epsilon''^{*\nu\lambda}P_{\lambda}P^{\alpha}q^{\beta}n'(q^2), \\ &\left\langle D^{*\prime}_{(s)2}(P'', \epsilon'')\left|V_{\mu}\right|B_{(s)}(P')\right\rangle =\\ &\quad i\left\{m'(q^2)\epsilon''^{*}_{\mu\nu}P^{\nu}+\epsilon''^{*}_{\alpha\beta}P^{\alpha}P^{\beta}\left[P_{\mu}z'_{+}(q^2)+ q_{\mu}z'_{-}(q^2)\right]\right\}, \end{split}$ | (11) |
$\begin{split} &\left\langle D^{*}_{(s)3}(P'', \epsilon'')\left|V_{\mu}\right|B_{(s)}(P')\right\rangle=\epsilon_{\mu\nu\alpha\beta}\epsilon''^{*\nu\lambda\sigma}P_{\lambda}P_{\sigma}P^{\alpha}q^{\beta}y(q^2), \\ &\left\langle D^{*}_{(s)3}(P'', \epsilon'')\left|A_{\mu}\right|B_{(s)}(P')\right\rangle=\\ &\quad -i\left\{w(q^2)\epsilon''^{*}_{\mu\nu\alpha}P^{\nu}P^{\alpha}+\epsilon''^*_{\alpha\beta\gamma}P^{\alpha}P^{\beta}P^{\gamma} \left[P_{\mu}o_{+}(q^2)+q_{\mu}o_{-}(q^2)\right]\right\}. \end{split}$ | (12) |
We now focus on the hadronic matrix elements given by Eqs. (9)-(12). Here, we show how to calculate them by taking the
$ B_{\mu}^{B_{(s)}(D^{*}_{(s)1})}\equiv\left\langle D_{(s)1}^{*}(P^{\prime\prime}, \epsilon^{\prime\prime*})\left|V_{\mu}-A_{\mu}\right|B_{(s)}(P^{\prime})\right\rangle, $ | (13) |
The D -wave vertex function has been studied in Ref. [52]. We list all D -wave vertex functions in Appendix B; one may refer to Ref. [52] for more details. First, we use
In the conventional LFQM,
$ iH_{{}^3D_1}\left[\gamma_{\mu}-\frac{1}{W_{{}^3D_1}}\left(p^\prime_1-p_2\right)_{\mu}\right]\epsilon^{\mu}, $ | (14) |
The explicit expression for the matrix element
Figure2. (color online) A hadronic one-loop Feynman diagram for the process shown in Fig. 1. The V-A current is attached to a blob in the upper middle of the circle.
$ B_{\mu}^{B_{(s)}D^{*}_{(s)1}}=-i^3\frac{N_c}{(2\pi)^4}\int {\rm d}^4p^{\prime}_1\frac{H^{\prime}_{P}\left(iH^{\prime\prime}_{{}^3D_1}\right)}{N_1^{\prime}N_1^{\prime\prime}N_2}S_{\mu\nu}^{{}^3D_1}\epsilon^{*\prime\prime\nu}, $ | (15) |
$ \begin{split} S^{^{3D_1}}_{\mu\nu}=&{{\rm Tr}\Bigg\{\left[\gamma_{\nu}-\frac{1}{W^{\prime\prime}_{{}^3D_1}}\left(p^{\prime\prime}_1-p_2\right)_{\nu}\right]} \left({\not \!\!{p}}^{\prime\prime}_{1}+m^{\prime\prime}_1\right)\gamma_{\mu}\left(1-\gamma_5\right)\\ &\left({\not \!\!{p}}^{\prime}_1+m^{\prime}_1\right)\gamma_5\left(-{\not \!\!{p}}_2+m_2\right)\Bigg\}. \end{split} $ | (16) |
$ \begin{aligned} N_1^{\prime(\prime\prime)}&\rightarrow \hat{N}_1^{\prime(\prime\prime)}=x_1\left(M^{\prime(\prime\prime)2}-M_0^{\prime(\prime\prime)2}\right), \\ H^{\prime}_P&\rightarrow h_{P}^{\prime}, \\ H^{\prime\prime}_{{}^3D_1}&\rightarrow h^{\prime\prime}_{{}^3D_1}, \\ W^{\prime\prime}_{{}^3D_1}&\rightarrow \omega^{\prime\prime}_{{}^3D_1}, \\ \int \frac{{\rm d}^4p_1^{\prime}}{N_1^{\prime}N_1^{\prime\prime}N_2}H^{\prime}_P H^{\prime\prime}_{{}^3D_1}S^{{}^3D_1}_{\mu\nu}&\rightarrow -i\pi\int \frac{{\rm d}x_2{\rm d}^2p_{\bot}^{\prime}}{x_2\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}} h^{\prime}_Ph^{\prime\prime}_{{}^3D_1}\hat{S}^{{}^3D_1}_{\mu\nu}, \end{aligned} $ |
$ h_{P}^{\prime}=\left(M^{\prime2}-M_{0}^{\prime2}\right)\sqrt{\frac{x_1x_2}{N_c}} \frac{1}{\sqrt{2}\tilde{M}_0^{\prime}}\varphi, $ | (17) |
As noted in Ref. [52], after carrying out the contour integral over
$ h^{\prime\prime}_{{}^3D_1}=\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)\sqrt{x_1x_2}h^{\prime}_{{}^3D_1}, $ | (18) |
$ M_0^{\prime\prime2}=\frac{p^{\prime2}_{\bot}+m_1^{\prime\prime2}}{x_1}+ \frac{p^{\prime\prime2}_{\bot}+m_2^2}{x_2}, $ | (19) |
As pointed out in Refs. [35, 49],
$\begin{aligned} {\hat p^{\prime \mu }}_1 =& {\left( {{P^\prime } - {{\hat p}_2}} \right)^\mu } = {x_1}{P^{\prime \mu }} + {(0,0,p_ \bot ^\prime )^\mu } \\ &+ \frac{1}{2}\left( {{x_2}{P^{\prime - }} - \frac{{p_{2 \bot }^2 + m_2^2}}{{{x_2}{P^{\prime + }}}}} \right){\tilde \omega ^\mu }, \end{aligned} $ |
Initiated by the toy model proposed in Ref. [49], Jaus developed a method which allows calculating the zero-mode contributions associated with the corresponding matrix element.
$ H_0(p_1^2, p_2^2)=\frac{g}{N^n_{\Lambda}}, $ | (20) |
$ \frac{i}{(2\pi)^4}\int {\rm d}^4p^\prime_1\frac{M^{(m)}_n}{N^\prime_\Lambda N_1^{\prime}N_2N_1^{\prime\prime}N^{\prime\prime}_\Lambda}, $ | (21) |
However, this method has a narrow scope of application. Note that Jaus proposed this method in a very simple multipole ansatz for the vertex function. One may get totally different contributions from the zero-mode effects once the form of a vertex function for a meson is changed. For instance, as indicated in Ref. [53], for the weak transition form factors between pseudoscalar and vector meson, the zero-mode contributions depend on the form of the vector meson vertex,
$ \Gamma^{\mu}=\gamma^{\mu}-(2k-P_V)^{\mu}/D, $ | (22) |
Beyond the toy model, the method of including the zero-mode contributions in Ref. [49] was further applied to study the decay constants and form-factors for
It is natural to expect that this method can also be applied in our calculations of the form factors for the transition processes of D -wave mesons. In order to calculate the corresponding form factors, one also needs to eliminate the
Following the discussion in Refs. [35, 49], to avoid the
$ \hat{p}_{1\mu}^{\prime}\doteq P_{\mu}A_1^{(1)}+q_{\mu}A_2^{(1)}, $ | (23) |
$ \begin{split} \hat{p}_{1\mu}^{\prime}\hat{p}_{1\nu}^{\prime}\doteq & g_{\mu\nu}A_1^{(2)}+P_{\mu}P_{\nu}A_2^{(2)}+\left(P_{\mu}q_{\nu}+q_{\mu}P_{\nu}\right) A_3^{(2)} \\ &+q_{\mu}q_{\nu}A_4^{(2)}, \end{split} $ | (24) |
$ \begin{split} \hat{p}^{\prime}_{1\mu}\hat{p}^{\prime}_{1\nu}\hat{p}^{\prime}_{1\alpha}\doteq&\left(g_{\mu\nu}P_{\alpha}+g_{\mu\alpha}P_{\nu}+g_{\nu\alpha}P_{\mu}\right)A_1^{(3)}\\ & +\left(g_{\mu\nu}q_{\alpha}+g_{\mu\alpha}q_{\nu}+g_{\nu\alpha}q_{\mu}\right) A_2^{(3)} \\&+P_{\mu}P_{\nu}P_{\alpha}A_3^{(3)}+\left(P_{\mu}P_{\nu}q_{\alpha}+P_{\mu}q_{\nu}P_{\alpha} \right.\\&\left.+q_{\mu}P_{\nu}P_{\alpha}\right)A_4^{(3)} +\left(q_{\mu}q_{\nu}P_{\alpha}+q_{\mu}P_{\nu}q_{\alpha}\right.\\&\left.+P_{\mu}q_{\nu}q_{\alpha}\right) A_5^{(3)}+q_{\mu}q_{\nu}q_{\alpha}A_6^{(3)}, \end{split} $ | (25) |
For the terms of products that are associated with
$ \begin{split} \hat{N}_2\rightarrow Z_2 =&\hat N'_1+m_1^{\prime 2}-m_2^2+(1-2x)M^{\prime 2} \\ &+\left[q^2+(qP)\right]\frac{p_\perp^\prime q_\perp}{q^2}, \end{split} $ | (26) |
$ \hat{p}_{1\mu}^{\prime}\hat{N}_2\rightarrow P_{\mu}(A_1^{(1)}Z_2-A_1^{(2)})+q_{\mu}\left[A_2^{(1)}Z_2+\frac{q\cdot P}{q^2}A_1^{(2)}\right], $ | (27) |
$ \begin{split} \hat{p}_{1\mu}^{\prime}\hat{p}_{1\nu}^{\prime}\hat{N}_2\rightarrow&g_{\mu\nu}A_1^{(2)}Z_2+P_{\mu}P_{\nu}(A_2^{(2)}Z_2-2A_1^{(3)})\\&+(P_{\mu}q_{\nu}+q_{\mu}P_{\nu})(A_3^{(2)}Z_2+A_1^{(3)}\frac{q\cdot P}{q^2}-A_2^{(3)})\\&+q_{\mu}q_{\nu}\Big[A_4^{(2)}Z_2+2\frac{q\cdot P}{q^2}A_2^{(1)}A_1^{(2)}\Big], \end{split} $ | (28) |
Let us take the second rank tensor decomposition
From Ref. [49] we have
$ B_{1}^{(2)} = A_1^{(1)}C_1^{(1)}-A_1^{(2)}, $ | (29) |
$ B_1^{(2)} = -A_1^{(1)}N_2+A_1^{(1)}Z_2-A_1^{(2)} $ | (30) |
$ A_1^{(1)}\hat{N}_2\rightarrow A_1^{(1)}Z_2-A_1^{(2)}. $ | (31) |
$ A_2^{(1)}\hat{N}_2\rightarrow A_2^{(1)}Z_2+\frac{q\cdot P}{q^2}A_1^{(2)}. $ | (32) |
Expanding
After including the zero-mode effect introduced by the
$ g_{D}(q^2)=-\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2 p^\prime_\bot \frac{2 h^\prime_P h^{\prime\prime}_{{}^3D_1}}{\left(1-x\right)\hat{N}^\prime_1 \hat{N}^{\prime\prime}_1}\left\{\left[A_1^{(1)}\left(2m_2-m_1^{\prime\prime}-m_1^{\prime}\right)+A_2^{(1)} \left(m_1^{\prime\prime}-m_1^\prime\right)+m_1^\prime\right]-\frac{2}{\omega^{\prime\prime}_{{}^3D_1}}A_1^{(2)}\right\}, $ | (33) |
$ \begin{split} f_{D}(q^2)=&\frac{N_{c}}{16\pi^3}\int {\rm d}x_2 {\rm d}^2 p^\prime_\bot \frac{2 h^\prime_{P} h^{\prime\prime}_{{}^3D_1}}{\left(1-x\right)\hat{N}^\prime_1\hat{N}^{\prime\prime}_1} \Bigg\{2\bigg[4A_1^{(2)}\left(m_2-m^{\prime}_i\right)+m_2^2\left(m^{\prime\prime}_1+m^{\prime}_1\right)- m_2\Big[\left(m_1^{\prime\prime}+m_1^{\prime}\right)^2+x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)\\&+ x\left(M^{\prime2}-M_0^{\prime2}\right)-q^2\Big]+m_1^{\prime\prime}\left[m_1^{\prime}m_1^{\prime\prime} +m_1^{\prime2}-M^{\prime2}+x\left(M^{\prime2}-M_0^{\prime2}\right)+Z_2\right]+m_1^{\prime} \left[-M^{\prime\prime2}+x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)+Z_2\right]\bigg]\\&+4\frac{A_1^{(2)}}{\omega^{\prime\prime}_{{}^3D_1}}\left[2m_2\left(-m_2-m_1^{\prime\prime}+m_1^{\prime}\right) +2m_1^{\prime\prime}m_1^{\prime}+M^{\prime\prime2}+ M^{\prime2}-q^2-2Z_2\right] \Bigg\}, \end{split}$ | (34) |
$ \begin{split} a_{D+}(q^2)= &\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2 p^{\prime}_{\bot}\frac{h^{\prime}_{P}h^{\prime\prime}_{{}^3D_1}}{\left(1-x\right)\hat{N}^\prime_1\hat{N}^{\prime\prime}_1}\Bigg\{ -2\left[A_1^{(1)}\left(2m_2+m_1^{\prime\prime}-5m_1^{\prime}\right)+m_1^{\prime}\right]-2A_2^{(1)}\left(-m_1^{\prime\prime}-m_1^{\prime}\right)- 2\left(A_2^{(2)}+A_3^{(2)}\right)\left(4m_1^{\prime}-4m_2\right)\\&+ \frac{2}{\omega^{\prime\prime}_{{}^3D_1}}\bigg[\left(A_1^{(1)}-A_2^{(2)}-A_3^{(2)}\right)\left(4m_2^2+4m_2m^{\prime\prime}_1 -4m_2m_1^{\prime}-4m_1^{\prime\prime}m_1^{\prime}-2M^{\prime\prime2}-2M^{\prime2}+2q^2\right)+ \left(-A_1^{(1)}-A_2^{(1)}+1\right)\\&\times\left[m_1^{\prime\prime2}+2m_1^{\prime\prime}m_1^{\prime}+m_1^{\prime2} +x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)+x\left(M^{\prime2}-M_0^{\prime2}\right)-q^2\right]+4\Bigg(A_1^{(1)}Z_2-A_1^{(2)}- \left(A_2^{(2)}Z_2-2A_1^{(1)}A_1^{(2)}\right)\\& -\left(A_1^{(1)}A_2^{(1)}Z_2+A_1^{(1)}A_1^{(2)}\frac{m_B^2-m_D^2}{q^2}-A_1^{(2)}A_2^{(1)}\right)\Bigg)\bigg]\Bigg\}, \end{split} $ | (35) |
$\begin{split} a_{D-}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2 p^{\prime}_{\bot}\frac{h^{\prime}_{P}h^{\prime\prime}_{{}^3D_1}}{\left(1-x\right)\hat{N}^\prime_1\hat{N}^{\prime\prime}_1}\Bigg\{ -2A_1^{(1)}\left(2m_2-m_1^{\prime\prime}-3m_1^{\prime}\right)-2A_2^{(1)}\left(4m_2+m_1^{\prime\prime} -7m_1^{\prime}\right)-\left(2A_3^{(2)}+2A_4^{(2)}\right)\left(4m_1^{\prime}-4m_2\right)\\&-6m_1^{\prime}+ \frac{1}{\omega^{\prime\prime}_{{}^3D_1}}\bigg[\left(2A_1^{(1)}+2A_2^{(1)}-2\right)\Big[2m_2^2-4m_2m_1^{\prime}-m_1^{\prime\prime2} -2m_1^{\prime\prime}m_1^{\prime}+m_1^{\prime2}-2M^{\prime2}- x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)\\&+x\left(M^{\prime2}-M_0^{\prime2}\right)+q^2\Big]+ \left(2A_3^{(2)}+2A_4^{(2)}-2A_2^{(1)}\right)\left(-4m_2^2-4m_2m_1^{\prime\prime}+4m_2m_1^{\prime} +4m_1^{\prime\prime}m_1^{\prime}+2M^{\prime\prime2}+2M^{\prime2}-2q^2\right)\\&+12\left(A_2^{(1)}Z_2+ \frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_1^{(2)}\right)- 8\left(A_4^{(2)}Z_2+2\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_2^{(1)}A_1^{(2)}\right)-4Z_2+4\Bigg(A_1^{(1)}Z_2 -A_1^{(2)}-2\Big(A_1^{(1)}A_2^{(1)}Z_2\\&+A_1^{(1)}A_1^{(2)}\frac{m_B^2-m_D^2}{q^2}-A_1^{(2)}A_2^{(1)}\Big)\Bigg) \bigg]\Bigg\}.\end{split} $ | (36) |
By analogy to the conventional vertex functions obtained in Appendix B, we write the covariant vertex functions for
$ iH_{{}^1D_2}\gamma_{5}K_{\mu}K_{\nu}\epsilon^{\mu\nu}, $ | (37) |
$ iH_{{}^3D_2}\left[\frac{1}{W^a_{{}^3D_2}}\gamma_{\mu}\gamma_{\nu}+ \frac{1}{W^b_{{}^3D_2}}\gamma_{\mu}K_{\nu}+\frac{1}{W^c_{{}^3D_2}}K_{\mu} K_{\nu}\right]\epsilon^{\mu\nu}, $ | (38) |
$ \begin{split} & iH_{{}^3D_3}\left[K_{\mu}K_{\nu}\left(\gamma_{\alpha}+\frac{2K_{\alpha}}{W_{{}^3D_3}}\right)+K_{\mu}K_{\alpha} \left(\gamma_{\nu}+\frac{2K_{\nu}}{W_{{}^3D_3}}\right)\right.\\&\quad\left.+K_{\alpha}K_{\nu}\left(\gamma_{\mu}+\frac{2K_{\mu}}{W_{{}^3D_3}}\right)\right]\epsilon^{\mu\nu\alpha}, \end{split} $ | (39) |
In order to obtain the
$ B_{\mu}^{B_{(s)}(D^{*}_{(s)2})}\equiv\left\langle D^{*}_{(s)2}(P^{\prime\prime}, \epsilon^{\prime\prime})\left|V_{\mu}-A_{\mu}\right|B_{(s)}(P^{\prime})\right\rangle, $ | (40) |
$ B_{\mu}^{B_{(s)}(D^{*\prime}_{(s)2})}\equiv \left\langle D^{*\prime}_{(s)2}(P^{\prime\prime}, \epsilon^{\prime\prime})\left|V_{\mu}-A_{\mu}\right|B_{(s)}(P^{\prime})\right\rangle, $ | (41) |
$ B_{\mu}^{B_{(s)}(D^{*}_{(s)3})}\equiv \left\langle D^{*}_{(s)3}(P^{\prime\prime}, \epsilon^{\prime\prime})\left|V_{\mu}-A_{\mu}\right|B_{(s)}(P^{\prime})\right\rangle. $ | (42) |
$ B_{\mu}^{B_{(s)}(D^{*}_{(s2)})}=-i^3\frac{N_c}{(2\pi)^4}\int {\rm d}^4p^{\prime}_1\frac{H^{\prime}_{P}\left(iH^{\prime\prime}_{{}^1D_2}\right)}{N_1^{\prime}N_1^{\prime\prime}N_2}S_{\mu\alpha\beta}^{{}^1D_2} \epsilon^{*\prime\prime\alpha\beta}, $ | (43) |
$ B_{\mu}^{B_{(s)}(D^{*\prime}_{(s2)})}=-i^3\frac{N_c}{(2\pi)^4}\int {\rm d}^4p^{\prime}_1\frac{H^{\prime}_{P}\left(iH^{\prime\prime}_{{}^3D_2}\right)}{N_1^{\prime}N_1^{\prime\prime}N_2}S_{\mu\alpha\beta}^{{}^3D_2} \epsilon^{*\prime\prime\alpha\beta}, $ | (44) |
$ B_{\mu}^{B_{(s)}(D^{*}_{(s3)})}=-i^3\frac{N_c}{(2\pi)^4}\int {\rm d}^4p^{\prime}_1\frac{H^{\prime}_{P}\left(iH^{\prime\prime}_{{}^3D_3}\right)}{N_1^{\prime}N_1^{\prime\prime}N_2}S_{\mu\alpha\beta\nu}^{{}^3D_3} \epsilon^{*\prime\prime\alpha\beta\nu}. $ | (45) |
$ \begin{aligned} N_1^{\prime(\prime\prime)}&\rightarrow\hat{N}_1^{\prime(\prime\prime)}=x_1\left(M^{\prime(\prime\prime)2}-M_0^{\prime(\prime\prime)2}\right), \\ H^{\prime}_P&\rightarrow h_{P}^{\prime}, \\ H^{\prime\prime}_{M}&\rightarrow h^{\prime\prime}_{M} =(M^{\prime\prime2}-M_0^{\prime\prime2})\sqrt{x_1x_2}h^{\prime}_M, \\ W^{\prime\prime}_M&\rightarrow\omega^{\prime\prime}_M, \\ \int \frac{{\rm d}^4p_1^{\prime}}{N_1^{\prime}N_1^{\prime\prime}N_2}H^{\prime}_P H^{\prime\prime}_{M}S^M &\rightarrow -i\pi\int \frac{{\rm d}x_2{\rm d}^2p_{\bot}^{\prime}}{x_2\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}} h^{\prime}_Ph^{\prime\prime}_M\hat{S}^M, \end{aligned} $ |
Apart from decomposing the tensors as in Eqs. (23)-(27) for the
$ \begin{split} \hat{p}_{1\mu}^{\prime}\hat{p}_{1\nu}^{\prime}\hat{p}_{1\alpha}^{\prime}\hat{p}_{1\beta}^{\prime}\doteq& \left(g_{\mu\nu}g_{\alpha\beta}+g_{\mu\alpha}g_{\nu\beta}+g_{\mu\beta}g_{\nu\alpha}\right)A_{1}^{(4)}+ \left(g_{\mu\nu}P_{\alpha}P_{\beta}+g_{\mu\alpha}P_{\nu}P_{\beta}+g_{\mu\beta}P_{\nu}P_{\alpha} +g_{\nu\alpha}P_{\mu}P_{\beta}+g_{\nu\beta}P_{\mu}P_{\alpha}+g_{\alpha\beta}P_{\mu}P_{\nu}\right)A_2^{(4)}\\& +\left[g_{\mu\nu}\left(P_{\alpha}q_{\beta}+P_{\beta}q_{\alpha}\right)+g_{\mu\alpha}\left(P_{\nu}q_{\beta}+P_{\beta}q_{\nu}\right)+ g_{\mu\beta}\left(P_{\nu}q_{\alpha}+P_{\alpha}q_{\nu}\right)+g_{\nu\alpha}\left(P_{\mu}q_{\beta}+P_{\beta}q_{\mu}\right) +g_{\nu\beta}\left(P_{\mu}q_{\alpha}+P_{\alpha}q_{\mu}\right)\right.\\&\left.+g_{\alpha\beta}\left(P_{\mu}q_{\nu}+P_{\nu}q_{\mu}\right)\right]A_3^{(4)} +\left(g_{\mu\nu}q_{\alpha}q_{\beta}+g_{\mu\alpha}q_{\nu}q_{\beta}+g_{\mu\beta}q_{\nu}q_{\alpha} +g_{\nu\alpha}q_{\mu}q_{\beta}+g_{\nu\beta}q_{\mu}q_{\alpha}+g_{\alpha\beta}q_{\mu}q_{\nu}\right)A_4^{(4)}\\& +P_{\mu}P_{\nu}P_{\alpha}P_{\beta}A_5^{(4)}+\left(P_{\mu}P_{\nu}P_{\alpha}q_{\beta} +P_{\mu}P_{\nu}q_{\alpha}P_{\beta}+P_{\mu}q_{\nu}P_{\alpha}P_{\beta}+q_{\mu}P_{\nu}P_{\alpha}P_{\beta}\right) A_6^{(4)}\\&+\left(P_{\mu}P_{\nu}q_{\alpha}q_{\beta}+P_{\mu}P_{\alpha}q_{\nu}q_{\beta} +P_{\mu}P_{\beta}q_{\nu}q_{\alpha}+ P_{\nu}P_{\alpha}q_{\mu}q_{\beta}+P_{\nu}P_{\beta}q_{\mu}q_{\alpha}+P_{\alpha}P_{\beta}q_{\mu}q_{\nu}\right) A_7^{(4)}\\&+\left(q_{\mu}q_{\nu}q_{\alpha}P_{\beta}+q_{\mu}q_{\nu}P_{\alpha}q_{\beta} +q_{\mu}P_{\nu}q_{\alpha}q_{\beta}+P_{\mu}q_{\nu}q_{\alpha}q_{\beta}\right)A_8^{(4)}+ q_{\mu}q_{\nu}q_{\alpha}q_{\beta}A_9^{(4)}, \end{split} $ | (46) |
$ \begin{split} \hat{p}_{1\mu}^{\prime}\hat{p}_{1\nu}^{\prime}\hat{p}_{1\alpha}^{\prime}\hat{N}_2\rightarrow&\left(g_{\mu\nu}P_{\alpha}+g_{\mu\alpha}P_{\nu}+g_{\nu\alpha}P_{\mu}\right) \left(A_1^{(3)}Z_2-A_1^{(4)}\right)+\left(g_{\mu\nu}q_{\alpha} +g_{\mu\alpha}q_{\nu}+g_{\nu\alpha}q_{\mu}\right)\Big[A_2^{(3)}Z_2+ \frac{q\cdot P}{3q^2}\left(A_1^{(2)}\right)^2\Big]\\&+P_{\mu}P_{\nu}P_{\alpha}\left(A_3^{(3)}Z_2-2A_2^{(2)}A_1^{(2)}-A_2^{(4)}\right)+ \left(P_{\mu}P_{\nu}q_{\alpha}+P_{\mu}q_{\nu}P_{\alpha}+q_{\mu}P_{\nu}P_{\alpha}\right)\left(A_4^{(3)}Z_2+A_2^{(2)}A_1^{(2)}\frac{m_B^2-m_D^2}{q^2} -2A_3^{(4)}\right)\\&+\left( q_{\mu}q_{\nu}P_{\alpha}+q_{\mu}P_{\nu}q_{\alpha}+P_{\mu}q_{\nu}q_{\alpha}\right)\left(A_5^{(3)}Z_2+2\frac{m_B^2-m_D^2}{q^2}A_3^{(4)} -A_4^{(4)}\right)+q_{\mu}q_{\nu}q_{\alpha}\Bigg\{A_6^{(3)}Z_2\\& +3\frac{q\cdot P}{q^2}\left[A_2^{(1)}A_2^{(3)}-\frac{1}{3q^2}\left(A_1^{(2)}\right)^2\right]\Bigg\}. \end{split} $ | (47) |
$ \begin{split} \hat{p}'_{1\mu}\hat{p}'_{1\nu}\hat{p}'_{1\alpha}\hat{p}'_{1\beta}\hat{N}_2\rightarrow & I_{1\mu\nu\alpha\beta}A_1^{(4)}Z_2+I_{2\mu\nu\alpha\beta}\left(A_2^{(4)}Z_2-2A_1^{(1)}A_1^{(4)}\right)+I_{3\mu\nu\alpha\beta}\left(A_3^{(4)}Z_2 +A_1^{(1)}A_1^{(4)}\frac{m_B^2-m_D^2}{q^2}-A_2^{(1)}A_1^{(4)}\right)\\&+ I_{4\mu\nu\alpha\beta}\left(A_4^{(4)}Z_2+2\frac{m_B^2-m_D^2}{q^2}A_2^{(1)}A_1^{(4)}\right)+ I_{5\mu\nu\alpha\beta}\left(A_5^{(4)}Z_2-2A_3^{(3)}A_1^{(2)}-2A_1^{(1)}A_2^{(4)}\right)+ I_{6\mu\nu\alpha\beta}\Big(A_6^{(4)}Z_2\\&+\frac{m_B^2-m_D^2}{q^2}A_3^{(3)}A_1^{(2)}-A_2^{(2)}A_2^{(3)}-2A_1^{(1)}A_3^{(4)}\Big) +I_{7\mu\nu\alpha\beta}\left(A_7^{(4)}Z_2+2\frac{m_B^2-m_D^2}{q^2}A_2^{(2)}A_2^{(3)}-2A_1^{(1)}A_4^{(4)}\right)\\& +I_{8\mu\nu\alpha\beta}\left(A_8^{(4)}Z_2+3\frac{m_B^2-m_D^2}{q^2}A_1^{(1)}A_4^{(4)}-A_2^{(1)}A_4^{(4)}+\frac{2A_2^{(1)}A_1^{(4)}}{q^2}\right)\\& +I_{9\mu\nu\alpha\beta}\left(A_9^{(4)}Z_2+4\frac{m_B^2-m_D^2}{q^2}\left(A_2^{(1)}A_4^{(4)}-2A_2^{(1)}A_1^{(4)}\right)\right). \end{split} $ | (48) |
In fact, after expanding the products of two
Related | Related | ||
Table1.The replacements
The replacements presented in Table 1 can be proven for the toy model vertex, as given in Appendix F. This indicates that a generalization of Jaus's model to higher spin J states is possible. However, when a conventional D -wave vertex function is introduced in the loop integration of Eq. (21), it is difficult to prove these identities. We emphasize that for the conventional light-front vertex functions, the replacements listed in Table 1 work very well for obtaining the form factors and semileptonic decay widths. Besides, the vanishing of
Numerical results
In the framework of the light-front quark model [35, 52, 60], one usually adopts a single simple harmonic oscillator (SHO) wave function to approximate the spatial wave function of a meson, where the parameter
In Refs. [26, 27], the mass spectra of
Mass (MeV) | Eigenvector | |
2762 | ||
3131 | ||
2773 | ||
3128 | ||
2779 | ||
3135 | ||
2779 | ||
3130 |
Table2.Predicted masses and eigenvectors of the numerical wave functions for
Mass(MeV) | Eigenvector | |
2865 | ||
3244 | ||
2877 | ||
3247 | ||
2882 | ||
3252 | ||
2883 | ||
3251 |
Table3.Predicted masses and eigenvectors of the numerical wave functions for
We emphasize that for semileptonic calculations there are no free parameters as all parameters were fitted by potential model calculations. We also checked the input wave functions from the GI model in Refs. [26, 27] , and obtained very close results for the semileptonic decay form factors and branching ratios. We point out that once the
Although the observed
In our calculations, the other input parameters are the constituent quark masses,
$ \begin{split} \mathcal{}f_p=&2\frac{\sqrt{2N_c}}{16\pi^3}\int {\rm d}x_2{\rm d}^2p_{\bot}^{\prime}\frac{1}{\sqrt{x_2(1-x_2)}\tilde{M}_0^{\prime}}\\&\times\left[m_1^{\prime}x_2+m_2(1-x_2)\right] \varphi^{\prime}\left(x_2, p_{\bot}^{\prime}\right), \end{split} $ | (1) |
In Appendix A, we list the detailed expressions of the form factors relevant for the production of
We introduce the so-called
$ \begin{split} F(q^2)=&\frac{F(0)}{(1-q^2/m^2_{B_{(s)}})}\left\{1+b_1\left(z(q^2) -z(0)\right.\right.\\&\left.\left.-\frac{1}{3}\left[z(q^2)^3-z(0)^3\right]\right) +b_2\left(z(q^2)^2-z(0)^2\right.\right.\\&\left.\left.+\frac{2}{3}\left[z(q^2)^3-z(0)^3\right] \right)\right\}, \end{split} $ | (2) |
$ z(q^2)=\frac{\sqrt{(m_{B}+m_D)^2-q^2}-\sqrt{(m_B+m_D)^2-(m_B-m_D)^2}} {\sqrt{(m_B+m_D)^2-q^2}+\sqrt{(m_B+m_D)^2-(m_B-m_D)^2}}. $ | (3) |
We present the form factors obtained for the
Figure3. (color online) The q2 dependence of form factors for
Figure4. (color online) The q2 dependence of form factors for
Figure5. (color online) The q2 dependence of form factors for
Figure6. (color online) The q2 dependence of form factors for
0.0006 | ?0.0024 | 156.1 | 215.9 | ?0.0061 | ?0.0021 | 31.9 | ?41.3 | ||
0.041 | ?0.104 | 92.36 | 925.3 | ?0.259 | 0.011 | 40.0 | 148.0 | ||
?0.023 | ?0.024 | 7.4 | ?21.4 | 0.054 | 0.064 | 2.9 | ?17.8 | ||
0.035 | 0.039 | 6.2 | ?22.0 | ?0.093 | ?0.116 | 1.2 | ?15.1 | ||
?0.00174 | ?0.00169 | 10.8 | ?42.8 | 0.0043 | 0.0049 | 4.8 | ?35.2 | ||
0.013 | ?0.008 | 54.0 | 149.0 | ?0.027 | 0.021 | 69.8 | ?22.0 | ||
?0.0015 | ?0.0012 | 17.6 | ?70.6 | 0.0044 | 0.0049 | 6.2 | ?41.8 | ||
0.0018 | 0.0016 | 14.2 | ?58.1 | ?0.0052 | ?0.0059 | 5.2 | ?39.2 | ||
?0.015 | ?0.020 | ?2.2 | ?8.5 | 0.015 | 0.020 | ?2.9 | ?8.6 | ||
0.304 | 0.286 | 11.4 | ?27.7 | ?0.327 | ?0.312 | 11.3 | ?36.2 | ||
0.0039 | 0.0078 | ?24.3 | 68.8 | ?0.0043 | ?0.0082 | ?23.8 | 74.5 | ||
0.0089 | 0.0101 | 6.5 | ?62.7 | ?0.010 | ?0.013 | ?0.56 | ?17.54 | ||
0.002 | 0.003 | ?6.85 | 7.00 | ?0.0021 | ?0.0031 | ?7.6 | 9.5 | ||
0.077 | 0.095 | 2.1 | ?21.7 | ?0.101 | ?0.127 | 1.1 | ?22.5 | ||
?0.0015 | ?0.0024 | ?8.1 | 20.0 | 0.0016 | 0.0023 | ?6.34 | 2.73 | ||
0.0018 | 0.0028 | ?6.0 | 1.7 | ?0.0020 | ?0.0029 | ?6.9 | 4.5 | ||
?0.0095 | ?0.0087 | 15.5 | ?97.4 | 0.0079 | 0.0076 | 14.2 | ?91.4 | ||
?0.631 | ?0.563 | 16.0 | ?49.0 | 0.491 | 0.438 | 16.5 | ?45.5 | ||
0.066 | 0.084 | ?3.4 | ?7.7 | ?0.064 | ?0.082 | ?5.2 | 2.5 | ||
?0.102 | ?0.133 | ?4.8 | ?1.1 | 0.101 | 0.132 | ?6.1 | 8.6 | ||
0.0076 | 0.0103 | ?8.3 | 17.9 | ?0.0074 | ?0.0099 | ?9.5 | 31.2 | ||
?0.058 | ?0.036 | 30.6 | ?128.4 | 0.0296 | 0.0030 | 63.1 | ?198.2 | ||
0.0087 | 0.0118 | ?8.3 | 17.6 | ?0.0087 | ?0.0117 | ?9.6 | 30.9 | ||
?0.010 | ?0.013 | ?7.7 | 12.9 | 0.011 | 0.014 | ?8.7 | 22.6 | ||
0.0116 | 0.0154 | ?7.0 | 14.5 | ?0.0117 | ?0.0152 | ?7.1 | 18.9 | ||
?0.196 | ?0.191 | 11.7 | ?43.4 | 0.203 | 0.197 | 12.2 | ?35.6 | ||
?0.0061 | ?0.0091 | ?15.5 | 53.0 | 0.0064 | 0.0092 | ?15.9 | 55.2 | ||
?0.0076 | ?0.0099 | ?6.0 | 15.6 | 0.0077 | 0.0098 | ?5.1 | 10.7 | ||
0.0021 | 0.0030 | ?11.2 | 35.0 | ?0.0021 | ?0.0029 | ?11.7 | 41.2 | ||
0.214 | 0.273 | ?3.73 | ?5.3 | ?0.189 | ?0.241 | ?5.1 | 2.1 | ||
?0.0012 | ?0.0016 | ?9.5 | 25.2 | 0.0011 | 0.0015 | ?9.5 | 28.2 | ||
0.0019 | 0.0027 | ?10.6 | 30.0 | ?0.0019 | ?0.0026 | ?10.9 | 34.6 |
Table4.Form factors for the semileptonic decays of
With the above preparatory results, we perform numerical calculations of the branching ratios for the
Decay mode | Decay mode | ||||||
Table5.Branching ratios for the B(s) semileptonic decay to 1D and 2D states of charmed/charmed-strange mesons.
We note that the production of D -wave charmed/charmed-strange via
Decay mode | Ref.[51] | Ref. [66] | Decay mode | Ref.[51] | Ref.[67] |
? | ? | ||||
? | ? | ||||
? | ? | ? | |||
? | |||||
? | |||||
? |
Table6.Branching ratios for the semileptonic decay of 1D charmed (charmed-strange) meson produced via B meson obtained from various theoretical predictions.
The
$ \begin{split} \xi(\omega)=&-\frac{6\sqrt{2}}{\sqrt{3}}\sqrt{m_Bm_D}\frac{1}{\omega-1}g_D(q^2)=\frac{-\sqrt{6}}{(\omega^2-1)\sqrt{m_Bm_D}}f_D(q^2)\\ &=-\frac{\sqrt{6m_B^3}}{3\sqrt{m_D}}(a_{D+}(q^2)+a_{D-}(q^2)) =\frac{\sqrt{6m_Bm_D}}{\omega+2}(a_{D+}(q^2)\\ &-a_{D-}(q^2))=2\sqrt{m_B^3m_D}n_{\frac{3}{2}}(q^2)=-\frac{1}{\omega-1}\sqrt{\frac{m_B}{m_D}}m_{\frac{3}{2}}(q^2)\\ &=\sqrt{m_B^3m_D}(z_{\frac{3}{2}+}(q^2)-z_{\frac{3}{2}-}(q^2)), \end{split} $ | (1) |
$ z_{\frac{3}{2}+}(q^2)+z_{\frac{3}{2}-}(q^2)=0, $ | (2) |
The
$ \begin{split} \zeta(\omega)=&-\frac{5\sqrt{5}}{\sqrt{3}}\frac{\sqrt{m_B^3 m_D}}{\omega+1}n_{5\over2}(q^2)=-\frac{5}{2}\sqrt{\frac{5}{3}}\sqrt{\frac{m_B}{m_D}}\frac{1}{1-\omega^2}m_{\frac{5}{2}}(q^2)\\ &=\frac{m_B^5}{m_D}\sqrt{\frac{5}{3}}(z_{\frac{5}{2}+}(q^2)+z_{\frac{5}{2}-}(q^2))=5\sqrt{\frac{5}{3}}\sqrt{m_B^3m_D}\\& \frac{1}{3-2\omega} (z_{\frac{5}{2}+}(q^2)-z_{\frac{5}{2}-}(q^2))=2y(q^2)\sqrt{m_B^5m_D}\\ &=\sqrt{\frac{m_B^3}{m_D}}\frac{w(q^2)}{\omega+1}=-\sqrt{\frac{m_B^7}{m_D}}(o_{+}(q^2)-o_{-}(q^2)), \end{split} $ | (3) |
$ o_{+}(q^2)+o_{-}(q^2)=0. $ | (4) |
To present our numerical results, we rewrite Eq. (52) and Eq. (54) as
$\begin{split} \xi=&\xi_{(g_D)}=\xi_{(f_D)}=\xi_{(a_{D+}+a_{D-})}=\xi_{(a_{D+}-a_{D-})}\\ =&\xi_{(n_{3/2})}=\xi_{(m_{3/2})}=\xi_{(z_{3/2+}-z_{3/2-})}, \end{split}$ |
$\begin{split} \zeta=&\zeta_{(n_{5/2})}=\zeta_{(m_{5/2})}=\zeta_{(z_{5/2+}+z_{5/2-})}=\zeta_{(z_{5/2+}-z_{5/2-})}\\ =&\zeta_{(y)}=\zeta_{(w)}=\zeta_{(o_+-o_-)}. \end{split} $ |
$ \xi_{(g_D)}\equiv -\frac{6\sqrt{2}}{\sqrt{3}}\sqrt{m_Bm_D}\frac{1}{\omega-1}g_D(q^2), $ | (7) |
$ \xi_{(f_D)}\equiv \frac{-\sqrt{6}}{(\omega^2-1)\sqrt{m_Bm_D}}f_D(q^2). $ | (8) |
In Table 7, we present the calculated IW function values for
Indeed, from Table 7 we note that discrepancies between the results obtained in the light-front quark model and the expectations from the heavy quark limit also exist in
0.051 | ... | 0.85 | 1.27 | 1.27 | ... | 0.75 | 1.05 | ||||
0.053 | ... | 2.81 | ... | 1.18 | ... | 2.68 | ... | ||||
0.076 | 0.088 | 0.66 | 0.98 | 0.21 | 0.27 | 0.63 | 0.86 | ||||
0.168 | 0.198 | 0.53 | 0.72 | ||||||||
0.070 | 0.068 | 0.43 | 0.64 | 0.33 | 0.44 | 0.48 | 0.67 | ||||
0.086 | ... | 0.25 | 0.35 | 0.53 | ... | 0.69 | 0.93 | ||||
0.067 | 0.056 | 0.68 | 1.00 | 0.40 | 0.54 | 0.59 | 0.83 | ||||
0.0015 | 0.0012 | ?0.0015 | ?0.0024 | ?0.0086 | ?0.0117 | ?0.0012 | ?0.0016 | ||||
?0.0018 | ?0.0016 | 0.0019 | 0.0028 | 0.0099 | 0.0134 | 0.0019 | 0.0027 | ||||
0.58 | ... | 0.92 | 1.37 | 1.23 | ... | 0.79 | 1.08 | ||||
0.36 | ... | 3.21 | ... | 1.02 | ... | 3.01 | ... | ||||
0.23 | 0.31 | 0.73 | 1.07 | 0.21 | 0.28 | 0.67 | 0.90 | ||||
0.44 | 0.58 | 0.54 | 0.72 | ||||||||
0.18 | 0.21 | 0.48 | 0.71 | 0.33 | 0.44 | 0.51 | 0.70 | ||||
0.18 | ... | 0.34 | 0.47 | 0.29 | ... | 0.61 | 0.83 | ||||
0.20 | 0.23 | 0.74 | 1.09 | 0.43 | 0.57 | 0.61 | 0.82 | ||||
0.0044 | 0.0049 | 0.0016 | 0.0023 | ?0.0086 | ?0.0115 | 0.0011 | 0.0015 | ||||
?0.0052 | ?0.0059 | ?0.0020 | ?0.0029 | 0.0105 | 0.0140 | ?0.0019 | ?0.0026 |
Table7.The IW functions for the light-front quark model for q2=0 and
2
5.Summary
In the past several years, considerable progress has been achieved in observingIn order to get numerical results for semileptonic decays, we adopted the light-front quark model, which has been extensively applied in the studies of decay processes including semileptonic decays [35-48]. Our study in the framework of LFQM shows that the analysis of the production of the relevant D -wave
Theoretical studies of the
As indicated by our numerical results, semileptonic decays of pseudoscalar
Kan Chen would like to thank Qi Huang and Hao Xu for helpful discussion. We also would like to thank Yu-Ming Wang for the suggestion of form factors adopted in this work.
When integrating over
$ \tag{A1} \hat{B}^{B_{(s)}(D^{*}_{(s)1})}_{\mu}=\frac{N_c}{16\pi^3}\int_0^{1}{\rm d}x\int {\rm d}^2p^{\prime}_{\bot}\frac{h^{\prime}_0h^{\prime\prime}_{{}^3D_1}}{\left(1-x\right)N^{\prime}_1N^{\prime\prime}_1}\hat{S}^{{}^3D_1}_{\mu\nu}\epsilon^{*\prime\prime\nu}, $ |
$ \tag{A2} \hat{B}^{B_{(s)}(D^{*}_{(s)2})}_{\mu}=\frac{N_c}{16\pi^3}\int_0^{1}{\rm d}x\int {\rm d}^2p^{\prime}_{\bot}\frac{h^{\prime}_0h^{\prime\prime}_{{}^1D_2}}{\left(1-x\right)N^{\prime}_1N^{\prime\prime}_1} \hat{S}^{{}^1D_2}_{\mu\alpha\beta}\epsilon^{*\prime\prime\alpha\beta}. $ |
$ \tag{A3} \hat{B}^{B_{(s)}(D_{(s)2}^{*\prime})}_{\mu}=\frac{N_c}{16\pi^3}\int_0^{1}{\rm d}x\int {\rm d}^2p^{\prime}_{\bot}\frac{h^{\prime}_0h^{\prime\prime}_{{}^3D_2}}{\left(1-x\right)N^{\prime}_1N^{\prime\prime}_1} \hat{S}^{{}^3D_2}_{\mu\alpha\beta}\epsilon^{*\prime\prime\alpha\beta}, $ |
$ \tag{A4} \hat{B}^{B_{(s)}(D^{*}_{(s)3})}_{\mu}=\frac{N_c}{16\pi^3}\int_0^{1}{\rm d}x\int {\rm d}^2p'_{\bot}\frac{h'_0h'_{{}^3D_3}}{(1-x)N'_1N''_1}\hat{S}^{{}^3D_3}_{\mu\alpha\beta\nu}\epsilon''^{*\alpha\beta\nu}, $ |
$ \tag{A5} \begin{split} \hat{S}_{\mu\nu}^{{}^3D_1}=&{\rm Tr}\left\{\left[\gamma_{\nu}-\frac{1}{\omega^{\prime\prime}_{{}^3D_1}}\left(p^{\prime\prime}_1-p_2\right)_{\nu}\right] \left({\not \!\!{p}}^{\prime\prime}_{1}+m^{\prime\prime}_1\right)\gamma_{\mu}\left(1-\gamma_5\right) \left({\not \!\!{p}}^{\prime}_1+m^{\prime}_1\right)\gamma_5\left(-{\not \!\!{p}}_2+m_2\right)\right\}\\ =&-2i\epsilon_{\mu\nu\alpha\beta}\left[p_1^{\prime\alpha}P^{\beta} \left(m_1^{\prime\prime}-m_1^{\prime}\right)+p_1^{\prime\alpha}q^{\beta} \left(m_1^{\prime\prime}+m_1^{\prime}-2m_2\right)+q^{\alpha}P^{\beta}m_1^{\prime}\right] +\frac{1}{\omega^{\prime\prime}_{{}^3D_1}}\left(4p_{1\nu}^{\prime}-3q_{\nu}-P_{\nu}\right)\\&\times i\epsilon_{\mu\alpha\beta\rho}p_1^{\prime\alpha}q^{\beta}P^{\rho}+2g_{\mu\nu} \left[m_2\left(q^2-N_1^{\prime}-N_1^{\prime\prime}-m_1^{\prime2}-m_1^{\prime\prime2}\right)- m_1^{\prime}\left(M^{\prime\prime2}-N_1^{\prime\prime}-N_2-m_1^{\prime\prime2} -m_2^{2}\right)\right.\\&\left.-m_1^{\prime\prime}\left(M^{\prime2}-N_1^{\prime}-N_2-m_1^{\prime2} -m_2^{2}\right)-2m_1^{\prime}m_1^{\prime\prime}m_2\right]+8p_{1\mu}^{\prime}p_{1\nu}^{\prime} \left(m_2-m_1^{\prime}\right)-2\left(P_{\mu}q_{\nu}+q_{\mu}P_{\nu}+2q_{\mu}q_{\nu}\right)m_1^{\prime}\\& +2p_{1\mu}^{\prime}P_{\nu}\left(m_1^{\prime}-m_1^{\prime\prime}\right)+2p_{1\mu}^{\prime} q_{\nu}\left(3m_1^{\prime}-m_1^{\prime\prime}-2m_2\right)+2P_{\mu}p_{1\nu}^{\prime} \left(m_1^{\prime}+m_1^{\prime\prime}\right)+2q_{\mu}p_{1\nu}^{\prime}\left(3m_1^{\prime} +m_1^{\prime\prime}-2m_2\right)\\&+\frac{1}{2\omega^{\prime\prime}_{{}^3D_1}}\left(4p_{1\nu}^{\prime}-3q_{\nu}-P_{\nu}\right) \left\{2p_{1\mu}^{\prime}\left[M^{\prime2}+M^{\prime\prime2}-q^2-2N_2+ 2\left(m_1^{\prime}-m_2\right)\left(m_1^{\prime\prime}+m_2\right)\right]\right.\\&\left.+q_{\mu}\left[q^2-2M^{\prime2} +N_1^{\prime}-N_1^{\prime\prime}+2N_2-\left(m_1^{\prime}+m_1^{\prime\prime}\right)^2+ 2\left(m_1^{\prime}-m_2\right)^2\right]+P_{\mu}\left[q^2-N_1^{\prime}- N_1^{\prime\prime}-\left(m_1^{\prime}+m_1^{\prime\prime}\right)^2\right]\right\}, \end{split} $ |
$ \tag{A6} \begin{split} \hat{S}_{\mu\alpha\beta}^{{}^1D_2}=&{\rm Tr}\left\{\left[\gamma_5 \frac{\left(p_2-p_1^{\prime\prime}\right)_{\alpha}}{2}\frac{\left(p_2-p_1^{\prime\prime}\right)_{\beta}}{2}\right]\left({\not \!\!{p}}^{\prime\prime}_{1} +m^{\prime\prime}_1\right)\gamma_{\mu}\left(1-\gamma_5\right) \left({\not \!\!{p}}^{\prime}_1+m^{\prime}_1\right)\gamma_5\left(-{\not \!\!{p}}_2+m_2\right)\right\}\\ =&-\frac{1}{8}i\epsilon_{\mu\nu\sigma\delta}\left(P_{\alpha}-4p^{\prime}_{1\alpha}+3q_{\alpha}\right) \left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right)P^{\nu}p^{\prime\sigma}_1q^{\delta}- \left\{\frac{1}{16}\left(P_{\alpha}-4p^{\prime}_{1\alpha}+3q_{\alpha}\right)\right.\\&\left.\times\left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right) \left[-q_{\mu}\left(2m_2^2-4m_2m^{\prime}_1-m^{\prime\prime2}_1+2m^{\prime}_1m^{\prime\prime}_1+m^{\prime2}_1-2M^{\prime2}+2N_2-N^{\prime\prime}_1 +N^{\prime}_1+q^2\right)\right.\right.\\&\left.\left.+2p^{\prime}_{1\mu}\left[2\left(m_2-m^{\prime\prime}_1\right)\left(m_2-m^{\prime}_1\right)-M^{\prime\prime2} -M^{\prime2}+2N_2+q^2\right]+P_{\mu} \left[\left(m^{\prime\prime}_1-m^{\prime}_1\right)^2+N^{\prime\prime}_1+N^{\prime}_1-q^2\right]\right]\right\}, \end{split} $ |
$ \tag{A7} \begin{split} \hat{S}_{\mu\alpha\beta}^{{}^3D_2}=&{\rm Tr}\left\{\gamma_5 \left[\frac{1}{\omega_{{}^3D_2}^{a\prime\prime}}\gamma_{\alpha}\gamma_{\beta}+\frac{1}{\omega_{{}^3D_2}^{b\prime\prime}} \gamma_{\alpha}\frac{\left(p_2-p^{\prime\prime}_1\right)_{\beta}}{2}+\frac{1}{\omega_{{}^3D_2}^{c\prime\prime}}\frac{\left(p_2-p^{\prime\prime}_1\right)_{\alpha}}{2} \frac{\left(p_2-p^{\prime\prime}_1\right)_{\beta}}{2}\right]\right.\\&\left. \times\left({\not \!\!{p}}^{\prime\prime}_{1}+m^{\prime\prime}_1\right)\gamma_{\mu}\left(1-\gamma_5\right) \left({\not \!\!{p}}^{\prime}_1+m^{\prime}_1\right)\gamma_5\left(-{\not \!\!{p}}_2+m_2\right)\right\}\\ &=-i\frac{1}{2\omega^{b\prime\prime}_{{}^3D_2}}\epsilon_{\alpha\mu\sigma\delta} \left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right)\left\{\left(m^{\prime}_1+m^{\prime\prime}_1\right)P^{\sigma}p^{\prime\delta}_1- q^{\delta}\left[p^{\prime\sigma}_1(2m_2+m^{\prime\prime}_1-m^{\prime}_1)+m^{\prime}_1P^{\sigma}\right]\right\}\\& -\frac{i}{8\omega^{c\prime\prime}_{{}^3D_2}}\epsilon_{\mu\lambda\sigma\delta} P^{\lambda}p^{\prime\sigma}_1q^{\delta}\left(P_{\alpha}-4p^{\prime}_{1\alpha}+3q_{\alpha}\right) \left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right)-\frac{1}{2\omega^{b\prime\prime}_{{}^3D_2}}\left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right)\\&\times \left\{g_{\alpha\mu}\left[m_2^2\left(m^{\prime\prime}_1-m^{\prime}_1\right)+m_2\left(\left(m^{\prime\prime}_1-m^{\prime}_1\right)^2+N^{\prime\prime}_1 +N^{\prime}_1-q^2\right)-m^{\prime\prime2}_1m^{\prime}_1 +m^{\prime\prime}_1\left(m^{\prime2}_1-M^{\prime2}+Z_2+N^{\prime}_1\right)\right.\right.\\&\left.\left. +m^{\prime}_1\left(M^{\prime\prime2}-Z_2-N^{\prime\prime}_1\right)\right]+p^{\prime}_{1\alpha}\left[q_{\mu}\left(2m_2+m^{\prime\prime}_1-3m^{\prime}_1\right) +4\left(m^{\prime}_1-m_2\right)p^{\prime}_{1\mu} +\left(m^{\prime\prime}_1-m^{\prime}_1\right)P_{\mu}\right]\right.\\&\left.+2m_2p^{\prime}_{1\mu}q_{\alpha}-m^{\prime\prime}_1 \left(P_{\alpha}p^{\prime}_{1\mu} +p^{\prime}_{1\mu}q_{\alpha}\right)+m^{\prime}_1\left[-P_{\alpha}p^{\prime}_{1\mu}+P_{\mu}q_{\alpha} +q_{\mu}(P_{\alpha}+2q_{\alpha})-3p^{\prime}_{1\mu}q_{\alpha}\right]\right\}\\& -\frac{1}{16\omega^{c\prime\prime}_{{}^3D_2}}\left(P_{\alpha}-4p^{\prime}_{1\alpha}+3q_{\alpha}\right) \left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right)\left\{-q_{\mu}\left(2m_2^2-4m_2m^{\prime}_1-m^{\prime\prime2}_1+ 2m^{\prime\prime}_1m^{\prime}_1+m^{\prime2}_1\right.\right.\\&\left.-2M^{\prime2}+2Z_2-N^{\prime\prime}_1+ N^{\prime}_1+q^2\right)+2p^{\prime}_{1\mu} \left[2(m_2-m^{\prime\prime}_1)(m_2-m^{\prime}_1) -M^{\prime\prime2}-M^{\prime2}+2Z_2+q^2\right]\\&\left.+P_{\mu}\left[\left(m^{\prime\prime}_1-m^{\prime}_1\right)^2 +N^{\prime\prime}_1+N^{\prime}_1-q^2\right]\right\}, \end{split} $ |
$ \tag{A8} \begin{split} \hat{S}^{{}^3D_3}_{\mu\alpha\beta\nu}=& {\rm Tr}\left\{\left[\frac{\left(p_2-p^{\prime\prime}_1\right)_{\alpha}}{2}\frac{\left(p_2-p^{\prime\prime}_1\right)_{\beta}}{2} \left(\gamma_\nu+\frac{\left(p_2-p^{\prime\prime}_1\right)_{\nu}}{\omega^{\prime\prime}_{{}^3D_3}}\right) +\frac{\left(p_2-p^{\prime\prime}_1\right)_{\alpha}}{2}\frac{\left(p_2-p^{\prime\prime}_1\right)_{\nu}}{2}(\gamma_\beta+ \frac{\left(p_2-p^{\prime\prime}_1\right)_{\beta}}{\omega^{\prime\prime}_{{}^3D_3}})\right.\right.\\&\left.\left. +\frac{\left(p_2-p^{\prime\prime}_1\right)_{\nu}}{2}\frac{\left(p_2-p^{\prime\prime}_1\right)_{\beta}}{2}\left(\gamma_\alpha +\frac{\left(p_2-p^{\prime\prime}_1\right)_{\alpha}}{\omega^{\prime\prime}_{{}^3D_3}}\right)\right] \left({\not \!\!{p}}^{\prime\prime}_{1}+m^{\prime\prime}_1\right)\gamma_{\mu}\left(1-\gamma_5\right) \left({\not \!\!{p}}^{\prime}_1+m^{\prime}_1\right)\gamma_5\left(-{\not \!\!{p}}_2+m_2\right)\right\}\\ &=-\frac{3i}{8}\epsilon _{\mu\nu\sigma\delta}\left(P_{\alpha}-4p^{\prime}_{1\alpha}+3q_{\alpha}\right)\left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right) \left\{q^{\delta}\left[m^{\prime}_1P^{\sigma}-p^{\prime\sigma}_{1}(-2m_2+m^{\prime\prime}_1+m^{\prime}_1)\right]+\left(m^{\prime\prime}_1-m^{\prime}_1\right) P^{\sigma}p^{\prime\delta} _{1}\right\}\\&+\frac{3i}{16\omega^{\prime\prime}_{{}^3D_3}}\epsilon_{\mu\sigma\delta\lambda}P^{\sigma}p^{\prime\delta}_1 q^{\lambda}\left(P_{\alpha}-4p^{\prime}_{1\alpha}+3q_{\alpha}\right)\left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right)\left(P_{\nu}-4p^{\prime}_{1\nu}+3q_{\nu}\right) +\frac{3}{8}\left(P_\alpha-4p^{\prime}_{1\alpha}+3q_{\alpha}\right)\\&\times\left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right) \left\{g_{\mu\nu}\left[m_2^2\left(m^{\prime\prime}_1+m^{\prime}_1\right)-m_2\left[\left(m^{\prime\prime}_1+m^{\prime}_1\right)^2+N^{\prime\prime}_1+N^{\prime}_1-q^2\right] +m^{\prime\prime2}_1m^{\prime}_1+m^{\prime\prime}_1\left(m^{\prime2}_1-M^{\prime2}+Z_2+N^{\prime}_1\right)\right.\right.\\&\left.\left.+ m^{\prime}_1\left(-M^{\prime\prime2}+Z_2+N^{\prime\prime}_1\right)\right]+p^{\prime}_{1\mu}\left[-q_{\nu}(2m_2+m^{\prime\prime}_1-3m^{\prime}_1)+ 4(m_2-m^{\prime}_1)p^{\prime}_{1\nu}+ (m^{\prime}_1-m^{\prime\prime}_1)P_{\nu}\right]-2m_2p^{\prime}_{1\nu}q_{\mu}+m^{\prime\prime}_1\left(P_{\mu}p^{\prime}_{1\nu}\right.\right.\\& \left.\left. +p^{\prime}_{1\nu}q_{\mu}\right)+m^{\prime}_1\left(P_{\mu}p^{\prime}_{1\nu}-P_{\nu}q_{\mu}-q_{\nu}P_{\mu}-2q_{\nu}q_{\mu}+3p^{\prime}_{1\nu}q_{\mu}\right)\right\}+ \frac{3}{32\omega^{\prime\prime}_{{}^3D_3}}\left(P_{\alpha}-4p^{\prime}_{1\alpha}+3q_{\alpha}\right)\left(P_{\beta}-4p^{\prime}_{1\beta}+3q_{\beta}\right)\\&\times \left(P_{\nu}-4p^{\prime}_{1\nu}+3q_{\nu}\right)\left\{-q_{\mu}\left[2m_2^2-2m^{\prime}_1\left(2m_2+m^{\prime\prime}_1\right)-m^{\prime\prime2}_1+m^{\prime2}_1-2M^{\prime2}+2Z_2 -N^{\prime\prime}_1+N^{\prime}_1+q^2\right]\right.\\&\left.+ 2p^{\prime}_{1\mu}\left[2(m_2+m^{\prime\prime}_1)\left(m_2-m^{\prime}_1\right)-M^{\prime\prime2}-M^{\prime2}+2Z_2+q^2\right]+P_{\mu}\left[\left(m^{\prime\prime}_1+m^{\prime}_1\right)^2 +N^{\prime\prime}_1+N^{\prime}_1-q^2\right]\right\}. \end{split} $ |
$\tag{A9} n(q^2)=\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2 p^{\prime}_{\bot}\frac{4h^{\prime}_Ph^{\prime\prime}_{{}^1D_2}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime}}\left\{ A_1^{(2)}-A_1^{(3)}-A_2^{(3)}\right\}, $ |
$ \tag{A10} \begin{split} m(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2 p^{\prime}_{\bot}\frac{4h^{\prime}_P h^{\prime\prime}_{{}^1D_2}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}}\Bigg\{\left(A_1^{(2)}-A_1^{(3)}-A_{2}^{(3)}\right) \left[2\left(m_2-m^{\prime\prime}_1\right)\left(m_2-m_1^{\prime}\right)-M^{\prime\prime2}-M^{\prime2}+q^2\right]+ 2A_1^{(2)}Z_2\\&-2\left(A_2^{(3)}Z_2+\frac{M^{\prime2}-M^{\prime\prime2}}{3q^2}(A_1^{(2)})^2\right) -2\left(A_1^{(3)}Z_2-A_1^{(4)}\right)\Bigg\}, \end{split} $ |
$ \tag{A11} \begin{split} z_{+}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2 p^{\prime}_{\bot}\frac{h^{\prime}_{P}h^{\prime\prime}_{{}^1D_2}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}}\bigg\{ \left(-4A_1^{(1)}-2A_2^{(1)}+5A_2^{(2)}+6A_3^{(2)}-2A_3^{(3)}+A_4^{(2)}-4A_4^{(3)}-2A_5^{(3)}+1\right) \left(2m_1^{\prime}m_1^{\prime\prime}+q^2\right)\\&+\left(2A_1^{(1)}+2A_2^{(1)}-A_2^{(2)}-2A_3^{(2)} -A_4^{(2)}-1\right)\left[m_1^{\prime\prime2}+m_1^{\prime2}+x(M^{\prime2}-M_0^{\prime2})+ x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)\right]+\Big[-4m_2^2+2M^{\prime\prime2} +2M^{\prime2}\\&+4m_2\left(m_1^{\prime\prime}+m_1^{\prime}\right)\Big]\left(A_1^{(1)}-2A_2^{(2)}-2A_3^{2} +A_3^{(3)}+2A_4^{(3)}+A_5^{(3)}\right)-4\Bigg[\big(A_1^{(1)}Z_2-A_1^{(2)}\big)-2\left(A_2^{(2)}Z_2-2A_1^{(3)}\right)\\&-2\left(A_3^{(2)}Z_2 +A_1^{(3)}\frac{q\cdot P}{q^2}-A_2^{(3)}\right)+\left(A_3^{(3)}Z_2-2A_2^{(2)}A_1^{(2)}-A_2^{(4)}\right)+2\left(A_4^{(3)}Z_2 +A_2^{(2)}A_1^{(2)}\frac{q\cdot P}{q^2}-A_1^{(1)}A_2^{(3)}-A_3^{(4)}\right)\\&+\left(A_5^{(3)}Z_2+2\frac{q\cdot P}{q^2}A_1^{(1)}A_2^{(3)}-A_4^{(4)}\right)\Bigg]\bigg\}, \end{split} $ |
$ \tag{A12} \begin{split} z_{-}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2 p^{\prime}_{\bot}\frac{h^{\prime}_{P}h^{\prime\prime}_{{}^1D_2}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}}\Bigg\{ \left(-2A_1^{(1)}-4A_2^{(1)}+A_2^{(2)}+6A_3^{(2)}+5A_4^{(2)}-2A_4^{(3)}-4A_5^{(3)} -2A_6^{(3)}+1\right)\left(2m_2^2+2m_1^{\prime\prime}m_1^{\prime}+q^2\right)\\&+\left(2A_1^{(1)}+ 3A_2^{(1)}-A_2^{(2)}-4A_3^{(2)}-3A_4^{(2)}+A_4^{(3)}+2A_5^{(3)}+A_6^{(3)}-1\right) \left(4m_2m_1^{\prime}+2M^{\prime2}\right)+\Big(2A_1^{(1)}+2A_2^{(1)}-A_2^{(2)}-2A_3^{(2)} \\&-A_4^{(2)}-1\Big)\left[m_1^{\prime\prime2}-m_1^{\prime2}+x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)- x\left(M^{\prime2}-M_0^{\prime2}\right)\right]+\left(A_2^{(1)}-2A_3^{(2)}-2A_4^{(2)}+A_4^{(3)}+2A_5^{(3)}+A_6^{(3)}\right) \big(2M^{\prime\prime2}\\&+4m_2m^{\prime\prime}\big)-8\left(A_2^{(1)}Z_2+ \frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_1^{(2)}\right)+ 10\left(A_4^{(2)}Z_2+2\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_2^{(1)}A_1^{(2)}\right)+2Z_2 -4\Bigg[A_6^{(3)}Z_2+3\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}\\&\times\bigg[A_2^{(1)}A_2^{(3)}- \frac{1}{3q^2}(A_1^{(2)})^2\bigg]\Bigg]+2\Bigg[-2\left(A_1^{(1)}Z_2-A_1^{(2)}\right)+\left(A_2^{(2)}Z_2-2A_1^{(3)}\right)+6\left(A_3^{(2)}Z_2+A_1^{(3)}\frac{q\cdot P}{q^2}-A_2^{(3)}\right)-2\big(A_4^{(3)}Z_2\\ &+A_2^{(2)}A_1^{(2)}\frac{q\cdot P}{q^2}-A_1^{(1)}A_2^{(3)}-A_3^{(4)}\big) -4\left(A_5^{(3)}Z_2+2\frac{q\cdot P}{q^2}A_1^{(1)}A_2^{(3)}-A_4^{(4)}\right)\Bigg]\Bigg\}. \end{split} $ |
$ \tag{A13} \begin{split} n^{\prime}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2p^{\prime}_{\bot} \frac{2h^{\prime}_{P}h^{\prime\prime}_{{}^3D_2}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}}\Bigg\{ \frac{1}{\omega^{b\prime\prime}_{{}^3D_2}}\bigg[A_1^{(1)}\left(2m_2+m_1^{\prime\prime}-2m_1^{\prime}\right) +m_1^{\prime}\left(-2A_2^{(1)}+A_2^{(2)}+2A_3^{(2)}+A_4^{(2)}+1\right)\\ &-m_1^{\prime\prime} \left(A_2^{(1)}+A_2^{(2)}-A_4^{(2)}\right)-m_2\left(2A_2^{(2)}+2A_3^{(2)}\right)\bigg]+ \frac{2}{\omega^{c\prime\prime}_{{}^3D_2}}\left(A_1^{(2)}-A_1^{(3)}-A_2^{(3)}\right)\Bigg\}, \end{split} $ |
$ \tag{A14} \begin{split} m^{\prime}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2p^{\prime}_{\bot} \frac{2h^{\prime}_{P}h^{\prime\prime}_{{}^3D_2}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}}\Bigg\{ \frac{1}{\omega^{b\prime\prime}_{{}^3D_2}}\bigg[\left[\left(m_2+m_1^{\prime\prime}\right)\left(m_2-m_1^{\prime}\right) \left(m_1^{\prime}-m_1^{\prime\prime}\right)+m_2 q^2\right]\left(1-A_2^{(1)}-A_1^{(1)}\right)+A_1^{(2)}\Big[6m_2-2\left(m_1^{\prime\prime}+4m_1^{\prime}\right)\Big]\\& + 8\left(A_1^{(3)}+A_2^{(3)}\right)\left(m_1^{\prime}-m_2\right)+ \left(Z_2-A_2^{(1)}Z_2-\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_1^{(2)}\right) \left(m_1^{\prime}-m_1^{\prime\prime}\right)+\Big(M^{\prime\prime2}m_1^{\prime}-M^{\prime2} m_1^{\prime\prime}+x\left(M^{\prime2}-M_0^{\prime2}\right)\left(m_2+m_1^{\prime\prime}\right)\\& +x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)\left(m_2-m_1^{\prime}\right)\Big) \left(A_1^{(1)}+A_2^{(1)}-1\right)+(m_2-m^{\prime}_1)(A_1^{(1)}Z_2-A_1^{(2)})\bigg]+\frac{2}{\omega^{c\prime\prime}_{{}^3D_2}}\Bigg[\left(A_1^{(2)}-A_1^{(3)} -A_2^{(3)}\right)\\&\times\left[2(m_2-m_1^{\prime\prime})(m_2-m_1^{\prime})-M^{\prime\prime2} -M^{\prime2}+q^2\right]+2A_1^{(2)}Z_2-2\left(A_2^{(3)}Z_2+ \frac{M^{\prime2}-M^{\prime\prime2}}{3q^2}\left(A_1^{(2)}\right)^2\right) -2\left(A_1^{(3)}Z_2-A_1^{(4)}\right)\Bigg]\Bigg\}, \end{split} $ |
$ \tag{A15} \begin{split} z_{+}^{\prime}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2p^{\prime}_{\bot}\frac{h^{\prime}_{P}h^{\prime\prime}_{{}^3D_2}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}} \Bigg\{\frac{2}{\omega^{b\prime\prime}_{{}^3D_2}}\bigg[m_1^{\prime}\left(6A_1^{(1)}+2A_2^{(1)} -9A_2^{(2)}-10A_3^{(2)}+4A_3^{(3)}-A_4^{(2)}+8A_4^{(3)}+4A_5^{(3)}-1\right)+ m_1^{\prime\prime}\left(A_1^{(1)}-A_2^{(1)}-A_2^{(2)}+A_4^{(2)}\right)\\&+m_2\left(-2A_1^{(1)}+ 6A_2^{(2)}+6A_3^{(2)}-4A_3^{(3)}-8A_4^{(3)}-4A_5^{(3)}\right)\bigg]+\frac{1} {\omega^{c\prime\prime}_{{}^3D_2}}\Bigg[\Big[m_2^{\prime2}-m_2\left(m_1^{\prime\prime}+m_1^{\prime}\right)+ m_1^{\prime\prime}m_1^{\prime}\Big]\left(-4A_1^{(1)}+8A_2^{(2)}+8A_3^{(2)}-4A_3^{(3)} -8A_4^{(3)}-4A_5^{(3)}\right)\\&+\left(m_1^{\prime}-m_1^{\prime\prime}\right)^2\Big(2A_1^{(1)} +2A_2^{(1)}-A_2^{(2)}-2A_3^{(2)}-A_4^{(2)}-1\Big)+\left(M^{\prime2}+M^{\prime\prime2}-q^2\right) \left(2A_1^{(1)}-4A_2^{(2)}-4A_3^{(2)}+2A_3^{(3)}+4A_4^{(3)}+2A_5^{(3)}\right)\\&+ \left[x(M^{\prime2}-M_0^{\prime2})+x(M^{\prime\prime2}-M_0^{\prime\prime2})-q^2\right] \left(2A_1^{(1)}+2A_2^{(1)}-A_2^{(2)}-2A_3^{(2)}-A_4^{(2)}-1\right)-\bigg(4 \Big(\left(A_1^{(1)}Z_2-A_1^{(2)}\right)\\&-2\left(A_2^{(2)}Z_2-2A_1^{(3)}\right)-2\left(A_3^{(2)}Z_2+A_1^{(3)} \frac{q\cdot P}{q^2}-A_2^{(3)}\right)+\left(A_3^{(3)}Z_2-2A_2^{(2)}A_1^{(2)}-A_2^{(4)}\right)+ 2\left(A_4^{(3)}Z_2+A_2^{(2)}A_1^{(2)}\frac{q\cdot P}{q^2}\right.\\&\left.-A_1^{(1)}A_2^{(3)}-A_3^{(4)}\right)+\left(A_5^{(3)}Z_2+2\frac{q\cdot P}{q^2}A_1^{(1)}A_2^{(3)}-A_4^{(4)}\right)\bigg)\Bigg]\Bigg\}, \end{split} $ |
$ \tag{A16} \begin{split} z_{-}^{\prime}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2 {\rm d}^2p^{\prime}_{\bot}\frac{h^{\prime}_{P}h^{\prime\prime}_{{}^3D_2}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}} \Bigg\{\frac{2}{\omega^{b\prime\prime}_{{}^3D_2}}\bigg[m_1^{\prime}\left(6A_1^{(1)}+10A_2^{(1)}-3A_2^{(2)} -14A_3^{(2)}-11A_4^{(2)}+4A_4^{(3)}+8A_5^{(3)}+4A_{6}^{(3)}-3\right)+m_1^{\prime\prime} \left(-A_1^{(1)}+A_2^{(1)}+A_2^{(2)}-A_4^{(2)}\right)\\&+m_2\left(-2A_1^{(1)}-4A_2^{(1)}+2A_2^{(2)} +10A_3^{(2)}+8A_4^{(2)}-4A_4^{(3)}-8A_5^{(3)}-4A_6^{(3)}\right)\bigg]+ \frac{1}{\omega^{c\prime\prime}_{{}^3D_2}}\Bigg[\left[2\left(m_2-m_1^{\prime}\right)^2 -\left(m_1^{\prime}-m_1^{\prime\prime}\right)^2\right]\left(-2A_1^{(1)}-2A_2^{(1)}+A_2^{(2)}+ 2A_3^{(2)}+A_4^{(2)}+1\right)\\&+\Big[m_2^{(2)}-m_2\left(m_1^{\prime}+m_1^{\prime\prime}\right)+ m_1^{\prime}m_1^{\prime\prime}\Big]\left(-4A_2^{(1)}+8A_3^{(2)}+8A_4^{(2)}-4A_4^{(3)}-8A_5^{(3)}-4A_6^{(3)}\right)+ \left(x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)-x\left(M^{\prime2}-M_0^{\prime2}\right)-q^2 +2M^{\prime2}\right)\\&\times\left(2A_1^{(1)}+2A_2^{(1)}-A_2^{(2)}-2A_3^{(2)}-A_4^{(2)}-1\right)+ \left(M^{\prime\prime2}+M^{\prime2}-q^2\right)\left(2A_2^{(1)}-4A_3^{(2)}-4A_4^{(2)}+2A_4^{(3)}+4A_5^{(3)}+2A_6^{(3)}\right) \\&+2Z_2 -8\left(A_2^{(1)}Z_2+\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_1^{(2)}\right)+ 10\left(A_4^{(2)}Z_2+2\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_2^{(1)}A_1^{(2)}\right)-4\bigg[A_6^{(3)}Z_2+ 3\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}\\& \times\Big[A_2^{(1)}A_2^{(3)}-\frac{1}{3q^2}(A_1^{(2)})^2\Big]\bigg]+ \bigg[2\Bigg(-2\left(A_1^{(1)}Z_2-A_1^{(2)}\right)+\left(A_2^{(2)}Z_2-2A_1^{(3)}\right)+6\left(A_3^{(2)}Z_2+A_1^{(3)}\frac{q\cdot P}{q^2}-A_2^{(3)}\right)-2\big(A_4^{(3)}Z_2\\&+A_2^{(2)}A_1^{(2)}\frac{q\cdot P}{q^2}-A_1^{(1)}A_2^{(3)}-A_3^{(4)}\big)-4\left(A_5^{(3)}Z_2+2\frac{q\cdot P}{q^2}A_1^{(1)}A_2^{(3)}-A_3^{(4)}\right)\Bigg)\bigg]\Bigg]\Bigg\}, \end{split} $ |
$ \tag{A17} \begin{split} y(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2{\rm d}^2p^{\prime}_{\bot}\frac{3h^{\prime}_{P}h^{\prime\prime}_{{}^3D_3}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}} \Bigg\{2m_1^{\prime}\left(3A_1^{(1)}+3A_2^{(1)}-3A_2^{(2)}-6A_3^{(2)}+A_3^{(3)} -3A_4^{(2)}+3A_4^{(3)}+3A_5^{(3)}+A_6^{(3)}-1\right)+2m_1^{\prime\prime} \left(A_1^{(1)}-A_2^{(1)}-2A_2^{(2)}\right.\\&\left.+A_3^{(3)}+2A_4^{(2)}+A_4^{(3)}-A_5^{(3)}-A_6^{(3)}\right)+ 2m_2\bigg(-2A_1^{(1)}+4A_2^{(2)}+4A_3^{(2)}-2A_3^{(3)}-4A_4^{(3)}-2A_5^{(3)}\bigg)+ \frac{12}{\omega^{\prime\prime}_{{}^3D_3}}\left(A_1^{(2)}-2A_1^{(3)}-2A_2^{(3)}+A_2^{(4)}+2A_3^{(4)}+A_4^{(4)}\right)\Bigg\}, \end{split} $ |
$ \tag{A18} \begin{split} w(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2{\rm d}^2p^{\prime}_{\bot}\frac{3h^{\prime}_{P}h^{\prime\prime}_{{}^3D_3}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}} \Bigg\{2\Bigg[\left(2A_1^{(1)}+2A_2^{(1)}-A_2^{(2)}-2A_3^{(2)}-A_4^{(2)}-1\right) \bigg[m_2^{2}\left(-m_1^{\prime\prime}-m_1^{\prime}\right)+m_2\Big[\left(m_1^{\prime\prime}+m_1^{\prime}\right)^2+ x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)+x\left(M^{\prime2}-M_0^{\prime2}\right)-q^2\Big] \\& -m_1^{\prime\prime2}m_1^{\prime}-m_1^{\prime\prime}\left[m_1^{\prime2}-M^{\prime2}+ x\left(M^{\prime2}-M_0^{\prime2}\right)\right]+m_1^{\prime}\Big[M^{\prime\prime2}-x\left(M^{\prime\prime2}-M_0^{\prime\prime2} \right)\Big]\bigg] +4m_2\left[2A_1^{(2)}-5A_1^{(3)}-5A_2^{(3)}+3\left(A_2^{(4)}+2A_3^{(4)}+A_4^{(4)}\right)\right]\\& + m_1^{\prime}\bigg(-12A_1^{(2)}+24A_1^{(3)}+24A_2^{(3)}-12A_2^{(4)}-24A_3^{(4)} -12A_4^{(4)}-2\left(A_2^{(1)}Z_2+\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_1^{(2)}\right)+ A_4^{(2)}Z_2+2\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_2^{(1)}A_1^{(2)}+Z_2\bigg) \\&+m_1^{\prime\prime}\left(4A_1^{(2)}-4A_1^{(3)}-4A_2^{(3)}-2\left(A_2^{(1)}Z_2+ \frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_1^{(2)}\right)+A_4^{(2)}Z_2+ 2\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_2^{(1)}A_1^{(2)}+Z_2\right)-(m^{\prime\prime}_1 + m^{\prime}_1)\left(2\left(A_1^{(1)}Z_2-A_1^{(2)}\right)-\left(A_2^{(2)}Z_2-2A_1^{(3)}\right)\right.\\&- 2\left.\left(A_3^{(2)}Z_2+A_1^{(3)}\frac{q\cdot P}{q^2}-A_2^{(3)}\right)\right)\Bigg] -\frac{12}{\omega^{\prime\prime}_{{}^3D_3}}\Bigg[\left(A_1^{(2)}-2A_1^{(3)}-2A_2^{(3)}+A_2^{(4)}+2A_3^{(4)}+A_4^{(4)} \right)\left[2\left(m_2+m_1^{\prime\prime}\right)\left(m_2-m_1^{\prime}\right)-M^{\prime2}-M^{\prime\prime2}+q^2\right]+2A_1^{(2)}Z_2+2\left(Z_2A_4^{(4)}\right.\\& \left.+\frac{2}{q^2}\left(M^{\prime2}-M^{\prime\prime2}\right)A_2^{(1)}A_1^{(4)}\right) -4\left(A_2^{(3)}Z_2+\frac{M^{\prime2}-M^{\prime\prime2}}{3q^2}\left(A_1^{(2)}\right)^2\right)-2\bigg(\left(A_2^{(4)}Z_2-2A_1^{(1)}A_1^{(4)}\right) +2\left(A_3^{(4)}Z_2+A_1^{(1)}A_1^{(4)}\frac{q\cdot P}{q^2}-A_2^{(1)}A_1^{(4)}\right)-2\left(A_1^{(3)}Z_2-A_1^{(4)}\right)\bigg)\Bigg]\Bigg\}, \end{split} $ |
$ \tag{A19} \begin{split} o_{+}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2{\rm d}^2p^{\prime}_{\bot}\frac{3h^{\prime}_{P}h^{\prime\prime}_{{}^3D_3}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}} \Bigg\{2m_1^{\prime}\bigg(7A_1^{(1)}+3A_2^{(1)}-15A_2^{(2)}-18A_3^{(2)}+13A_3^{(3)} -3A_4^{(2)}+27A_4^{(3)}+15A_5^{(3)}-4A_5^{(4)}+A_6^{(3)}-4\left(3\left(A_6^{(4)}+A_7^{(4)}\right) +A_8^{(4)}\right)-1\bigg)\\& +2m_1^{\prime\prime}\left[-A_1^{(1)}+A_2^{(1)}+2A_2^{(2)}-A_3^{(3)} -2A_4^{(2)}-A_4^{(3)}+A_5^{(3)}+A_6^{(3)}\right]+2m_2\left(-2A_1^{(1)}+8A_2^{(2)} +8A_3^{(2)}-10A_3^{(3)}-20A_4^{(3)}-10A_5^{(3)}+4A_5^{(4)}+12A_6^{(4)}+12A_7^{(4)}\right. \\&\left.+4A_8^{(4)}\right)+\frac{2}{\omega^{\prime\prime}_{{}^3D_3}}\Bigg[\left[m_1^{\prime2}+m_1^{\prime\prime2} +x\left(M^{\prime2}-M_0^{\prime2}\right)+x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)-q^2 +2m_1^{\prime}m_1^{\prime\prime}\right]\Big(-3A_1^{(1)}-3A_2^{(1)}+3A_2^{(2)}+6A_3^{(2)} \\&-A_3^{(3)}+3A_4^{(2)}-3A_4^{(3)}-3A_5^{(3)}-A_6^{(3)}+1\Big)+\left(M^{\prime\prime2} +M^{\prime2}-2m_2^2-q^2+2m_1^{\prime}m_2-2m_2m_1^{\prime\prime} +2m_1^{\prime}m_1^{\prime\prime}\right)\\&\times\left(-2A_1^{(1)}+6A_2^{(2)}+6A_3^{(2)}-6A_3^{(3)} -12A_4^{(3)}-6A_5^{(3)}+2A_5^{(4)}+6A_6^{(4)}+6A_7^{(4)}+2A_8^{(4)}\right) -4\bigg[\big(A_5^{(4)}Z_2-2A_3^{(3)}A_1^{(2)}\\&-2A_1^{(1)}A_2^{(4)}\big)+3\left(A_6^{(4)}Z_2+\frac{q\cdot P}{q^2}A_3^{(3)}A_1^{(2)}-A_2^{(2)}A_1^{(2)}A_2^{(1)}-2A_1^{(1)}A_3^{(4)}\right) +3\left(A_7^{(4)}Z_2+2\frac{q\cdot P}{q^2}A_2^{(2)}A_1^{(2)}A_2^{(1)}-2A_1^{(1)}A_4^{(4)}\right)\\&+ \left(A_8^{(4)}Z_2+3\frac{q\cdot P}{q^2}A_1^{(4)}A_4^{(4)}-A_2^{(1)}A_4^{(4)}+\frac{2A_2^{(1)}A_1^{(4)}}{q^2}\right)-\left(A_1^{(1)}Z_2-A_1^{(2)}\right)+3\left(A_2^{(2)}Z_2-2A_1^{(3)}\right)+3\bigg(A_3^{(2)}Z_2+A_1^{(3)}\frac{q\cdot P}{q^2}\\&-A_2^{(3)}\bigg)-3\left(A_3^{(3)}Z_2-2A_2^{(2)}A_1^{(2)}-A_2^{(4)}\right)-6\left(A_4^{(3)}Z_2+A_2^{(2)}A_1^{(2)}\frac{q\cdot P}{q^2}-A_1^{(1)}A_2^{(3)}-A_3^{(4)}\right)-3\big(A_5^{(3)}Z_2+2\frac{q\cdot P}{q^2}A_1^{(1)}A_2^{(3)}-A_4^{(4)}\big)\bigg]\Bigg]\Bigg\}, \end{split} $ |
$ \tag{A20} \begin{split} o_{-}(q^2)=&\frac{N_c}{16\pi^3}\int {\rm d}x_2{\rm d}^2p^{\prime}_{\bot}\frac{3h^{\prime}_{P}h^{\prime\prime}_{{}^3D_3}}{(1-x)\hat{N}_1^{\prime}\hat{N}_1^{\prime\prime}} \Bigg\{2m_2\bigg(-2A_1^{(1)}-4A_2^{(1)}+4A_2^{(2)}+16A_3^{(2)}-2A_3^{(3)} +12A_4^{(2)}-16A_4^{(3)}-26A_5^{(3)}-12A_6^{(3)}+4A_6^{(4)}+12A_7^{(4)} +12A_8^{(4)}+4A_9^{(4)}\bigg)\\&+2m_1^{\prime}\bigg[9A_1^{(1)}+13A_2^{(1)}-9A_2^{(2)} -30A_3^{(2)}+3A_3^{(3)}-21A_4^{(2)}+21A_4^{(3)}+33A_5^{(3)}+15A_6^{(3)} -4\left(A_6^{(4)}+3\left(A_7^{(4)}+A_8^{(4)}\right)+A_9^{(4)}\right)-3\bigg]+2m_1^{\prime\prime} \Big(A_1^{(1)}-A_2^{(1)}-2A_2^{(2)}\\&+A_3^{(3)}+2A_4^{(2)}+A_4^{(3)}-A_5^{(3)} -A_6^{(3)}\Big)+\frac{2}{\omega^{\prime\prime}_{{}^3D_3}}\Bigg[\left(-2M^{\prime2}-4m_2m_1^{\prime} +4m_2^{2}-4m_1^{\prime}m_1^{\prime\prime}+2q^2-2M^{\prime\prime2}+4m_2m_1^{\prime\prime}\right)\times\left(3A_1^{(1)}+4A_2^{(1)}-3A_2^{(2)}-9A_3^{(2)}+A_3^{(3)}\right.\\& \left.-6A_4^{(2)} +6A_4^{(3)}+9A_5^{(3)}+4A_6^{(3)}-A_6^{(4)}-3A_7^{(4)}-3A_8^{(4)} -A_9^{(4)}-1\right)+\left[m_1^{\prime2}-m_1^{\prime\prime2}+x\left(M^{\prime2}-M_0^{\prime2}\right) -x\left(M^{\prime\prime2}-M_0^{\prime\prime2}\right)-q^2-2m_2^{2}+2M^{\prime\prime2} +2m_1^{\prime}m_1^{\prime\prime}-4m_2m_1^{\prime\prime}\right]\\& \times\Big(3A_1^{(1)}+3A_2^{(1)}-3A_2^{(2)}-6A_3^{(2)}+A_3^{(3)}-3A_4^{(2)} +3A_4^{(3)}+3A_5^{(3)}+A_6^{(3)}-1\Big)-4\bigg[Z_2A_9^{(4)}+\frac{4}{q^2}A_4^{(4)}A_2^{(1)} \left(M^{\prime2}-M^{\prime\prime2}\right)-\frac{8}{q^4}A_2^{(1)}A_1^{(4)}\left(M^{\prime2} -M^{\prime\prime2}\right)\bigg]\\&+10\left(A_2^{(1)}Z_2+\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_1^{(2)}\right)- 18\left(A_4^{(2)}Z_2+2\frac{M^{\prime2}-M^{\prime\prime2}}{q^2}A_2^{(1)}A_1^{(2)}\right)-2Z_2+14\Bigg[A_6^{(3)}Z_2+3\frac{M^{\prime2}-M^{\prime\prime2}}{q^2} \bigg[A_2^{(1)}A_2^{(3)}-\frac{1}{3q^2}\left(A_1^{(2)}\right)^2\bigg]\Bigg] \\& -2\bigg[2\bigg(A_6^{(4)}Z_2+\frac{q\cdot P}{q^2}A_3^{(3)}A_1^{(2)}-A_2^{(2)}A_1^{(2)}A_2^{(1)}-2A_1^{(1)}A_3^{(4)}\bigg)+6\left(A_7^{(4)}Z_2+2\frac{q\cdot P}{q^2}A_2^{(2)}A_1^{(2)}A_2^{(1)}-2A_1^{(1)}A_4^{(4)}\right)+6\left(A_8^{(4)}Z_2+3\frac{q\cdot P}{q^2}A_1^{(1)}A_4^{(4)}\right.\\&\left.-A_2^{(1)}A_4^{(4)}+\frac{2A_2^{(1)}A_1^{(4)}}{q^2}\right) -3\left(A_1^{(1)}Z_2-A_1^{(2)}\right)+3\left(A_2^{(2)}Z_2-2A_1^{(3)}\right)+12\left(A_3^{(2)}Z_2+A_1^{(3)}\frac{q\cdot P}{q^2}-A_2^{(3)}\right)-\left(A_3^{(3)}Z_2-2A_2^{(2)}A_1^{(2)}-A_2^{(4)}\right) -9\big(A_4^{(3)}Z_2\\&+A_2^{(2)}A_1^{(2)}\frac{q\cdot P}{q^2}-A_1^{(1)}A_2^{(3)}-A_3^{(4)}\big)-15\left(A_5^{(3)}Z_2+2\frac{q\cdot P}{q^2}A_1^{(1)}A_2^{(3)}-A_4^{(4)}\right)\bigg]\Bigg]\Bigg\}. \end{split} $ |
2
Appendix B: Conventional vertex functions for D-wave mesons
In the conventional light-front approach, a meson with momentum $ \tag{B1} \begin{split} \left|M(P, {}^{2S+1}L_J, J_z)\right\rangle=&\int \left\{{\rm d}^3\tilde{p}_1{\rm d}^3\tilde{p}_2\right\}2\left(2\pi\right)^3\delta^3\left(\tilde{P}-\tilde{p}_1-\tilde{p}_2\right)\\&\sum\limits_{\lambda_1\lambda_2}\Psi_{LS}^{JJ_z}\left(\tilde{p}_1, \tilde{p}_2, \lambda_1, \lambda_2\right)\left|q_1(p_1, \lambda_1)\bar{q}_2(p_2, \lambda_2)\right\rangle, \end{split} $ |
$ \tag{B2} \tilde{p}=\left(p^{+}, p_{\bot}\right), p_{\bot}=\left(p^1, p^2\right), p^-=\frac{m^2+p^2_{\bot}}{p^+}, $ |
$ \begin{aligned} &\left\{{\rm d}^3p\right\}\equiv\frac{{\rm d}p^+{\rm d}^2p_{\bot}}{2(2\pi)^3}, \quad\left|q(p_1, \lambda_1)\bar{q}(p_2, \lambda_2)\right\rangle=b_{\lambda_1}^{\dagger}(p_1) d_{\lambda_2}^{\dagger}(p_2)\left|0\right\rangle, \\ &\left\{b_{\lambda^{\prime}}(p^{\prime}), b_{\lambda}^{\dagger}(p)\right\} =\left\{d_{\lambda^{\prime}}(p^{\prime}), d^{\dagger}_{\lambda}(p)\right\}= 2\left(2\pi^3\right)\delta^3\left(\tilde{p}^{\prime}-\tilde{p}\right)\delta_{\lambda\lambda^{\prime}}. \end{aligned} $ |
$ \tag{B3} \begin{aligned} p_1^{+}&= x_1P^{+}, \quad p_2^{+}=x_2P^+, \quad x_1+x_2=1, \\ p_{1\bot}&= x_1P_{\bot}+p_{\bot}, \quad p_{2\bot}=x_2P_{\bot}-p_{\bot}. \end{aligned} $ |
$ \tag{B4} \begin{aligned} \Psi_{LS}^{JJ_z}\left(\tilde{p}_1, \tilde{p}_2, \lambda_1, \lambda_2\right)&= \frac{1}{\sqrt{N_c}}\left\langle LS;L_zS_z|LS;JJ_z\right\rangle R_{\lambda_1\lambda_2}^{SS_z}\left(x_2, p_{\bot}\right)\varphi_{LL_z}\left(x_2, p_{\bot}\right), \end{aligned} $ |
$ \tag{B5} \begin{split} &R_{\lambda_1\lambda_2}^{SS_z}\left(x_2, p_{\bot}\right)=\frac{1}{\sqrt{2}\tilde{M}_0 \left(M_0+m_1+m_2\right)}\bar{u}\left(p_1, \lambda_1\right)\left(\bar{\not \!\!{P}}+M_0\right)\Gamma_Sv\left(p_2, \lambda_2\right)\\ &{\rm{with}}\quad \left\{ \begin{array}{lc} \Gamma_0=\gamma_5 & \text{for}\qquad S=0\\ \Gamma_1=-{\not \!\!{\epsilon}}(S_z)& \text{for}\qquad S=1\\ \end{array}\right., \end{split} $ |
With the potential model for a definite meson state with quantum numbers
The meson wave function
$ \tag{B6} \begin{split} &\Psi_{2S}^{JJ_z}(p_1, p_2, \lambda_1, \lambda_2)=\frac{1}{\sqrt{N}_c}\left\langle 2S;L_zS_z|2S;JJ_z\right\rangle R_{\lambda_1\lambda_2}^{SS_z}\left(x, p_{\bot}\right)\varphi^{\prime}_{2L_z}\left(x, p_{\bot}\right)\\ &\quad=\sum\limits_n^N \frac{\beta^2}{\sqrt{2}} a_n R^{\prime}_{n2}(x, p_{\bot})\pi\sqrt{\frac{30 e_1e_2}{x(1-x)M_0}} \frac{1}{\sqrt{N}_c}\frac{1}{\sqrt{2}\tilde{M}_0\left(M_0+m_1+m_2\right)}\\ &\quad\times \bar{u}\left(p_1, \lambda_1\right)\left(\bar{\not\!\!{P}}+M_0\right)\Gamma_{({}^{2S+1}D_J)}v\left(p_2, \lambda_2\right), \\ &\quad=\frac{1}{\sqrt{N_c}}\frac{\varphi_N}{\sqrt{2}\tilde{M}_0\left(M_0+m_1+m_2\right)}\\&\quad \bar{u}\left(p_1, \lambda_1\right)\left(\bar{\not \!\!{P}}+M_0\right)\Gamma_{({}^{2S+1}D_J)}v\left(p_2, \lambda_2\right). \end{split} $ |
$ \tag{B7} R'_{nl}(|p|)=\frac{(-1)^n(-i)^l}{\beta^{3/2}}\sqrt{\frac{2n!}{\Gamma\left(n+l+3/2\right)}} \left(\frac{1}{\beta}\right)^le^{-\frac{p^2}{2\beta^2}}L_n^{l+\frac{1}{2}}\left(\frac{p^2}{\beta^2}\right), $ |
One can further simplify these wave functions by using the Dirac equations
$ \tag{B8} \Psi_{2S}^{JJ_z}\left(\tilde{p}_1, \tilde{p}_2, \lambda_1, \lambda_2\right)=\bar{u}\left(p_1, \lambda_1\right)h'_{({}^{2S+1}D_J)}\Gamma'_{({}^{2S+1}D_J)}v\left(p_2, \lambda_2\right) $ |
$ \tag{B9} \begin{split} &\begin{aligned} h'_{{}^3D_1}=&-\sqrt{\frac{1}{N_c}}\frac{1}{\sqrt{2}\tilde{M_0}}\frac{\sqrt{6}}{12\sqrt{5}M_{0}^2\beta^2}\left[M_0^2-(m_1-m_2)^2\right]\left[M_0^2-(m_1+m_2)^2\right]\varphi_N, \end{aligned}\\ &h'_{{}^1D_2}=\sqrt{\frac{1}{N_c}}\frac{1}{\tilde{M}_0\beta^2}\varphi_N, \\ &h'_{{}^3D_2}=\sqrt{\frac{1}{N_c}}\sqrt{\frac{2}{3}}\frac{1}{\tilde{M}_0\beta^2}\varphi_N, \quad h'_{{}^3D_3}=-\sqrt{\frac{1}{N_c}}\frac{1}{3}\frac{1}{\tilde{M}_0\beta^2}\varphi_N, \end{split} $ |
$ \tag{B10} \begin{split} &\Gamma'_{{}^3D_1}=\left[\gamma_{\mu}-\frac{1}{\omega_{{}^3D_1}}(p_1-p_2)_{\mu}\right]\epsilon^{\mu}, \quad \Gamma'_{{}^1D_2}=\gamma_5K_{\mu}K_{\nu}\epsilon^{\mu\nu}, \\ &\Gamma'_{{}^3D_2}=\gamma_5\left[\frac{1}{\omega^a_{{}^3D_2}}\gamma_{\mu}\gamma_{\nu}+\frac{1}{\omega^b_{{^3D_2}}}\gamma_\mu K_{\nu}+\frac{1}{\omega^c_{{}^3D_2}}K_{\mu}K_{\nu}\right]\epsilon^{\mu\nu}, \\ & \begin{split} \Gamma'_{{}^3D_3}=&\left[K_{\mu} K_{\nu}\left(\gamma_{\alpha}+\frac{2K_{\alpha}}{\omega_{{}^3D_3}}\right)+K_{\mu}K_{\alpha}\left(\gamma_{\nu}+\frac{2K_{\nu}}{\omega_{{}^3D_3}}\right)+K_{\alpha}K_{\nu}(\gamma_{\mu}\right.+ \left.\frac{2K_{\mu}}{\omega_{{}^3D_3}})\right]\epsilon^{\mu\nu\alpha}, \end{split} \end{split} $ |
$ \tag{B11} \begin{split} \omega_{{}^3D_1}=&\frac{\left(m_1+m_2\right)^2-M_0^2}{2M_0+m_1+m_2},\quad \omega^{a}_{{}^3D_2}=\frac{12M_0^2}{\left[M_0^2-(m_1+m_2)^2\right]\left[M_0^2-(m_1-m_2)^2\right]},\\ \omega^{b}_{{}^3D_2}=&-\frac{2M_0}{M_0^2-\left(m_1-m_2\right)^2},\quad \omega^{c}_{{}^3D_2}=-\frac{M_0}{m_2-m_1},\\ \omega_{{}^3D_3}=&M_0+m_1+m_2. \end{split} $ |
3
Appendix C: Tensor decomposition
The second-order tensor decomposition of $ \hat{p}^{\prime}_{1\mu}\hat{p}^{\prime}_{1\nu}\hat{p}^{\prime}_{1\alpha}\hat{p}^{\prime}_{1\beta}\hat{p}^{\prime}_{1\delta}\doteq \sum\limits_{i=1}^{12}L_{i\mu\nu\alpha\beta\delta}A_i^{(5)}+\sum\limits_{j=1}^{6}M_{j\mu\nu\alpha\beta\delta}B_{j}^{(5)}+\sum\limits_{k=1}^{3}N_{k\mu\nu\alpha\beta\delta}C_{k}^{(5)}+O\left(\tilde{\omega}^{2}\right) $ |
$ \begin{aligned} L_{1\mu\nu\alpha\beta\delta}=&\left(ggP\right)_{\mu\nu\alpha\beta\delta}=g_{\mu\nu}\left(gP\right)_{\alpha\beta\delta}+g_{\mu\alpha}\left(gP\right)_{\nu\beta\delta}+g_{\mu\beta}\left(gP\right)_{\nu\alpha\delta} +g_{\mu\delta}\left(gP\right)_{\nu\alpha\beta}+\left(g_{\nu\alpha}g_{\beta\delta}+g_{\nu\beta}g_{\alpha\delta}+g_{\nu\delta}g_{\alpha\beta}\right)P_{\mu}, \\ L_{2\mu\nu\alpha\beta\delta}=&\left(ggq\right)_{\mu\nu\alpha\beta\delta}=g_{\mu\nu}\left(gq\right)_{\alpha\beta\delta}+g_{\mu\alpha}\left(gq\right)_{\nu\beta\delta}+g_{\mu\beta}\left(gq\right)_{\nu\alpha\delta} +g_{\mu\delta}\left(gq\right)_{\nu\alpha\beta}+\left(g_{\nu\alpha}g_{\beta\delta}+g_{\nu\beta}g_{\alpha\delta}+g_{\nu\delta}g_{\alpha\beta}\right)q_{\mu}, \\ L_{3\mu\nu\alpha\beta\delta}=&\left(gPPP\right)_{\mu\nu\alpha\beta\delta}=g_{\mu\nu}P_{\alpha}P_{\beta}P_{\delta}+permutations, \\ L_{4\mu\nu\alpha\beta\delta}=&\left(gPPq\right)_{\mu\nu\alpha\beta\delta}=g_{\mu\nu}\left(PPq\right)_{\alpha\beta\delta}+permutations, \\ L_{5\mu\nu\alpha\beta\delta}=&\left(gPqq\right)_{\mu\nu\alpha\beta\delta}=g_{\mu\nu}\left(Pqq\right)_{\alpha\beta\delta}+permutations, \\ L_{6\mu\nu\alpha\beta\delta}=&\left(gqqq\right)_{\mu\nu\alpha\beta\delta}=g_{\mu\nu}q_{\alpha}q_{\beta}q_{\delta}+permutations, \\ L_{7\mu\nu\alpha\beta\delta}=&\left(PPPPP\right)_{\mu\nu\alpha\beta\delta}=P_{\mu}P_{\nu}P_{\alpha}P_{\beta}P_{\delta}, \\ L_{8\mu\nu\alpha\beta\delta}=&\left(PPPPq\right)_{\mu\nu\alpha\beta\delta}=P_{\mu}P_{\nu}P_{\alpha}P_{\beta}q_{\delta}+P_{\mu}P_{\nu}P_{\alpha}q_{\beta}P_{\delta}+P_{\mu}P_{\nu}q_{\alpha}P_{\beta}P_{\delta}+ P_{\mu}q_{\nu}P_{\alpha}P_{\beta}P_{\delta}+q_{\mu}P_{\nu}P_{\alpha}P_{\beta}P_{\delta}, \\ L_{9\mu\nu\alpha\beta\delta}=&\left(PPPqq\right)_{\mu\nu\alpha\beta\delta}=\left(PPP\right)_{\mu\nu\alpha}\left(qq\right)_{\beta\delta}+permutations, \\ L_{10\mu\nu\alpha\beta\delta}=&\left(PPqqq\right)_{\mu\nu\alpha\beta\delta}=\left(PP\right)_{\mu\nu}\left(qqq\right)_{\alpha\beta\delta}+permutations, \\ \end{aligned} $ |
$ \begin{aligned} L_{11\mu\nu\alpha\beta\delta}=&\left(Pqqqq\right)_{\mu\nu\alpha\beta\delta}=P_{\mu}q_{\nu}q_{\alpha}q_{\beta}q_{\delta}+q_{\mu}P_{\nu}q_{\alpha}q_{\beta}q_{\delta}+q_{\mu}q_{\nu}P_{\alpha}q_{\beta}q_{\delta}+ q_{\mu}q_{\nu}q_{\alpha}P_{\beta}q_{\delta}+q_{\mu}q_{\nu}q_{\alpha}q_{\beta}P_{\delta}, \\ L_{12\mu\nu\alpha\beta\delta}=&\left(qqqqq\right)_{\mu\nu\alpha\beta\delta}=q_{\mu}q_{\nu}q_{\alpha}q_{\beta}q_{\delta}, \\M_{1\mu\nu\alpha\beta\delta}=&\left(gPP\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[g_{\mu\nu}\left(PP\tilde{\omega}\right)_{\alpha\beta\delta}+permutations\right], \\ M_{2\mu\nu\alpha\beta\delta}=&\left(gPq\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[g_{\mu\nu}\left(Pq\tilde{\omega}\right)_{\alpha\beta\delta}+permutations\right], \\ M_{3\mu\nu\alpha\beta\delta}=&\left(PPPP\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[P_{\mu}P_{\nu}P_{\alpha}P_{\beta}\tilde{\omega}_{\delta}+P_{\mu}P_{\nu}P_{\alpha}\tilde{\omega}_{\beta}P_{\delta}+P_{\mu}P_{\nu}\tilde{\omega}_{\alpha}P_{\beta}P_{\delta}+P_{\mu}\tilde{\omega}_{\nu}P_{\alpha}P_{\beta}P_{\delta}+\tilde{\omega}_{\mu}P_{\nu}P_{\alpha}P_{\beta}P_{\delta}\right],\\ M_{4\mu\nu\alpha\beta\delta}=&\left(PPPq\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[\left(PPP\right)_{\mu\nu\alpha}\left(q\tilde{\omega}\right)_{\beta\delta}+permutations\right], \\ M_{5\mu\nu\alpha\beta\delta}=&\left(PPqq\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[\left(PP\right)_{\mu\nu}(qq)_{\alpha\beta}\tilde{\omega}_{\delta}+permutations\right], \\ M_{6\mu\nu\alpha\beta\delta}=&\left(Pqqq\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[\left(qqq\right)_{\mu\nu\alpha}\left(P\tilde{\omega}\right)_{\beta\delta}+permutations\right]. \\ N_{1\mu\nu\alpha\beta\delta}=&\left(gg\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[g_{\mu\nu}\left(g\tilde{\omega}\right)_{\alpha\beta\delta}+g_{\mu\alpha}\left(g\tilde{\omega}\right)_{\nu\beta\delta}+g_{\mu\beta}\left(g\tilde{\omega}\right)_{\nu\alpha\delta} +g_{\mu\delta}\left(g\tilde{\omega}\right)_{\nu\alpha\beta}+\left(g_{\nu\alpha}g_{\beta\delta}+g_{\nu\beta}g_{\alpha\delta}+g_{\nu\delta}g_{\alpha\beta}\right)\tilde{\omega}_{\mu}\right], \\ N_{2\mu\nu\alpha\beta\delta}=&\left(gqq\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[g_{\mu\nu}(qq\tilde{\omega})_{\alpha\beta\delta}+permutations\right], \\ N_{3\mu\nu\alpha\beta\delta}=&\left(qqqq\tilde{\omega}\right)_{\mu\nu\alpha\beta\delta}=\frac{1}{\tilde{\omega} P}\left[q_{\mu}q_{\nu}q_{\alpha}q_{\beta}\tilde{\omega}_{\delta}+ q_{\mu}q_{\nu}q_{\alpha}\tilde{\omega}_{\beta}q_{\delta}+q_{\mu}q_{\nu}\tilde{\omega}_{\alpha}q_{\beta}q_{\delta}+q_{\mu}\tilde{\omega}_{\nu}q_{\alpha}q_{\beta}q_{\alpha}+ \tilde{\omega}_{\mu}q_{\nu}q_{\alpha}q_{\beta}q_{\delta}\right].\\ \end{aligned} $ |
$ \begin{aligned} A_1^{(5)}&= A_1^{(1)}A_{1}^{(4)}, \quad A_2^{(5)}=A_{2}^{(1)}A_1^{(4)}, \quad A_3^{(5)}=A_{1}^{(1)}A_2^{(4)}, \quad A_4^{(5)}= A_1^{(1)}A_3^{(4)}, \quad A_5^{(5)}=A_1^{(1)}A_4^{(4)}, \quad A_6^{(5)}= A_{2}^{(1)}A_4^{(4)}-\frac{2A_2^{(1)}A_1^{(4)}}{q^2}, \\ A_7^{(5)}&= A_1^{(1)}A_{5}^{(4)}, \quad A_8^{(5)}=A_{1}^{(1)}A_{6}^{4}, \quad A_{9}^{(5)}=A_{1}^{(1)}A_{7}^{(4)}, A_{10}^{(5)}= A_1^{(1)}A_{8}^{(4)}, \quad A_{11}^{(5)}=A_{1}^{(1)}A_{9}^{(4)}, \quad A_{12}^{(5)}=A_{2}^{(1)}A_{9}^{(4)} -\frac{4A_{2}^{(1)}A_{4}^{(4)}}{q^2}+\frac{8A_2^{(1)}A_{1}^{(4)}}{\left(q^2\right)^2}, \\ \\ B_1^{(5)}&= A_1^{(1)}B_1^{(4)}-A_{1}^{(1)}A_{1}^{(4)}, \quad B_2^{(5)}=A_1^{(1)}C_1^{(4)}-A_{2}^{(1)}A_{1}^{(4)}, \quad B_3^{(5)}=A_1^{(1)}B_2^{(4)}-A_1^{(1)}A_2^{(4)}, \\ B_4^{(5)}&= A_1^{(1)}B_3^{(4)}-A_{1}^{(1)}A_{3}^{(4)}, \quad B_5^{(5)}=A_1^{(1)}B_4^{(4)}-A_1^{(1)}A_4^{(4)}, \quad B_6^{(5)}= A_1^{(1)}C_2^{(4)}-A_2^{(1)} A_4^{(4)}+\frac{2A_2^{(1)}A_1^{(4)}}{q^2}, \\ C_1^{(5)}&= A_1^{(4)}C_1^{(1)}, \quad C_2^{(5)}=C_1^{(1)}A_4^{(4)}+\frac{2\left(P\cdot q\right)A_2^{(1)}A_1^{(4)}}{q^2}, \\ C_3^{(5)}&= C_1^{(1)}A_9^{(4)}+\frac{4A_2^{(1)}A_4^{(4)}}{q^2}\left(P\cdot q\right)-\frac{8A_2^{(1)}A_1^{(4)}}{\left(q^2\right)^2}(P\cdot q). \end{aligned} $ |
3
Appendix D: Helicity amplitudes and decay widths
In this appendix, we give the explicit forms of helicity form factors for semileptonic decays. The decay widths can be easily obtained from the helicity form factors.We study the production of D-wave charmed/charmed-strange mesons and their partners via the semileptonic decay of
$ \tag{D1} H_{\text{eff}}=\frac{G_F}{\sqrt{2}}V_{cb}\left[\bar{c}\gamma_{\mu}(1-\gamma_5)b\right] \left[\bar{\ell}\gamma^{\mu}(1-\gamma_5)\nu\right], $ |
The explicit expression for the of decay width of the
$ \tag{D2} H^{\pm}_{\pm}(q^2)=if_{D}(q^2)\mp i g_D(q^2)\sqrt{\lambda(m^2_{B_{(s)}}, m^2_{D^*_{(s)1}}, q^2)}, $ |
$ \tag{D3} \begin{split} H_{0}^{0}(q^2)=&-\frac{i}{\sqrt{q^2}}\left\{\frac{m^2_{B_{(s)}}-m^2_{D^*_{(s)1}}-q^2}{2m_{D^*_{(s)1}}} f_D(q^2)\right.\\&+\left.\frac{\lambda(m^2_{B_{(s)}}, m^2_{D^*_{(s)1}, q^2}, q^2)}{2m_{D^*_{(s)1}}}a_{D+}(q^2)\right\}, \end{split} $ |
$ \tag{D4} \begin{split} H_{s}^0(q^2)=&-\frac{i}{\sqrt{q^2}}\sqrt{\lambda(m^2_{B_{(s)}}, m^2_{D^*_{(s)1}, q^2}, q^2)}\frac{1}{2m_{D^*_{(s)1}}} \left(f_{D}(q^2)\right.\\&+\left.\left(m^2_{B_{(s)}}-m^2_{D^*_{(s)1}}\right)a_{D+}(q^2)+q^2a_{D-}(q^2)\right). \end{split}$ |
$ \tag{D5} \begin{split} \frac{{\rm d}\Gamma(\bar{B}_{(s)}\rightarrow D^*_{(s)1}l\bar{\nu})}{{\rm d}q^2}&=\frac{{\rm d}\Gamma_L(\bar{B}_{(s)}\rightarrow D^*_{(s)1}l\bar{\nu})}{{\rm d}q^2}+\frac{{\rm d}\Gamma^+(\bar{B}_{(s)}\rightarrow D^*_{(s)1}l\bar{\nu}))}{{\rm d}q^2}+\frac{\Gamma^-(\bar{B}_{(s)}\rightarrow D^*_{(s)1}l\bar{\nu}))}{{\rm d}q^2}\\ &=\left(\frac{q^2-m_l^2}{q^2}\right)^2\frac{\sqrt{\lambda(m^2_{B_{(s)}}, m^2_{D^*_{(s)1}}, q^2)}G^2_F V^2_{cb}}{384m^3_{B_{(s)}}\pi^3}\left\{3m^2_l\left|H_{s}^0\right|^2+(m_l^2+2q^2)\left(\left|H_{0}^{0}\right|^2+\left|H^+_{+}\right|^2+\left|H^-_{-}\right|^2\right)\right\}. \end{split}$ |
$ \tag{D6} \frac{{\rm d}\Gamma_{L}\left(\bar B_{(s)}\rightarrow{}D^{(\prime)}_{(s)2}l\bar{\nu}\right)}{{\rm d}q^2}=\frac{2}{3} \frac{\lambda\left(m^2_{B_{(s)}}, m^2_{D^{(\prime)}_{(s)2}}, q^2\right)}{4m^2_{D^{(\prime)}_2}}\frac{{\rm d}\Gamma_L\left(\bar B_{(s)}\rightarrow D^{*}_{(s)1} l\bar{\nu}\right)}{{\rm d}q^2}\Bigg|_{g_D, f_D, a_{D+}, a_{D-}\rightarrow n_{\frac{5}{2}\left(\frac{3}{2}\right)}, m_{\frac{5}{2}\left(\frac{3}{2}\right)}, z_{\frac{5}{2}+\left(\frac{3}{2}+\right)}, z_{\frac{5}{2}-\left(\frac{3}{2}-\right)}}, $ |
$ \tag{D7} \frac{{\rm d}\Gamma^{\pm}\left(\bar B_{(s)}\rightarrow D^{(\prime)}_{(s)2} l\bar{\nu}\right)}{{\rm d}q^2}=\frac{1}{2}\frac{\lambda\left(m^2_{B_{(s)}}, m^2_{D^{(\prime)}_{(s)2}}, q^2\right)}{4m^2_{D^{(\prime)}_{(s)2}}} \frac{{\rm d}\Gamma^{\pm}\left(\bar B_{(s)}\rightarrow D^{*}_{(s)1} l\bar{\nu}\right)}{{\rm d}q^2}\Bigg|_{g_D, f_D, a_{D+}, a_{D-}\rightarrow n_{\frac{5}{2}\left(\frac{3}{2}\right)}, m_{\frac{5}{2}\left(\frac{3}{2}\right)}, z_{\frac{5}{2}+\left(\frac{3}{2}+\right)}, z_{\frac{5}{2}-\left(\frac{3}{2}-\right)}}. $ |
$ \tag{D8} \begin{split} F_{\frac{3}{2}}(q^2)=&-\sqrt{\frac{2}{5}}F(q^2)+\sqrt{\frac{3}{5}}F^{\prime}(q^2), \\ F_{\frac{5}{2}}(q^2)=&\sqrt{\frac{3}{5}}F(q^2)+\sqrt{\frac{2}{5}}F^{\prime}(q^2). \end{split} $ |
In a similar way, we can obtain the decay width for the production of
$ \tag{D9} \frac{{\rm d}\Gamma_{L}(B_{(s)}\rightarrow D^{*}_{(s)3}l\bar{\nu})}{{\rm d}q^2}=\frac{1}{15}\frac{\lambda^2\left(m^2_{B_{(s)}}, m^2_{D^{*}_{(s)3}}, q^2\right)}{4m^4_{D^{*}_{(s)3}}} \frac{{\rm d}\Gamma_{L}\left(B_{(s)}\rightarrow D^{*}_{(s)1} l\bar{\nu}\right)}{{\rm d}q^2}\Bigg|_{g_D, f_D, a_{D+}, a_{D-}\rightarrow y, w, o_+, o_-}, $ |
$ \tag{D10} \frac{{\rm d}\Gamma^{\pm}(B_{(s)}\rightarrow D^{*}_{(s)3} l\bar{\nu})}{{\rm d}q^2}=\frac{1}{10}\frac{\lambda^2\left(m^2_{B_{(s)}}, m^2_{D^{*}_{(s)3}}, q^2\right)}{4m^4_{D^{*}_{(s)3}}} \frac{{\rm d}\Gamma^{\pm}\left(B_{(s)}\rightarrow D^{*}_{(s)1} l\bar{\nu}\right)}{{\rm d}q^2}\Bigg|_{g_D, f_D, a_{D+}, a_{D-}\rightarrow y, w, o_+, o_-}. $ |
When considering the polarization vector of a massive vector boson, the four-momentum in any other inertial system can be obtained by a Lorentz transformation. Hence, it is sufficient to consider the four-momentum in the rest frame,
$ \tag{E1} p^{\mu}=\left(M, 0, 0, 0\right). $ |
$ \tag{E2} \begin{split} \epsilon^{\mu}\left(\lambda=+1\right)=&\left(0, -\frac{1}{\sqrt{2}}, -\frac{i}{\sqrt{2}}, 0\right), \\ \epsilon^{\mu}(\lambda=0)=&\left(0, 0, 0, 1\right), \\ \epsilon^{\mu}(\lambda=-1)=&\left(0, \frac{1}{\sqrt{2}}, -\frac{i}{\sqrt{2}}, 0\right), \end{split} $ |
In the following, for convenience of the readers, we present the tensor algebra in the rectangular coordinate system. One can also do this in the light-front frame by adjusting the corresponding metric tensor, as the tensor algebra will lead to identical results. The normalization of polarization vectors is given by
$ \tag{E3} \epsilon^{*\mu}\left(\lambda\right)\epsilon_{\mu}\left(\lambda'\right)= -\delta_{\lambda\lambda'}. $ |
$ \tag{E4} \sum\limits_{\lambda}\epsilon^{*\mu}\left(\lambda\right)\epsilon^{\nu}\left(\lambda\right)=-g^{\mu\nu}+\frac{P^{\mu}P^{\nu}}{M_0^2}=-G^{\mu\nu}, $ |
$ \tag{E5} \sum\limits_{m}\epsilon^{*}_{\alpha\beta}(m)\epsilon_{\alpha'\beta'}(m)=\frac{1}{2}(G_{\alpha\alpha'}G_{\beta\beta'}+G_{\alpha\beta'}G_{\alpha'\beta})-\frac{1}{3} G_{\alpha\beta}G_{\alpha'\beta'}. $ |
$ \tag{E6} \begin{split} \rm{Transversility}&:p^{\mu_{i}}\epsilon_{\mu_1...\mu_i...\mu_n}\left(\lambda\right)=0, \\ \text{Symmetric}&:\epsilon_{\mu_1...\mu_i...\mu_j...\mu_n}(\lambda)=\epsilon_{\mu_1...\mu_j...\mu_i...\mu_n}(\lambda), \\ \text{Traceless}&: g^{\mu_i\mu_j}\epsilon_{\mu_1...\mu_i...\mu_j...\mu_n}(\lambda)=0, \\ \text{Normalization}&: \epsilon^*_{\mu_1...\mu_{n}}(\lambda)\epsilon^{\mu_1...\mu_{n}}(\lambda')=(-1)^{n}\delta_{\lambda\lambda'}, \\ \text{Conjugation}&:\epsilon^*_{\mu_1...\mu_n}(\lambda)=(-1)^{\lambda}\epsilon^{\mu_1...\mu_n}(-\lambda). \end{split} $ |
$ \tag{E7} \begin{split} &\epsilon_{\alpha\beta}\left(L_z\right)\epsilon_{\rho}\left(S_z\right)\left\langle 21;L_zS_z|1J_z\right\rangle =AG_{\alpha\beta}\epsilon_{\rho}\left(J_z\right)+BG_{\alpha\rho}\epsilon_{\beta}\left(J_{z}\right)\\&\quad+CG_{\beta\rho}\epsilon_{\alpha}\left(J_z\right)+Dp_{\alpha}p_{\beta}\epsilon_{\rho}\left(J_z\right)+Ep_{\alpha}p_{\rho}\epsilon_{\beta}\left(J_z\right)+Fp_{\beta}p_{\rho}\epsilon_{\alpha}\left(J_z\right). \end{split}$ |
$ \tag{E8} \epsilon_{\alpha\beta}\left(L_z\right)\epsilon_{\rho}\left(S_z\right)\left\langle 21;L_zS_z|1J_z\right\rangle=AG_{\alpha\beta}\epsilon_{\rho}\left(J_z\right)+BG_{\alpha\rho}\epsilon_{\beta}\left(J_z\right)+BG_{\beta\rho}\epsilon_{\alpha}\left(J_z\right). $ |
$ \tag{E9} \left\langle 21;L_zS_z|1J_z\right\rangle=3A\epsilon^{*\alpha\beta}\left(L_z\right)\epsilon_{\alpha}^{*}\left(S_z\right)\epsilon_{\beta}\left(J_z\right). $ |
$ \tag{E10} \left\langle 2 1;L_z S_z|1 J_z\right\rangle=-\sqrt{\frac{3}{5}}\epsilon^{*\mu\nu}\left(L_z\right)\epsilon_{*\mu}\left(S_z\right)\epsilon_{\nu}\left(J_z\right). $ |
When calculating the semileptonic decay width, we use the second-order and third-order tensors. The polarization tensor of a higher spin state with angular momentum j and helicity
$ \tag{E11} \epsilon_{\mu_1...\mu_n}(\lambda)=\sum\limits_{\lambda_{n-1}, \lambda_n}\langle n-1, \lambda_{n-1};n, \lambda_n\rangle\epsilon_{\mu_1\mu_2...\mu_{n-1}}(\lambda_{n-1}) \epsilon_{\mu_n}(\lambda_n), $ |
$ \tag{E12} \begin{split} \epsilon^{\mu\nu}(\pm 2)=&\epsilon^{\mu}(\pm1)\epsilon^{\nu}(\pm1), \\ \epsilon^{\mu\nu}(\pm 1)=&\sqrt{\frac{1}{2}}\left[\epsilon^{\mu}(\pm)\epsilon^{\nu}(0) +\epsilon^{\mu}(0)\epsilon^{\nu}(\pm1)\right], \\ \epsilon^{\mu\nu}(0)=&\sqrt{\frac{1}{6}}\left[\epsilon^{\mu}(+1)\epsilon^{\nu}(-1) +\epsilon^{\mu}(-1)\epsilon^{\nu}(+1)\right] +\sqrt{\frac{2}{3}}\epsilon^{\mu}(0)\epsilon^{\nu}(0), \end{split} $ |
$ \tag{E13} \begin{split} \epsilon^{\alpha\beta\gamma}(\pm3)=&\epsilon^{\alpha\beta}(\pm2)\epsilon^{\gamma}(\pm1), \\ \epsilon^{\alpha\beta\gamma}(\pm2)=&\frac{1}{\sqrt{3}} \epsilon^{\alpha\beta}(\pm2)\epsilon^{\gamma}(0)+\sqrt{\frac{2}{3}}\epsilon^{\alpha\beta}(\pm1) \epsilon^{\gamma}(\pm1), \\ \epsilon^{\alpha\beta\gamma}(\pm1)=&\frac{1}{\sqrt{15}}\epsilon^{\alpha\beta}(\pm2) \epsilon^{\gamma}(\mp1)+2\sqrt{\frac{2}{15}}\epsilon^{\alpha\beta}(\pm1)\epsilon^{\nu}(0)+ \sqrt{\frac{2}{5}}\epsilon^{\alpha\beta}(0)\epsilon^{\gamma}(\pm1), \\ \epsilon^{\alpha\beta\gamma}(0)=&\frac{1}{\sqrt{5}}\epsilon^{\alpha\beta}(+1)\epsilon^{\gamma}(-1) +\sqrt{\frac{3}{5}}\epsilon^{\alpha\beta}(0)\epsilon^{\gamma}(0)+ \frac{1}{\sqrt{5}}\epsilon^{\alpha\beta}(-1)\epsilon^{\gamma}(+1), \end{split} $ |
3
?
Appendix F: Proof of the Lorentz invariance of the matrix elements with a multipole ansatzIn this Appendix, we show explicitly that loop integrals of
$\tag{F1} I[M] \equiv \frac{i}{(2\pi)^4}\int {\rm d}^4p^\prime_1\frac{M}{N^\prime_\Lambda N_1^{\prime}N_2N_1^{\prime\prime}N^{\prime\prime}_\Lambda}, $ |
Starting from Jaus's result [49], the complete momentum integral of
$\tag{F2} \begin{split} I[N_2]=& \frac{i}{(2\pi)^4}\int {\rm d}^4p_1^{\prime}\frac{N_2}{N^{\prime}_\Lambda N_1^{\prime}N_2N_1^{\prime\prime}N_\Lambda^{\prime\prime}}\\ =& \frac{1}{16\pi^2(\Lambda^{\prime2}-m_1^{\prime2})(\Lambda^{\prime\prime2}- m_1^{\prime\prime2})}\int_0^1{\rm d}y \text{ln}\frac{C^0_{11}C^{0}_{\Lambda\Lambda}}{C^0_{1\Lambda}C^{0}_{\Lambda 1}}, \end{split} $ |
$ \begin{aligned} C_{11}^0&= C^0(m_1^\prime, m_1^{\prime\prime})=(1-y)m_1^{\prime2}+y m_1^{\prime\prime2}-y(1-y)q^2, \\ C^0_{\Lambda\Lambda}&= C^0(\Lambda^\prime, \Lambda^{\prime\prime}), C^0_{1\Lambda} =C^0(m_1^\prime, \Lambda^{\prime\prime}), C^0_{\Lambda 1}=C^0(\Lambda^\prime, m_1^{\prime\prime}). \end{aligned} $ |
$ \tag{F3} \begin{split} I[Z_2]=&\frac{i}{(2\pi)^4}\int {\rm d}^4p_1^{\prime}\frac{Z_2}{N^{\prime}_\Lambda N_1^{\prime}N_2N_1^{\prime\prime}N_\Lambda^{\prime\prime}}\\ =&\frac{1}{16\pi^2(\Lambda^{\prime2}-m_1^{\prime2})(\Lambda^{\prime\prime2}-m_1^{\prime\prime2})} \int_0^1{\rm d}u \text{ln}\frac{C^0_{11}C^0_{\Lambda\Lambda}}{C^0_{1\Lambda}C^0_{\Lambda 1}}.\\ \end{split} $ |
Furthermore, the integral of
$ \tag{F4} \begin{split} I[A_1^{(2)}]=&\frac{1}{32\pi^2(\Lambda^{\prime2}-m_1^{\prime2})(\Lambda^{\prime\prime2}-m_1^{\prime\prime2})}\\ &\times\int_0^1{\rm d}x\int_0^1{\rm d}y(1-x)\text{ln}\frac{C_{11}C_{\Lambda\Lambda}}{C_{1\Lambda}C_{\Lambda 1}}, \end{split} $ |
$ \tag{F5} \begin{split} C_{11}=&C(m_1^{\prime}, m_1^{\prime\prime})\\ =&(1-x)(1-y)m_1^{\prime2}+(1-x)y m_1^{\prime\prime2}+x m_2^{2}\\&-x(1-x)[(1-y)M^{\prime2}+y M^{\prime\prime2}]-(1-x)^2y(1-y)q^2, \\ C_{\Lambda\Lambda}=&C(\Lambda^{\prime}, \Lambda^{\prime\prime}), C_{1\Lambda}=C(m_1^{\prime}, \Lambda^{\prime\prime}), C_{\Lambda 1}=C(\Lambda^{\prime}, m_1^{\prime\prime}). \end{split} $ |
$ \tag{F6} I[A_3^{(3)}Z_2-3A_2^{(2)}A_1^{(2)}]=0. $ |
$ \tag{F7} \begin{split} I[A_{3}^{(3)}Z_2]=& \frac{3}{128\pi^2(\Lambda^{\prime2}-m_1^{\prime2})(\Lambda^{\prime\prime2}-m_1^{\prime\prime2})}\\ &\times\int_0^1{\rm d}x\int_0^{1}{\rm d}y(1-x)x^2\text{ln}\frac{C_{11}C_{\Lambda\Lambda}}{C_{1\Lambda}C_{\Lambda 1}}, \end{split} $ |
$ \tag{F8} \begin{split} I[3A_2^{(2)}A_1^{(2)}]=&\frac{3}{128\pi^2(\Lambda^{\prime2}-m_1^{\prime2})(\Lambda^{\prime\prime2}-m_1^{\prime\prime2})}\\ &\times\int_0^1{\rm d}x\int_0^{1}{\rm d}y(1-x)x^2\text{ln}\frac{C_{11}C_{\Lambda\Lambda}}{C_{1\Lambda}C_{\Lambda 1}}, \end{split} $ |
$ \tag{F9} I[B_2^{(4)}]=0. $ |