Spatio-temporal differentiation characteristics and influencing factors of green development in the eco-economic corridorof the Yellow River Basin
GUO Fuyou,1,2, TONG Lianjun,3, QIU Fangdao4, LI Yiming1通讯作者:
收稿日期:2020-03-12修回日期:2020-12-12网络出版日期:2021-03-25
基金资助: |
Received:2020-03-12Revised:2020-12-12Online:2021-03-25
Fund supported: |
作者简介 About authors
郭付友(1987-), 男, 山东菏泽人, 博士, 副教授, 硕士生导师, 中国地理学会会员(S110013493M), 研究方向为区域可持续发展。E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (2829KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
郭付友, 佟连军, 仇方道, 李一鸣. 黄河流域生态经济走廊绿色发展时空分异特征与影响因素识别. 地理学报[J], 2021, 76(3): 726-739 doi:10.11821/dlxb202103016
GUO Fuyou, TONG Lianjun, QIU Fangdao, LI Yiming.
1 引言
1978年以来中国GDP年均增长率长期稳定在10%左右而被誉为“世界奇迹”[1],但高速增长的背后依赖于资源环境要素的大规模投入,长时期以传统应急抢救型为主的高耗低效的黑色发展模式已经逼近资源环境承载力阈值,由此带来一系列严重的资源环境问题[2,3],倒逼区域发展模式的转变。随着中国区域发展战略进入纵深阶段以及城镇化进入成熟阶段,区域发展面临的资源环境约束瓶颈问题愈发凸显[4,5],如何实现区域发展与资源环境的相对脱钩,促进区域发展向低耗高效的高质量发展模式转变是亟待解决的迫切问题。绿色发展作为减压增效型的可持续发展模式,以社会经济发展与环境保护协调共生发展为方向,以资源节约型与环境友好型产业构建为表现形式,通过资源投入效率、清洁生产效率以及末端治理效率等全要素生产过程效率改进,最终实现绿色生态文明的高质量发展[6,7]。绿色发展作为高质量发展的“过程观”,目前对其研究主要集中于以下方面:① 概念诠释。绿色发展概念内涵丰富且广泛,学术界虽尚未有统一的定义,但其基本内涵一致,即绿色发展注重发展效率与创新驱动[8],强调发展过程中获得最大的环境效益、经济效益与社会效益[9],由此协调经济系统—环境系统—社会系统三维系统的最优发展,也是实现绿色发展的关键途径[10,11]。绿色发展基于区域资源禀赋,以节约资源与环境保护为发展原则[12,13],以绿色为发展核心,以低碳环保、健康循环、生态持续为发展主线[14],以区域发展与环境和谐共生的包容性增长为发展目标,通过政策制度引导、技术创新驱动、资源有效配置等途径,最终实现经济、社会以及环境系统的协调共进的新型发展模式[15]。高质量发展与绿色发展具有相互联系与相互促进的关系,高质量发展具有多维性特征,高质量发展本身包含创新、协调、开放、绿色、共享等发展理念。绿色发展则包含经济生态、协调发展与目标多元,绿色发展是高质量发展的过程体现,对于高质量发展与绿色转型相结合形成的高质量绿色发展的理论探讨与实证研究是未来研究的重点内容[16]。② 研究内容与方法选择。国外研究多运用GG-GE-SD关系模型[17]、malmquist指数[18]、coopetitive模型[19]、可持续评价模型[20]、数理统计方法[21]、LMDI模型[22]对于环境绩效、绿色产业、绿色经济等内容进行了评价分析。中国研究则多运用信息熵模型[23]、指标体系法[24]、PSR与地理探测器模型[4]、熵权TOPSIS模型[25,26]、投影寻踪模型[27]、GWR模型[28]、空间自相关分析[29]等研究方法,分析了不同区域尺度的绿色发展过程与格局特征。③ 影响因素与驱动机制。区域绿色发展水平的提升直接受制于内部因素与外部条件的相互作用与相互影响。从内生驱动要素分析,技术创新通过提高要素利用程度与转变区域发展模式驱动绿色发展水平与效率的提升[30,31],同时区域自身资源禀赋又决定了区域绿色发展水平的提升程度;从外部驱动条件分析,经济发展水平改善、产业结构调整带来的资金支持和产业支撑以及市场竞争产生的先进技术,共同促进绿色发展水平提升[32]。诸多****从产业结构[33,34]、所有制水平[35]、科学技术[36,37]、环境规制[25]、外商直接投资[38]、城镇化[29]、资源开发程度[39]、市场化水平[40]等方面实证研究了各因素的作用强度,同时针对全国、省域、市域等不同区域尺度提出了具体的绿色发展实现路径。
纵观国内外对于绿色发展的研究,虽然取得了一系列丰硕成果,但仍然存在一些亟待深入思考的问题。① 绿色发展的理解相对碎片化与局限性,部分****将绿色发展单一的理解为经济系统、环境系统或者社会系统的绿色发展,缺乏对于绿色发展整体框架的认知,隔离了系统之间的有机联系,难以科学评估绿色发展的实际水平。② 绿色发展指标体系缺乏科学合理性与针对性,由于对于绿色发展内涵理解不清晰,或者不考虑区域特殊性的片面引用与借鉴,导致构建的绿色发展指标体系难以反映区域发展实际。③ 需要重视地理学视角下绿色发展的空间分异与驱动因素研究,现有研究多基于生态学、经济学或者管理学视角研究区域绿色发展的差异性,忽视了地理学视角下对于绿色发展“过程—格局—机理”的研究。④ 相对忽视了特殊类型区域—流域绿色发展的研究,流域具有显著的时空异质性、要素禀赋的空间耦合性、内在联系与体制机制的空间制约性等特点,使得流域绿色发展空间依存结构性问题的研究应该引起足够的重视。
黄河流域作为中国北方社会经济发展的基础和命脉,已经明显形成了上游落后、中游崛起、下游发达的阶梯状发展格局。同时黄河流域作为国家重要的生态安全屏障、农牧业生产基地以及能源基地,流域发展面临的生态环境制约因素较为明显[41],且长时期粗放式发展模式也导致流域环境问题日益凸显,黄河流域面临着绿色发展转型与区域发展差异缩小的现实问题。黄河流域生态经济走廊作为中国经济—社会—环境系统快速嬗变的典型区域,随着黄河流域生态保护与高质量发展上升为国家战略,为黄河流域乃至北方地区的绿色转型发展提供了重要的战略机遇。基于此,本文以黄河流域为案例区域,整合流域、区域与城市等多尺度范围,以黄河流域61个地级市为研究对象,科学阐释绿色发展的概念内涵,并据此系统构建绿色发展评价指标体系,采用多时空尺度分析方法对黄河流域绿色发展的时空演化与分异特征进行综合研究,并从人地相互作用关系视角系统探究了黄河流域绿色发展时空格局演变的作用机制。论文尝试揭示黄河流域绿色发展时空演化分异的规律性特征,并尝试构建人地关系作用视角下黄河流域绿色发展驱动因素模型,为黄河流域绿色转型发展提供借鉴。
2 内涵诠释与指标体系构建
绿色发展不是简单指社会经济和物质财富的规模扩张和总量增长,而是指区域增长方式、发展动力以及资源配置方式的全方面转变。绿色发展具有系统性和多维度性,更加注重要素供给质量与发展效益,经济结构优化与效率提升,最终实现社会经济可持续发展、生态环境更加绿色发展以及城乡更加充分均衡发展[5]。绿色发展包含以下方面的含义:① 经济绿色化是绿色发展的核心与前提,通过微观层面技术革新、中观层面产业生态化发展以及经济增长与资源环境完全脱钩、宏观层面区域提质增效发展方式转变等途径促进绿色转型发展;② 社会协调发展是绿色发展的重要支撑与内在要求,通过城乡统筹融合发展、基本公共服务均等化、城乡发展机会的均等化等途径提高区域协调发展程度;③ 环境绿色化是绿色发展的载体和表征,通过生态环境禀赋、污染物排放压力和治理水平、资源利用效率等途径促进绿色发展方式转变;④ 政府调控是绿色发展的导向和保障,通过技术改革与创新、产业培育与优化、市场化进程等途径促进绿色发展水平提升。另外需要注意,绿色发展水平的提升不代表绿色发展质量的提高,相对于绿色水平提升而言,绿色发展质量更加注重于效益的提升。由此可见,研究绿色发展问题不仅需要关注绿色发展规模与水平,更需要关注绿色发展质量与效益。经济绿化度是绿色发展的核心体现,是绿色发展现实“状态”反映。环境绿化度是绿色发展的承载基础,是绿色发展“压力”体现。社会绿化度是绿色发展的内在支撑,是绿色发展在社会层面“响应”过程。政府支持度是绿色发展的重要导向,是政府对于绿色发展积极“响应”。绿色发展是经济绿化度、社会绿化度、环境绿化度与政府支持度相互作用相互影响的四维一体的结果。经济绿化度主要从总量与规模、结构与效益、消费水平与外部依赖性等方面综合考虑;社会绿化度主要评价社会公共服务设施与基础服务设施支撑情况、社会供水与供电的保障能力、社会整体富裕水平等方面;环境绿化度主要考量环境保育水平、污染排放情况以及资源利用效率;政府支持度主要从科学技术、产业结构以及市场化程度等方面综合考量,由此构建黄河流域绿色发展水平评价指标体系(表1)。其中多项指标均可以直接通过统计资料获取,部分指标需要经过简单计算,包括:① 产业高级化系数,用信息传输、计算机服务和软件业单位从业人员数与单位从业人员数比值表征。② 民营经济发展指数,用城镇私营和个体从业人员数占单位从业人员数比值表征。③ 市场组织结构指数,用工业总产值与工业企业总数的比值表征。
Tab. 1
表1
表1黄河流域绿色发展水平指标体系
Tab. 1
系统层 | 准则层 | 指标层 | 指标含义 | Wj(2005) | Wj(2011) | Wj(2017) |
---|---|---|---|---|---|---|
绿色发展水平(LS) | 经济绿化度(JL) | 人均GDP | 反映经济总体发展水平 | 0.0503 | 0.0553 | 0.0268 |
人均社会消费品零售总额 | 反映市场消费能力 | 0.0534 | 0.0460 | 0.0626 | ||
第二产业增加值/第三产业增加值 | 反映产业结构特征 | 0.0314 | 0.0255 | 0.0335 | ||
二三产业增加值总额 | 反映产业规模特征 | 0.0730 | 0.0662 | 0.0735 | ||
人均实际利用外资 | 反映经济外向依赖能力 | 0.1868 | 0.1547 | 0.1519 | ||
社会绿化度(SL) | 万人拥有公共汽车数 | 衡量公共服务设施情况 | 0.0358 | 0.0337 | 0.0715 | |
人均城市道路面积 | 反映社会基础设施情况 | 0.0256 | 0.0441 | 0.0681 | ||
人均供水总量 | 反映社会供水保障能力 | 0.0907 | 0.0986 | 0.0954 | ||
人均全年用电量 | 反映社会供电保障能力 | 0.1178 | 0.1217 | 0.0817 | ||
人均城乡居民储蓄存款余额 | 反映社会整体富裕水平 | 0.0329 | 0.0831 | 0.0247 | ||
环境绿化度(HL) | 人均绿地面积 | 反映生态环境保育水平 | 0.0365 | 0.0596 | 0.0816 | |
人均工业废水排放量 | 反映污染排放水平 | 0.0024 | 0.0086 | 0.0022 | ||
人均工业SO2排放量 | 反映污染排放水平 | 0.0058 | 0.0036 | 0.0011 | ||
万元GDP水耗 | 反映资源利用水平 | 0.0119 | 0.0015 | 0.0017 | ||
万元GDP电耗 | 反映资源利用水平 | 0.0007 | 0.0008 | 0.0066 | ||
政府支持度(GS) | 科学技术支出/一般公共预算支出 | 反映科学技术支持力度 | 0.0784 | 0.0311 | 0.0468 | |
产业高级化系数 | 反映产业优化改造力度 | 0.0621 | 0.0677 | 0.0406 | ||
民营经济发展指数 | 反映市场环境支持力度 | 0.0282 | 0.0314 | 0.0453 | ||
人均固定资产投资 | 反映政府投资强度 | 0.0454 | 0.0399 | 0.0505 | ||
市场组织结构指数 | 反映企业规模化程度 | 0.0311 | 0.0270 | 0.0339 |
新窗口打开|下载CSV
3 研究区域与数据方法
3.1 研究区域界定
以自然黄河流域为基础,考虑研究地域单元的完整性、区域发展与黄河直接关联性为原则[42],借鉴相关研究成果[43,44],将研究区域界定为黄河流经的青海、四川、甘肃、宁夏、内蒙古、陕西、山西、河南、山东9个省级行政区域,共计73个地级市(或州、盟)。限于数据获取原因,济源市、阿拉善盟、阿坝藏族羌族自治州、甘南藏族自治州、临夏回族自治州、海北藏族自治州、海南藏族自治州、海西蒙古族藏族自治州、黄南藏族自治州、果洛藏族自治州、玉树藏族自治州以及海东市缺失数据较多,最终确定61个地级市(图1)。2017年研究区域GDP和总人口分别约为7.14万亿元和2.38亿人,分别约占全国比重为8.64%和17.12%。研究区域产业门类较为完善,已经形成了以煤炭、电力、石油、天然气、原材料、现代装备制造及高技术产业为主导的产业体系,产业结构重型化特征尤为突出,内生动力不足。随着经济规模快速扩张与总量不断增长,区域发展面临的生态环境约束效应不断凸显,流域生态环境成为区域经济社会发展的重要约束,区域绿色发展转型愈加迫切。图1
新窗口打开|下载原图ZIP|生成PPT图1研究区域示意图
Fig. 1Sketch map showing the study area (Yellow River Basin)
3.2 研究方法
3.2.1 熵值法 熵主要来源于热力学中的一个概念,主要表征指标的离散程度,熵值越小表示指标离散程度越大,指标对于综合评价的影响(权重)越大,反之表示指标对于综合评价的影响(权重)越小。熵值法作为具有较高可信度和精确度的客观赋权方法,可以有效克服指标信息重叠,被广泛应用于社会经济领域的综合研究之中,其计算步骤详见参考文献[45]。3.2.2 空间自相关分析方法 本文主要采用全局空间自相关和局部空间自相关分析方法对黄河流域绿色发展空间集聚情况进行识别,全局空间自相关一般采用Global Moran's I系数反映区域单元的集散效应。具体测算公式如下:
式中:n为研究区域空间单元个数;Xi和Xj代表区域i和区域j的观测值;
式中:G*i(d)为局部杰瑞指数;Wij为空间权重矩阵;Xi和Xj代表区域i和区域j的绿色发展水平。对于G*i(d)要进行Z检验,若Z显著为正说明绿色发展水平空间呈现高值集聚区域;若Z显著为负则为低值集聚区域,由此可将绿色发展水平分为高高集聚、高低集聚、低高集聚及低低集聚4类。
3.2.3 地理探测器模型 地理探测器可以有效探测地理现象空间分异性及其驱动因素,被广泛运用于生态环境变化以及社会经济发展等方面研究[48],并且研究尺度涉及宏观国家尺度以及微观街道尺度,具体探测模型如下[49]:
式中:PDG为探测因子D的探测值;σ2G为指标的方差;n为研究区单元数;nD,i和σ2D,i分别为i(i = 1, 2, …, m)的层样本量和方差。PDG ∈[0, 1],PDG值越大表示探测因子对于黄河流域绿色发展水平的解释程度越大,空间异质性越强,反之,则空间异质性越弱。
3.3 数据来源
研究数据主要来源于2个部分:① 自然环境数据。从水、气、生3个自然本底要素验证自然环境要素对于黄河流域绿色发展时空分异特征的驱动作用,分别选取年降水量、年均气温和植被覆盖度进行表征。其中年降水量、年均气温数据均来源于中国气象数据网(http://data.cma.cn/site),原始数据为黄河流域气象站点的逐月数据,剔除异常站点数据后计算剩余站点数据全年平均值,并通过Kriging插值法获取黄河流域61个地级市年降水量和年均气温的栅格数据。MODIS NDVI数据来源于中国科学院计算机网络信息中心国际科学数据[50]。② 社会经济数据。社会经济类数据主要来源于《中国城市统计年鉴》,缺失数据主要查找各省统计年鉴、各市统计年鉴以及各市国民经济和社会发展统计公报。4 黄河流域绿色发展时空分异特征
4.1 黄河流域绿色发展水平时序演变特征
利用熵值法计算绿色发展子系统水平(图2),进而计算绿色发展水平,且利用标准差分级法[4, 25]将绿色发展水平进行分级,分别命名为低水平区域、中水平区域、较高水平区域以及高水平区域。图2
新窗口打开|下载原图ZIP|生成PPT图2黄河流域绿色发展水平
Fig. 2The level of green development in the Yellow River Basin
地级市层面分析,2005年低水平区域、中水平区域、较高水平区域以及高水平区域分别为6个、36个、8个、11个,2011年4种类型区域分别为3个、39个、9个、10个,2017年则演化为4个、36个、10个、11个,2005—2017年,低水平区域不断减少,较高水平区域稍有增加,随着三江源国家生态保护综合试验区、全国循环经济示范省、内陆开放型经济试验区、国家大数据综合试验区、国家资源型经济转型综合配套改革试验区、国家自由贸易试验区、新旧动能转换综合试验区等不断建设,黄河流域绿色发展水平不断趋好。但总体上,流域低水平与中低水平区域数量占比稳定在65%以上,说明黄河流域众多地级市仍然处于粗放外延式发展阶段,黄河流域绿色发展质量提升之路漫长而艰巨。
流域尺度分析(表2),黄河上游地区绿色发展水平由2005年0.2015升至2017年0.2284,年均增长率为1.05%,经济绿化度、社会绿化度、环境绿化度、政府支持度年均增长率分别为-1.43%、3.28%、2.27%和 -1.33%;黄河中游地区绿色发展水平由2005年0.1450升至2011年0.1493,后降至2017年0.1463,整体上年均增长率为0.70%,经济绿化度、社会绿化度、环境绿化度、政府支持度年均增长率分别为1.46%、1.14%、-2.73%、 -1.11%;黄河下游地区绿色发展水平由2005年0.2209升至2011年0.2226,后降至2017年0.2173,整体上年均递减率为0.14%,经济绿化度、社会绿化度、环境绿化度、政府支持度年均增长率分别为-0.70%、1.15%、-1.89%、0.27%。总体上,经过十几年的发展黄河流域绿色发展水平及各子系统水平虽有一定程度增长(部分稍有降低),但变动幅度较小,反映了黄河流域绿色发展具有相对稳定固化的特征。
Tab. 2
表2
表2黄河流域绿色发展水平测度结果
Tab. 2
年份 | 流域 | 经济绿化度 | 社会绿化度 | 环境绿化度 | 政府支持度 | 绿色发展水平 |
---|---|---|---|---|---|---|
2005 | 上游地区 | 0.0541 | 0.0712 | 0.0262 | 0.0513 | 0.2015 |
中游地区 | 0.0400 | 0.0400 | 0.0258 | 0.0392 | 0.1450 | |
下游地区 | 0.0866 | 0.0579 | 0.0322 | 0.0442 | 0.2209 | |
2011 | 上游地区 | 0.0818 | 0.0575 | 0.0168 | 0.0468 | 0.2029 |
中游地区 | 0.0488 | 0.0402 | 0.0155 | 0.0448 | 0.1493 | |
下游地区 | 0.0624 | 0.0872 | 0.0193 | 0.0537 | 0.2226 | |
2017 | 上游地区 | 0.0455 | 0.1049 | 0.0343 | 0.0437 | 0.2284 |
中游地区 | 0.0476 | 0.0459 | 0.0185 | 0.0343 | 0.1463 | |
下游地区 | 0.0795 | 0.0664 | 0.0256 | 0.0457 | 0.2173 |
新窗口打开|下载CSV
从流域绿色发展驱动模式分析,黄河上游地区除2011年属于经济驱动型绿色发展模式,2005年和2017年均属于社会导向型绿色发展模式;黄河中游地区与黄河下游地区绿色发展驱动模式则较为稳定,研究期限内黄河中游地区均属于“经济+社会”驱动型发展模式,而黄河下游地区则表现为经济驱动型绿色发展模式。理想绿色发展之路应首要是经济发展的绿色化,其基点是产业生态化发展,在政府大力支持下,通过生态产业的空间集聚与循环经济模式的不断构建,随之改变了环境系统、社会系统的要素组成,理论上绿色发展应是经济绿化度>政府支持度>环境绿化度>社会绿化度[29, 51]。综上所述,黄河流域绿色发展模式较为粗放,未来需要增强绿色发展的科技化水平,引导产业生态化与高级化发展进程,同时不断推进国有企业改革进程与活跃市场经济发展氛围,提高绿色发展的经济效益与社会效益。
4.2 黄河流域绿色发展水平空间分异特征
利用Geoda软件,采用欧式空间距离(Euclidean Distance)作为评价权重,计算2005年、2011年、2017年Global Moran's I指数(图3)。由图3可知,2005年、2011年、2017年黄河流域绿色发展在0.01水平上显著,说明2005—2017年间黄河流域61地级市整体存在较为明显的空间依存关系。研究时限内Moran's I指数均大于0,说明黄河流域61个地级市绿色发展水平接近地区具有空间集聚现象,即绿色发展水平较高的城市与其他绿色发展水平较高城市相邻近,绿色发展水平较低的城市之间趋于临近。图3
新窗口打开|下载原图ZIP|生成PPT图32005—2017年黄河流域绿色发展水平的空间分布散点图
Fig. 3The spatial distribution scatter plot for the level of green development in the Yellow River Basin in 2005-2017
利用空间权重矩阵绘制横坐标为绿色发展水平空间单元标准化后的属性值,纵坐标为标准化后由空间连接矩阵决定的空间滞后值的Moran散点图。散点图的4个象限按其性质可分为HH(高高集聚)区域、LH(低高集聚)区域、LL(低低集聚)区域、HL(高低集聚)区域4种类型。利用Geoda软件对2005年、2011年、2017年黄河流域61个地级市绿色发展水平进行局部空间自相关检验(图3、表3)。
Tab. 3
表3
表32005—2017年黄河流域绿色发展水平的Moran's I散点图动态变化表
Tab. 3
年份 | 高高(HH) | 低高(LH) | 高低(HL) | 低低(LL) |
---|---|---|---|---|
2005 | 潍坊、石嘴山、莱芜、德州、鄂尔多斯、济南、淄博、呼和浩特、乌海、包头、东营、青岛(12) | 朔州、商洛、聊城、武威、忻州、泰安、乌兰察布、滨州、巴彦淖尔(9) | 西宁、银川、焦作、济宁、洛阳、郑州、西安、太原、兰州(9) | 其余地级市(31) |
2011 | 潍坊、石嘴山、莱芜、鄂尔多斯、济南、淄博、呼和浩特、乌海、包头、东营、青岛、郑州(12) | 朔州、商洛、聊城、武威、忻州、泰安、乌兰察布、滨州、巴彦淖尔、德州、吴忠、晋中、榆林、阳泉(14) | 西宁、银川、焦作、洛阳、太原、西安、兰州、三门峡(8) | 其余地级市(27) |
2017 | 潍坊、石嘴山、莱芜、鄂尔多斯、济南、淄博、呼和浩特、乌海、包头、东营、青岛、银川、滨州(13) | 朔州、商洛、聊城、泰安、忻州、乌兰察布、巴彦淖尔、吴忠、德州(9) | 西宁、西安、郑州、洛阳、鹤壁、三门峡、兰州、太原(8) | 其余地级市(31) |
新窗口打开|下载CSV
由表3可知,3个年份中黄河流域有70.49%、63.93%和72.13%的评价单元在空间上表现出明显的空间正相关,反映出黄河流域绿色发展水平具有相对明显的空间俱乐部收敛特征。研究时限内HH集聚区主要集中于呼包鄂城市群与山东半岛城市群,LL集聚区主要集中于黄河中游地区,流域内两极分化现象较为明显,且具有极强的空间稳定性特征。黄河下游地区较为发达,区域绿色发展的扩散作用与空间溢出效应较为明显,如下游地区济南、青岛、潍坊、莱芜、淄博、东营一直是绿色发展HH集聚区,通过辐射涓滴效应带动周围区域发展。黄河中游地区与上游部分地区绿色发展空间集聚效应不显著,上游地区如甘肃省庆阳、平凉、天水、陇南、定西、白银以及宁夏省固原、吴忠、中卫等地市,该地区绿色发展的资源瓶颈约束效应明显,区域发展禀赋不足导致其长期处于绿色发展的冷点区,可能进一步陷入“贫困陷阱”的深渊,是黄河流域未来绿色发展提升的重点区域。HL集聚区与LH集聚区成为绿色发展由下游向上游辐射传导过程中的断层区域。如研究时限内黄河流域西部城市兰州均处于HL集聚区,仍处于吸引周围各种要素流汇集的极化发展阶段,相对剥夺了周围地市的发展空间,致使与周围一系列欠发达城市形成了LH的发展逆差。
5 黄河流域绿色发展时空分异的驱动因素识别
黄河流域绿色发展时空分异特征较为显著,并且空间自相关结果表明,黄河流域不同地级市以及流域上下游之间存在较为明显的空间依存性特征。黄河流域生态经济走廊横跨中国东、中、西三大经济地带,区域自然本底条件与社会经济要素相差较大。从人地相互作用关系视角分析,自然本底因素与社会经济发展条件非均衡交互作用下直接导致了黄河流域绿色发展水平的时空分异,本文拟从自然禀赋与社会经济等方面探究黄河流域绿色发展时空格局演变的驱动因素。本部分尝试构建人地关系作用视角下黄河流域绿色发展驱动因素模型,系统量化多要素相互作用下绿色发展时空演变过程。综合考虑研究区域实情,借鉴相关参考文献[29-35, 52],本部分综合构建了人地关系作用视角下黄河流域绿色发展多要素综合作用的因素模型。社会经济要素主要从产业结构、经济发展、外商投资、科学技术、政府调控、市场化水平等方面验证人文经济要素的驱动作用,分别选取第二产业增加值/GDP(x1)、人均GDP(x2)、实际利用外资额/GDP(x3)、(教育支出+科技支出)/GDP(x4)、财政支出/GDP(x5)、除国有和集体外其他所有制在岗人员比例(x6)进行表征;自然禀赋要素主要从气、水、生三个方面验证自然环境要素的驱动影响,分别选取年均气温(x7)、年均降水量(x8)和植被覆盖度(x9)进行表征。利用地理探测器的因子探测模型识别黄河流域的主要驱动因素,同时采用交互探测识别因子交互作用之后对于因变量的解释程度,结果如表4所示。
Tab. 4
表4
表4黄河流域绿色发展因子探测结果
Tab. 4
探测 因子 | 2005年 | 2011年 | 2017年 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
上游 | 中游 | 下游 | 流域 | 上游 | 中游 | 下游 | 流域 | 上游 | 中游 | 下游 | 流域 | |||
x1 | 0.4321 | 0.0350 | 0.3148 | 0.1116 | 0.1275 | 0.1621 | 0.0947 | 0.0216 | 0.2608 | 0.1055 | 0.8255 | 0.2274 | ||
x2 | 0.8919 | 0.6758 | 0.8230 | 0.8102 | 0.8947 | 0.5424 | 0.8449 | 0.7701 | 0.8270 | 0.6718 | 0.6611 | 0.5498 | ||
x3 | 0.5922 | 0.3919 | 0.3598 | 0.4946 | 0.6849 | 0.3002 | 0.2723 | 0.3405 | 0.4327 | 0.1307 | 0.0643 | 0.0806 | ||
x4 | 0.7995 | 0.4841 | 0.3164 | 0.4050 | 0.5384 | 0.4707 | 0.5413 | 0.4384 | 0.3510 | 0.4670 | 0.7847 | 0.4550 | ||
x5 | 0.5759 | 0.4526 | 0.3447 | 0.2124 | 0.7595 | 0.6378 | 0.3693 | 0.2814 | 0.5039 | 0.3981 | 0.7546 | 0.3266 | ||
x6 | 0.1298 | 0.0067 | 0.3023 | 0.1318 | 0.2658 | 0.0507 | 0.4159 | 0.2438 | 0.1754 | 0.0431 | 0.3045 | 0.1576 | ||
x7 | 0.1686 | 0.0584 | 0.1496 | 0.0840 | 0.2024 | 0.0353 | 0.0254 | 0.0805 | 0.1597 | 0.1540 | 0.0734 | 0.0274 | ||
x8 | 0.2220 | 0.1307 | 0.0243 | 0.1904 | 0.1837 | 0.0768 | 0.1667 | 0.1830 | 0.6149 | 0.0452 | 0.1786 | 0.1040 | ||
x9 | 0.0385 | 0.1288 | 0.6951 | 0.1001 | 0.1595 | 0.0940 | 0.4865 | 0.1270 | 0.1431 | 0.1456 | 0.6959 | 0.1128 |
新窗口打开|下载CSV
利用风险探测发现,2005年、2011年、2017年探测因子均在0.05水平上显著,说明选取的驱动因素可以较好解释黄河流域绿色发展的时空分异格局。利用因子交互探测发现,研究时限内探测因子经交互作用之后均增强了对于绿色发展水平的解释程度,说明黄河流域绿色发展水平时空分异格局的形成是驱动因子共同作用的结果。
利用因子探测发现黄河流域上中下游绿色发展的驱动因素具有明显的差异性,对于上游地区影响较大的因素是产业结构、经济发展水平、外商投资、科学技术、政府调控,对于中游地区则为经济发展水平、科学技术、政府调控因素,下游地区的高作用驱动因子则为产业结构、经济发展水平、科学技术、政府调控、植被覆盖度。自然因素相对于社会经济因素而言,除植被覆盖度是下游地区的高驱动因子外,总体上其作用强度较小,反映出绿色发展水平的提升与模式转变主要受制于人文社会经济因素的影响。而3个年份中经济发展水平、科学技术与政府调控始终是黄河流域及黄河流域不同域段绿色发展的高作用力影响因子。经济发展水平一定程度上可以衡量区域发展的质量与效益,经济发展水平的不断提升,一方面可以促进规模集聚效应发挥,并通过生产技术改进和污染物治理水平提升,为区域产业结构转型与区域经济发展模式转变提供资本积累。另一方面随着居民生活水平的不断改善,人们对于美好环境的需求也会与日增强,一定程度上也会倒逼区域绿色发展模式的转变。科学技术不仅可以通过产业培育与产业革新直接创建新型高效产业类型与产业部门,不断提升产业与区域发展的科技含量,促进产业结构的优化改善。而且科学技术可以通过资源利用效率提升、清洁生产过程管控、末端污染物治理水平改善,减轻区域发展对于资源环境的干扰与破坏以及突破资源环境的瓶颈约束。对于黄河流域而言,煤炭、电力、石油、天然气、原材料等产业占主体,吸引着诸多要素流向资源型产业,并且在循环累积与路径依赖作用下导致黄河流域产业结构重型化特征突出,需要引入在财政分权体制下具有先天优势的外部变量—政府调控因素,改变黄河流域路径依赖的锁定效应,为流域绿色转型发展提供优化方向。
探测因子作用强度时序演化分析,总体上经济发展水平与外商投资因素作用强度不断下降,自然因素与市场化水平解释力上升,由此启示,一方面应该持续加强对于自然因素的重视程度,重视对于水土资源的保育治理水平,另一方面要不断重视区域内生驱动作用的发挥,加强国有企业改制重组进程,鼓励民营经济发展与完善市场化水平,走质量与效益提升之路。值得注意的是,科学技术与政府调控因素对于黄河流域及下游地区的解释力上升,而对于上游与中游地区的解释力下降,由此反映出下游地区的发展是黄河流域的主要驱动力量,上游与中游地区的驱动作用尚不突出,随着下游地区科学技术因素作用的不断发挥,上中下游绿色发展差异程度短期内难以得到根本性转变。
6 讨论与结论
6.1 讨论
对于黄河流域绿色发展的研究具有重要的现实意义,流域绿色发展的最终目标是实现流域均衡高质量发展。一方面综合借助要素禀赋优势、形成流域合理分工体系、妥善处理流域之间竞合关系、合理利用流域集散效益与循环累积因果效应,是改变流域绿色发展俱乐部趋同特征与实现流域高质量发展的关键途径。另一方面要因地制宜与因时制宜选择不同的发展模式,下游地区宜采取圈层开发模式,增强区域发展辐射涓滴效应,推进一体化与网络化发展;中游地区宜采取多中心与点轴开发模式,增强中游过渡地区承东启西的战略功能;上游地区宜采取增长极开发模式,优化产业发展与重点培育中心城市,形成带动区域发展的增长极。同时增强科学技术与市场化水平在流域绿色发展提升中的关键作用,促进区域绿色发展向带状与网络式空间发展模式转变,全面提升黄河流域绿色发展水平。黄河流域绿色发展的过程—格局特征的形成,受自然禀赋与社会经济要素相互作用与相互影响,各要素通过其自身结构与功能演变或与其他要素间相互耦合胁迫,不断重塑黄河流域绿色发展水平、质量与效益的提升。黄河流域绿色发展时空分异具有多尺度特征,且绿色发展时空分异的驱动因素具有复杂性特征,未来一方面从多尺度视角深入揭示黄河流域绿色发展的尺度效应,另一方面从多维复合视角选取不同典型案例研究绿色发展的驱动机制。6.2 结论
(1)绿色发展是四维一体的多维度与多系统的综合变化过程,经济绿色化是绿色发展的核心与前提,社会协调发展是绿色发展的重要支撑与内在要求,环境绿色化是绿色发展的物质载体与重要体现,政府支持水平是绿色转型发展的重要导向与保障。理想的绿色发展之路应是经济发展的绿色化,在政府的大力支持下通过产业生态化发展,引导生态产业的空间集聚与循环经济模式的不断构建,引起环境要素与社会要素的相应改变。(2)时序演化分析发现,2005—2017年黄河流域绿色发展低水平区域数量不断减少,较高水平区域数量稍有增加,黄河流域绿色发展水平不断趋好。但总体上,流域低水平与中低水平区域数量占比稳定在65%以上,黄河流域绿色发展质量提升之路漫长而艰巨。通过绿色发展各子系统与流域绿色发展模式分析发现,黄河流域绿色发展具有相对稳定固化的特征,且其发展模式较为粗放,未来需要提升绿色发展的质量与效益。
(3)全局空间自相关分析发现,2005—2017年间黄河流域61地级市整体存在较为明显的空间依存关系,绿色发展水平接近地区空间集聚现象明显,绿色发展空间溢出效应较为显著。局部空间自相关分析发现,黄河流域绿色发展水平具有相对明显的空间俱乐部收敛特征,HH集聚区主要集中于呼包鄂城市群与山东半岛城市群,LL集聚区主要集中于黄河中游地区,流域内两极分化现象较为明显,且具有极强的空间稳定性特征。
(4)因子探测表明经济发展水平、科学技术与政府调控始终是黄河流域绿色发展的高作用力影响因子,由此提升经济发展的质量与效益、提高科学技术水平与科学引导政府调控力度可以有效促进绿色发展水平提升。驱动因子交互作用类型呈现非线性增强与双线性增强,对黄河流域绿色发展解释力远超过单因子作用,反映出黄河流域绿色发展的驱动因素与作用机制之间的复杂性特征。
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
[本文引用: 1]
,
[本文引用: 1]
DOI:10.11821/dlxb201412006URL [本文引用: 1]
8βm3 of water use by intensifying the economic aggregate. However, it decreased 4530×108βm3 of water use by optimizing the industrial structure and improving the water use efficiency. Therefore, urbanization did not lead to water use growth. The cause for China's water use growth was the increase of population and economy. (3) In those provinces which are located in the eastern and central China, have large population and economy, and step into a period of accelerating urbanization, urbanization generally made great contribution to economic and water use growth. At the same time, it also had great contribution to industrial restructuring and water use efficiency improvement, and then largely decreased water use. In total, water use was decreased by urbanization in most provinces, and the spatio-temporal differences among them were lessened. (4) Although urbanization helps to decrease water use for China or a large region, it may cause water crisis in urban built-up areas or urban agglomerations. Therefore, the transfer and compensation mechanisms of water resoureces should be constructed as soon as possible between urban and rural areas, or low and high density urban areas.]]>
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 3]
,
[本文引用: 3]
[本文引用: 2]
,
[本文引用: 2]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
DOI:10.1016/j.jclepro.2013.08.045URL [本文引用: 1]
Sustainable development is still a convincing concept, if the original definition is taken, avoiding the confusion caused by partisan interests reinterpreting the concept. Focussing on human needs fulfilment and respecting environmental limits, it can still guide strong sustainable consumption. Green economy/green growth, on the other hand, is a new terminology for what is known since 40 years as ecological modernisation. It is indeed overdue, but with its focus on efficiency and innovation it cannot guarantee to fulfil the Brundtland sustainability criteria. A factor analysis based on the I = P*A*T formula demonstrates how optimistic the assumptions regarding future technologies must be to support the green growth concept. Consequently, the authors pledge for a pragmatic, risk avoiding approach by slimming the physical size of the economy. This requires 'strong sustainable consumption' (including production as resource consumption), which in turn requires a change of the societies' institutional settings (formal and informal, mechanisms and orientations).Finally some elements of a strategy towards this end are pointed out, with special emphasis on the role of non-governmental organisations NGOs. Through networking and advocacy they can both stimulate bottom-up action and mobilise the pressure necessary for the institutional changes which are needed to mainstream strong sustainable consumption. (C) 2013 Elsevier Ltd.]]>
,
DOI:10.1016/j.jclepro.2016.08.024URL [本文引用: 1]
,
DOI:10.1016/j.jclepro.2017.09.053URL [本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
DOI:10.18267/j.pep.626URL [本文引用: 1]
,
DOI:10.1016/j.ecolecon.2007.08.001URL [本文引用: 1]
,
DOI:10.1016/j.econmod.2012.04.005URL [本文引用: 1]
The paper proposes a coopetitive model for the Green Economy. It addresses the issue of the climate change policy and the creation and diffusion of low-carbon technologies. In the present paper the complex construct of coopetition is applied at macroeconomic level. The model, based on Game Theory, enables us to offer a set of possible solutions in a coopetitive context, allowing to find a Pareto solution in a win-win scenario. The model, which is based on the assumption that each country produces a level of output which is determined in a non-cooperative game of Cournot-type and that considers at the same time a coopetitive strategy regarding the low technologies, will suggest a solution that shows the convenience for each country to participate actively to a program of low carbon technologies within a coopetitive framework to address a policy of climate change, thus aiming at balancing the environmental imbalances. (C) 2012 Elsevier B.V.
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
DOI:10.1016/j.scs.2018.05.006URL [本文引用: 1]
DOI:10.13249/j.cnki.sgs.2018.07.005URL [本文引用: 1]
Currently, both developed and developing countries emphasize the green development of their economy, which is also the focus against the context of the revitalization of Old Industrial Base(OIB). This article takes OIB in Northeast China as a case study to show its green development condition by evaluating its green development level and identifying its obstacle factors. Firstly, this article introduced the features of green development of OIB based on the existing literature both domestic and abroad. Secondly, we established a comprehensive index system which consists of five aspects: 1) The capacity of resource utilization; 2) The green industry; 3) The quality of economic development; 4) The environment protection and treatment; 5) The green residence environment. This index system includes 25 evaluation indices. Thirdly, the article analyzed the spatial distribution and regional differences of the green development level of 11 typical old industrial cities in Northeast China. The results are as following: First, we find that green development level of Shenyang and Changchun are much higher than other cities in 2014, the next are Dalian and Harbin, the rest cities are lower than these four cities. Second, these 11 cities can be divided into four categories by calculating the standard deviation of their green development level. We find that Shenyang, Changchun, Dalian are in the first group, Harbin is in the second group, Fushun is in the fourth group, and the other cities belong to the third group. Third, the capacity of green development has increased significantly from 2008 to 2014, but the polarization phenomena are even apparent. It gradually formed a green development level pattern in the space that took the four major cities as the center. The index of coefficient of variation shows that regional differences and spatial polarization of green development among old industrial cities tend to decrease. Fourth, based on the factor analysis of the obstacle degree, we find that the development of local economy and green industry is the major factor of rule hierarchy that affects green development in general. Their negative influence on green development becomes stronger over time. From the view of index hierarchy, we can see that the top five obstacle indicators didn’t change during the study period, shows a stable status. The ratio of technology expenditure to GDP are the major obstacle factors that affect green development level, and the major influences of each index on each city’s green development level show an obvious regional characteristic.
,
[本文引用: 1]
[本文引用: 3]
,
[本文引用: 3]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 4]
,
[本文引用: 4]
DOI:10.13249/j.cnki.sgs.2018.11.006URL [本文引用: 1]
th Five-Year Plan of China, and it emphasizes on the mutual unity and coordinated development between economic growth and environmental protection. It is a kind of human-oriented way of sustainable development. Improving the efficiency of green development is an important way to achieve the ecological civilization construction and transformation of economic development the important way. This study used the spatial analysis methods, such as the Super-SBM model, spatial autocorrelation, spatial variation functions and spatial durbin model to measure the green development efficiency from 2005 to 2015 in China (Tibet, Hong Kong, Macao and Taiwan are excluded), by building an input and output index system of green development efficiency. In addition, from the perspective of geography space, it revealed the spatial pattern and spillover effects of green development efficiency in China. The results showed that: 1) From 2005 to 2015, the efficiency of China’s green development is characterized by the stage characteristics of ‘stable at beginning, then fast and last stable again’. It shows an overall upward trend with large differences among regions. The regional differentiation of the ‘East-Central-West’ stepwise decreasing and the ‘South-Central-North’ symmetrical distribution, and ‘T’ shaped shaft development pattern is particularly evident. 2) There is a positive correlation between green development efficiency, the degree of spatial agglomeration gradually decreases, the hot spots increase, the eastern coastal areas form stable hot spots, and the central and western parts form stable cold spots. 3) The spatial self-organization of green development efficiency is more and more strong, the space difference is gradually increased, the structural differentiation caused by spatial autocorrelation is more obvious, the spatial heterogeneity caused by random components is gradually weakened, and the space between northwest and southeast Significant difference. 4) There is a significant spillover effect of green development efficiency, a significant positive effect on the level of economic development, and a significant negative effect on industrial structure, urbanization and technological innovation. Trying hard to explore the law of spatial evolution of green development and provide a reference for the coordinated green development of the three systems of regional economy, society and environment.]]>
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 2]
,
[本文引用: 2]
,
DOI:10.1016/j.chieco.2019.02.008URL [本文引用: 1]
,
DOI:10.1016/j.ecolind.2016.04.050URL [本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
DOI:10.11821/xb200904001URL [本文引用: 1]
From the essential meaning of urbanization, this paper establishes a comprehensive evaluation index system, including four aspects changing: population, economy, society and land. Based on the method of entropy, the measure and evolution of China's urbanization are analyzed since 1981. The results show that China's comprehensive urbanization level continues improving. Economic growth and geographical landscape are the main features of rapid evolution of urbanization, followed by the population urbanization, and the medical care level of social urbanization is the least advanced. The evolution of all the four subsystems has unique characteristics. The analysis of multiple regression model shows that the driving factors have been diversified. The market force is the most powerful driving force of China's urbanization, followed by intrinsic force, administration force, exterior force. From different stages of urbanization, the effects of market force, exterior force and the administration force on urbanization are increasing, while intrinsic force is decreasing. China's urbanization is the main endogenous process, hence more policies should be formulated to strengthen the market economy reform and coordinate urban and rural development.
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
DOI:10.11821/dlxb201701010URL [本文引用: 1]
Spatial stratified heterogeneity is the spatial expression of natural and socio-economic process, which is an important approach for human to recognize nature since Aristotle. Geodetector is a new statistical method to detect spatial stratified heterogeneity and reveal the driving factors behind it. This method with no linear hypothesis has elegant form and definite physical meaning. Here is the basic idea behind Geodetector: assuming that the study area is divided into several subareas. The study area is characterized by spatial stratified heterogeneity if the sum of the variance of subareas is less than the regional total variance; and if the spatial distribution of the two variables tends to be consistent, there is statistical correlation between them. Q-statistic in Geodetector has already been applied in many fields of natural and social sciences which can be used to measure spatial stratified heterogeneity, detect explanatory factors and analyze the interactive relationship between variables. In this paper, the authors will illustrate the principle of Geodetector and summarize the characteristics and applications in order to facilitate the using of Geodetector and help readers to recognize, mine and utilize spatial stratified heterogeneity.
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
DOI:10.11821/dlxb201910006URL [本文引用: 1]
Green development is pivotal to resolving natural environmental constraints, solving national economic transition, and supporting and realizing the United Nations sustainable development goals. It is gradually growing into a crucial guideline for China's ecological civilization construction, "Beautiful China" development, and global economic transition and restructure. Based on a thorough review of the concept of green development, this paper accurately depicts a full picture of China's spatio-temporal patterns of urban green development efficiency (UGDE) in 2005-2015 by using SBM-Undesirable, the Theil index and the Spatial Markov Chain methods. Moreover, the influencing mechanism has been further discussed based on a quantitative analysis of both natural and human factors. Our results demonstrate that: (1) UGDE increased steadily by 10% from 0.475 in 2005 to 0.523 in 2015. And temporally, it shows a pattern of "W"-shaped fluctuated growth. (2) Spatially, UGDE decreased from eastern to central China, and further to western China. Besides, there is an inverted pyramid pattern of "national level > regional level > local level" urban agglomeration in UDGE growth. Moreover, there is a steady urban scale structure from super city to small city in UDGE. (3) There is an evident concentration of cities with high-level and low-level UDGE, indicating a significant influence of path dependence. (4) Quantitatively speaking, compared to natural factors, human factors such as economy size, industry structure, and openness level play a more important role in influencing the UDGE.
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
DOI:10.2307/142170URL [本文引用: 1]
,
[本文引用: 1]