删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

1949—2019年中国自然地理学与生存环境应用研究进展

本站小编 Free考研考试/2021-12-29

陈发虎,1,2,3, 吴绍洪,3,4,5, 崔鹏2,3,6, 蔡运龙7, 张镱锂2,3,4,5, 尹云鹤4,5, 刘国彬8, 欧阳竹3,4, 马巍9, 杨林生3,4,5, 吴铎10, 雷加强11, 张国友4,12, 邹学勇13, 陈晓清2,6, 谈明洪3,4,5, 王训明3,4, 包安明11, 程维新4, 党小虎14, 韦炳干4,5, 王国梁8, 王五一4,5, 张兴权4, 刘晓晨2,15, 李生宇111. 中国科学院青藏高原研究所高寒生态重点实验室,北京 100101
2. 中国科学院青藏高原地球科学卓越创新中心,北京 100101
3. 中国科学院大学资源环境学院,北京 100190
4. 中国科学院地理科学与资源研究所,北京 100101
5. 中国科学院陆地表层格局与模拟重点实验室,北京 100101
6. 中国科学院、水利部成都山地灾害与环境研究所,成都 610041
7. 北京大学城市与环境学院,北京100871
8. 西北农林科技大学黄土高原土壤侵蚀与旱地农业国家重点实验室,杨凌 712100
9. 中国科学院西北生态环境资源研究院,兰州 730000
10. 兰州大学资源环境学院 西部环境教育部重点实验室,兰州 730000
11. 中国科学院新疆生态与地理研究所,乌鲁木齐 830011
12. 中国地理学会,北京 100101
13. 北京师范大学地理科学学部,北京 100875
14. 西安科技大学地质与环境学院,西安 710054
15. 中国科学院青藏高原研究所,北京 100101

Progress of applied research of physical geography and living environment in China from 1949 to 2019

CHEN Fahu,1,2,3, WU Shaohong,3,4,5, CUI Peng2,3,6, CAI Yunlong7, ZHANG Yili2,3,4,5, YIN Yunhe4,5, LIU Guobin8, OUYANG Zhu3,4, MA Wei9, YANG Linsheng3,4,5, WU Duo10, LEI Jiaqiang11, ZHANG Guoyou4,12, ZOU Xueyong13, CHEN Xiaoqing2,6, TAN Minghong3,4,5, WANG Xunming3,4, BAO Anming11, CHENG Weixin4, DANG Xiaohu14, WEI Binggan4,5, WANG Guoliang8, WANG Wuyi4,5, ZHANG Xingquan4, LIU Xiaochen2,15, LI Shengyu111. Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, CAS, Beijing 100101, China
2. Centre for Excellence in Tibetan Plateau Earth Sciences, CAS, Bejing 100101, China
3. School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
4. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
5. Key Laboratory of Land Surface Pattern and Monitoring, CAS, Beijing 100101, China
6. Institute of Mountain Hazards and Environment, CAS, Chengdu 610041, China
7. College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
8. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi, China
9. Northwest Institute of Ecological and Environmental Resources, CAS, Lanzhou 730000, China
10. Key Laboratory ofWestern China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
11. Xinjiang Institute of Ecology and Geography, CAS, Urumqi 830011, China
12. Geographical Society of China, Beijing 100101, China
13. Faculty of Geographical Sciences, Beijing Normal University, Beijing 100875, China
14. College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
15. Institute of Tibetan Plateau Research, CAS, Beijing 100101, China

通讯作者: 吴绍洪(1961-), 男, 广东潮州人, 博士, 研究员, 博士生导师, 中国地理学会会员(S110000894M), 主要从事自然地理学综合研究、气候变化影响与风险研究。E-mail: wush@igsnrr.ac.cn

收稿日期:2020-03-3修回日期:2020-08-20网络出版日期:2020-09-25
基金资助:国家自然科学基金项目.41530749
国家自然科学基金项目.41842050


Received:2020-03-3Revised:2020-08-20Online:2020-09-25
Fund supported: National Natural Science Foundation of China.41530749
National Natural Science Foundation of China.41842050

作者简介 About authors
陈发虎(1962-), 男, 陕西丹凤人, 博士, 研究员, 中国科学院院士, 发展中国家科学院院士, 中国地理学会会员(S110004201M), 主要从事气候环境变化及史前人—环境相互作用研究。E-mail: fhchen@itpcas.ac.cn




























摘要
自然地理学是一门以基础研究见长的自然科学,其研究对象是与人类生存和发展密切相关的自然环境。中国的自然环境复杂多样,自然地理学家根据国家需求和区域发展在应用基础和应用研究方面同样取得显著成效,为国家重大经济建设、社会发展的规划,宏观生态系统与资源环境保护及区域可持续发展做出了重要贡献。本文总结了1949—2019年中国自然地理学在自然环境区域差异与自然区划、土地利用与覆被变化、自然灾害致灾因子和风险防控、荒漠化过程与防治、黄淮海中低产田改造、冻土区工程建设、地球化学元素异常和地方病防治、自然地理要素定位观测、地理空间分异性识别和地理探测器等方面的实践与应用,指出了未来自然地理学的应用研究方向。
关键词: 自然地理学;科学实践;应用研究;区域发展;国家战略

Abstract
Physical geography is a basic discipline of natural science. Since its research object is the natural environment, it is closely related to human survival and development. China's natural environment is complex and diverse; therefore, according to national demand and regional development needs, physical geographers have also made remarkable achievements in applied foundation and application, making important contributions to the planning of national major economic construction and social development, protection of macro-ecosystem and resources and environment, and regional sustainable development. This paper summarizes the practice and application of physical geography in China in the last 70 years (1949-2019), differences between the natural environment and natural zoning, land use/cover change, natural disasters and risk prevention and control, the process of desertification and its administration, lower-yield field transformation of Huang-Huai-Hai Plain, engineering construction of permafrost areas, geochemical element abnormity and endemic disease prevention and control, positioning observation of natural geographical factors, geographical spatial heterogeneity identification, and geographical detector. Finally, it proposes the future application research directions of physical geography.
Keywords:physical geography;practices;application;regional development;national strategy


PDF (3064KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
陈发虎, 吴绍洪, 崔鹏, 蔡运龙, 张镱锂, 尹云鹤, 刘国彬, 欧阳竹, 马巍, 杨林生, 吴铎, 雷加强, 张国友, 邹学勇, 陈晓清, 谈明洪, 王训明, 包安明, 程维新, 党小虎, 韦炳干, 王国梁, 王五一, 张兴权, 刘晓晨, 李生宇. 1949—2019年中国自然地理学与生存环境应用研究进展. 地理学报[J], 2020, 75(9): 1799-1830 doi:10.11821/dlxb202009001
CHEN Fahu, WU Shaohong, CUI Peng, CAI Yunlong, ZHANG Yili, YIN Yunhe, LIU Guobin, OUYANG Zhu, MA Wei, YANG Linsheng, WU Duo, LEI Jiaqiang, ZHANG Guoyou, ZOU Xueyong, CHEN Xiaoqing, TAN Minghong, WANG Xunming, BAO Anming, CHENG Weixin, DANG Xiaohu, WEI Binggan, WANG Guoliang, WANG Wuyi, ZHANG Xingquan, LIU Xiaochen, LI Shengyu. Progress of applied research of physical geography and living environment in China from 1949 to 2019. Acta Geographica Sinice[J], 2020, 75(9): 1799-1830 doi:10.11821/dlxb202009001


1 引言

自然地理学是研究地球表层人类生存环境中的自然环境的空间特征、演变过程及其地域分异规律的一门自然科学,是地理学的基础学科,也是地理学综合研究的基石[1,2]。自然地理学研究的陆地表层系统,是地球系统中最复杂、受人类活动影响程度最高的一个子系统,这个子系统与人类活动密切相关,广泛涉及环境、资源和社会经济在时空上的结构、演化、发展及其相互作用。探索陆地表层自然要素与人文要素之间相互作用及其规律的时空格局是地理科学的核心[3]。因而,自然地理学研究众多关系社会经济可持续的重大科学问题,也涉及众多关系民生的重大社会问题。1949年以来,中国自然地理学研究成果应用广泛,在社会经济可持续发展中做出了重大贡献。

中国自然地理学不但开展了国际前沿的自然地理过程和生存环境的基础理论研究[2],而且还随着国家社会经济建设发展的需求,相继在自然环境区域差异与自然区划、土地利用与覆被变化、自然灾害形成运动规律和风险防控、荒漠化过程与防治、黄淮海中低产田改造、多年冻土区工程建设、地球化学元素异常和地方病防治、自然地理要素定位观测、地理空间异质识别和地理探测器等领域开展了大量工作,取得了卓越突出的成就。自然地理学在实践和应用相关领域的研究加深了对中国陆地表层系统格局与过程的认识,同时有效支撑了对中国农业发展、区域发展、资源合理利用和生态文明建设。

自然地理学在当代科学发展与社会需求的驱动下,其性质、内容、方法、作用等发生了巨大变化[4]。随着中国人口增长、社会发展和科技进步,人类活动对自然环境的影响逐步加重,自然地理学在服务政府决策与国家需求中得到持续发展和提升[1]。在总结了中国自然地理与生存环境基础研究成果的基础上[2],本文针对中国自然地理学的主要实践与应用领域,梳理其1949—2019年间的发展脉络,总结最重要的有中国特色的研究进展和成果,分析自然地理学实践与应用领域的国内外关注焦点及其拓展,力求为进一步开展自然地理学的理论实践与成果应用,服务中国生态文明建设开拓思路。

2 自然地理学实践与应用研究进展

2.1 综合自然区划服务国家国土空间开发利用

综合自然区划研究的主要对象是地表自然综合体,其主要目标是揭示地表自然要素的地域分异规律,按不同要素空间分布特征与组合,逐级划分区域,以达到将区域中复杂的自然环境系统化,构建地球陆地表层自然地域系统。中国地域广阔、自然环境条件差异显著,自然地域系统是国家重大资源环境管理和社会经济建设规划的基础。

2.1.1 经典综合自然区划服务国家农业生产 在地域分异规律理论指导下,中国综合自然区划基础研究发展迅速,全国区划方案制定广泛开展。20世纪50年代,国家需要因地制宜部署农林牧生产,在全国各地自然条件和自然资源的综合科学考察的基础上,综合自然区划研究广泛展开。随后产出了一系列研究成果,包括中国自然区划大纲[5],中国自然地理分区草案[6]等。特别是竺可桢和黄秉维等领导的研究团队,在地貌、气候、植被等8个部门自然区划的基础上,开展了全国综合自然区划,以持久地维护、提高、最大限度地发挥自然生产潜力、服务于全国农业生产布局为目标,最终完成了《中国综合自然区划(初稿)》[7]。该研究的方法论为之后研究所遵循。任美锷等[8]在区划指标及数量分析评价,区划等级单位拟订和区域命名等问题提出了新的见解。侯学煜等[9]以发展农、林、牧等为目的,构建自然区划方案。赵松乔[10]开创了由土地类型为基础的自下而上新途径,设计了一个新方案。席承藩等[11]的区划方案,重点对自然区的自然特点、农业现状、生产潜力和发展方向等作了论述。综合自然区划成果一直为农业、林业和交通等有关部门的重要依据,在全国影响巨大。全国农业综合自然区划也是以其为基础拟定的[12]。以此为主体的研究成果获得1987年国家自然科学二等奖。

2.1.2 生态地理区划服务国家生态建设与环境保护 20世纪80—90年代,随着中国生态建设和环境保护需要,综合自然区划研究引入生态系统的观点、原理和方法,拓展为生态地理区划。侯学煜[13]将全国分为20个自然生态区,傅伯杰等[14]针对生态环境敏感和脆弱区域对中国进行了生态区划。郑度等[15]完成了生态地理区域系统,阐明了各个生态地理区自然条件的差异、联系及其利用等问题。通过揭示不同生态地理区域中土地退化及其整治的地域差异,使成果应用于区域生态与环境建设。生态地理区域系统不仅为土地生产潜力的提高、土地管理的政策分析以及先进农业技术的引进与推广提供了必要的科学依据,而且为环境、资源与发展的协调,以及自然保护区的选择与规划等工作提供了宏观的区域框架[15]

2.1.3 综合区划服务国家社会经济可持续发展 20世纪末,黄秉维倡导开展综合地域系统研究,认为应当有一个适当的顾及自然和社会经济两方面的全国综合地域系统以满足新形势的需要[16]。许多****对综合地域系统研究理论、指标和方法开展了积极探索[17,18,19,20]。同时与人文地理****一起,根据自然要素的发生学原理与人类活动的区域特征,开展地域功能适宜性评价工作,完成了主体功能区划。构建以县级行政单元为基础的主体功能区划方案,设优化开发、重点开发、限制开发和禁止开发4类主体功能区[21],推动区域在生态建设和环境保护的前提下,开展社会经济建设。

2.1.4 未来风险区划服务全球变化应对 20世纪末以来,随着全球变化逐步被认识和重视,国际上普遍重视的综合自然区划的研究内容进一步丰富,并向未来预估的方向拓展。对地域系统响应未来气候变化的认识不断深化和量化[22,23,24,25,26]。同时也开展了大量的过去地域系统动态演变分析,研究多是按照主流表征的地域系统划分指标,****对中国东部地区温度带普遍北移的特征取得了较为一致的认识[27,28,29,30]。干湿区界线相比温度带更为复杂,并具有波动式变化特征[31,32],特别是东西向空间变化差异较大[33],半干旱区也存在明显扩张趋势[34]。在现代增温和降水变化的共同作用下,中国主要气候类型发生较大改变的区域位于季风边缘区,说明该区域对气候变化响应更为敏感[35]。新近完成的中国气候变化风险区划[36]和“一带一路”陆域自然地域系统[37],为应对气候变化和防灾减灾提供区域框架。

2.2 土地利用/土地覆被变化研究服务中国人地关系协调发展

土地是人类活动的载体,土地利用/覆被变化(Land Use and Land Cover Change, LUCC)集中反映人类活动和自然因子变化及其相互作用与影响,LUCC在全球气候环境变化和可持续发展中占有重要地位[38,39,40,41]。研究中国社会经济快速发展带来的土地利用/覆被的巨大时空变化,为中国人地关系的协调发展提供大力支持。

2.2.1 土地资源的调查和研究为农业生产提供科学支撑 1949年后,农业发展受到普遍重视。在制定《1956—1967年全国农业发展纲要》以及1956年和1963年两次全国科学规划会议之后,学术界更明确了为农业服务是中国地理学研究的一个主攻方向[42]。土地资源及其制图是各种规划与区划的重要基础,其中《1978—1985年全国科学技术发展规划纲要》第一项重点项目的重要内容就是,编制全国1∶100万土地资源图,为发展社会主义大农业(即农、林、牧等)和合理利用土地服务[43]。土地资源图主要反映农林牧副业的生产潜力,包括土地适宜性和局限性以及土地利用的基本状况,并进行潜力或质量分类[44]

土地利用分类与制图直接影响土地利用现状确切性和使用价值。吴传钧[45]提出了中国1∶100万土地利用现状图分类体系与表达方法,探讨了中国土地利用结构,成为之后国家土地管理局土地利用分类的重要依据。在土地利用研究过程中,土地质量也受到了重视,逐步开展了土地质量分等定级工作[46,47,48],为农业生产布局和社会经济发展规划提供了科学基础。

2.2.2 土地利用/土地覆被及其生态效应 1978年中国的改革开放,尤其是农村实行的生产承包责任制,极大释放了农村劳动力。1949年中国的人口城镇化率仅10%左右,而2018年城镇化率已经接近60%。中国经历了人类历史上规模最大的城乡人口迁移,使土地利用/覆被发生了巨大变化。基于一系列遥感图像分析技术形成的中国LUCC数据库见证了中国土地利用变化的特征[49,50],为人地关系的研究提供了基础资料。

建设用地扩展是中国土地利用变化中最为显著的特征[50]。值得注意的是,建设用地主要发生在人口密集地区,占用的多为优质农田区,其中相当部分已很难恢复成农田。因此,建设用地变化成为当前****和政府部门关注的热点和焦点[51,52],催生国家后期制定的“耕地红线”和“耕地占补”等耕地保护政策[53,54]

由于人口的大量迁出,耕地撂荒和退耕也成为政府和****关注的焦点问题[55]。20世纪80年代以前,中国农民把大片森林和草地变成了农田,而大部分都位于陡峭山坡上,因此引起了严重的土地退化[56]。随着大规模的城乡人口迁移,土地利用开始发生转型,代表人类干扰较强的耕地面积从扩张到收缩,导致边际山区耕地发生大规模的撂荒[57]

国家多类生态建设措施的实施,遏制了国家土地退化状况,总体生态状况向改善方向转变。如青藏高原自然保护区的建设和相应生态工程和规划的实施,草地、湿地面积的扩大以及裸地面积的明显减少,多数保护区的生态功能有所改善[58,59,60,61]。中国生态环境趋好对全球变绿和森林覆盖增加具有显著贡献,具体来说,2000—2017年中国新增植被叶面积约占全球增量的1/4[62]

2.3 自然灾害过程和风险评估研究服务国家减灾救灾需求

中国自然环境的多样性[2]使得中国成为世界上自然灾害最为严重的国家之一。1949年以来,不同学科对中国的自然灾害,特别是致灾因子开展了深入探讨,自然地理学从重要自然灾害(如泥石流等)的致灾因子和过程研究,拓展到自然灾害的防抗救研究。灾害风险评价指标体系不断优化,由侧重灾情评估为主向综合度量致灾因子危险性、承灾体暴露度、脆弱性、减灾能力等的风险研究转变。中国灾害风险在20世纪80年代的研究主要侧重灾害发生可能性和危险性研究。随着灾害风险认识不断拓展以及社会经济发展的需要,以及20世纪90年代“国际减灾十年计划”的推动,中国灾害风险研究迅速发展。特别是随着数据获取能力的提高,灾害评估指标从早期的易损性[63],到考虑触发因子、下垫面自然条件、区域社会经济状况[64],到综合致灾因子发生概率与灾害损失[65],再到综合灾害危险性、灾害变迁、区域社会经济发展水平、区域抗灾能力等[66],灾害风险评估指标不断丰富完善,大力提升了中国风险评估的全面性与科学性,自然灾害风险研究已经发展成为以自然地理****为主开展的一门新兴学科。自然灾害涉及多学科研究,本文重点概括了自然地理学在自然灾害研究和防治方面的贡献和进展。

2.3.1 初步形成泥石流学科较为系统的知识体系,减灾技术在国内外减灾中产生良好成效 泥石流是山区特有的一种突发性自然灾害现象,严重威胁山区城镇、水电工程、交通干线等安全,每年造成数百人死亡和巨大经济损失。20世纪50年代中国开展了系统的泥石流减灾研究,其发展可分为3个阶段:① 1978年以前,通过野外考察、原位观测、野外简易试验、室内常规仪器分析等手段,初步摸清全国泥石流分布规律、危害状况和活动特征,对泥石流进行系统分类,提出了泥石流流变模式,研发了东川泥石流排导槽、箱式充填型拦沙坝等新技术[67]。② 1978—2000年,将东川泥石流观测站建设成为半自动化观测站,建成亚洲最大的室内泥石流动力学模拟装置,支撑泥石流研究从描述性学科发展成实验性学科;研发了NSZ10泥石流体粘度计等系列泥石流测试设备,在世界上首次实现泥石流半自动化观测;完成了中国泥石流编目[68],基于颗粒散体重力流建立了泥石流力学模型[69],建立粘性泥石流起动的突变模型[70],建立了泥石流监测预警方法和技术,发展了一整套泥石流防治技术,在泥石流区域规律、形成机理、运动规律、力学机理和防治技术等方面取得系统的突破,初步形成了泥石流学科体系[67, 71]。③ 2000年以来,基于多学科交叉,进一步提升东川泥石流自动化观测水平,使得东川站成为首批国家野外观测研究站,并针对冰雪活动区泥石流研究需要,建立了西藏波密泥石流观测研究站;提出泥石流级联溃决的规模放大模型和基于动力过程的泥石流风险评估方法[72,73],构建全球第一个基于正演的泥石流数值模拟平台;发展了地震次生山地灾害从区域规律、动力过程到风险评估系统的理论与技术方法[74];建立大规模泥石流防治关键技术体系,在汶川地震区典型泥石流防治工程中成功应用[75]

经过70多年的持续研究,中国的泥石流研究已形成了一个具有现代化观测实验测试研究方法、比较系统的理论、先进的减灾技术体系的学科,总体研究在国际上处于领先地位。在科学研究的同时,将泥石流理论和减灾技术应用于中国和第三世界国家的灾害防治中,取得了良好的减灾成效。例如,先后完成了黑沙河、浑水沟、大桥河、金川县城、西昌卫星发射基地、成昆铁路、川藏公路、九寨沟等典型泥石流综合治理工程[71, 76],形成了城镇泥石流防治模式、农田泥石流防治模式、道路泥石流防治模式和风景区泥石流防治模式,有力支撑了国家山区减灾、工程建设和景观生态保护。最近完成的川藏铁路危险性评价为铁路工程预可研提供科技支撑。减灾技术还在委内瑞拉特大泥石流、尼泊尔地震、中巴经济走廊进行减灾工作[77],产生了良好的国际影响。

2.3.2 灾害风险研究逐步从单灾种向多灾种综合风险转变 20世纪90年代国际上提出多灾种概念,灾害风险评估的理念认知不断完善,中国灾害风险评价研究开始重视多灾种的综合风险。2008年汶川地震后,基于区域灾害系统理论的地震山地灾害链研究受到重视[78],对山区地震次生地表灾害的区域特征、发生机理、演化规律、风险评估的研究取得了系统的成果,丰富了自然灾害及其风险研究的认知等[74]。多灾种风险评估不断引入先进技术手段,也发展了基于灾害传递概率系数的灾害链风险评估方法等[79]。自然地理学的综合研究方法论和区域研究视角被引进到灾害风险研究中,中国多灾种研究更加系统化和定量化,并形成了具有明确概念术语描述的研究体系。同时多灾种对承灾体损害的严重性受到更多关注,史培军等[80]基于灾害系统复杂性的特征和灾害间的关系明晰了灾害群、灾害链和灾害遭遇3种主要类型。通过绘制全国综合灾害风险等级分布图[81,82],体现了中国开展综合风险防范的区域差异性,为区域防灾减灾决策制定提供更具针对性的科学依据。

2.3.3 综合气候变化灾害风险评价体系逐步形成 基于全球变化的情景分析方法与灾害风险理念的统一性,气候变化灾害风险成为重点研究的内容之一。2015年中国发布了气候变化灾害风险的评估报告[83]。21世纪初期,开始重视气候变化风险评估,强调开展有针对性的风险管理行动,是应对气候变化的有效途径[84],气候变化风险相关研究框架和概念以及损害性等重要特征相继提出[85],并针对水文气象灾害风险进行了定量化评估[86]。Su等[87]研究发现,若升温相差0.5 °C,中国干旱灾害损失将相差千亿元。

中国针对综合气候变化风险评价体系逐渐形成。从社会—生态系统综合风险防范的“凝聚力”概念、基本原理、协同效能、实现手段等方面,系统研究了“凝聚力”的科学内涵和模式,补充了灾害系统中脆弱性、恢复性、适应性等概念在阐释综合风险防范问题上存在的缺陷[88]。此外,根据气候变化敏感性的空间分布,结合高温热浪、干旱、极端降水等极端事件发生的严重性,定量预估极端事件导致的灾害风险程度,给出未来气候变化下灾害风险的区域差异格局[36]

2.3.4 灾害风险评估支撑了国家防灾减灾管理 在重点自然灾害风险研究过程中,国家资助了多项重大科研项目,在区域灾害系统理论与方法、重大自然灾害损失与风险综合评估技术、中国自然灾害系列地图集编制[89]、重大自然灾害应对与农业自然灾害保险技术等方面取得多项原创性成果,创建了模式化、图谱化、实时化、标准化、一体化的综合灾害风险防范科技体系,解决了重大自然灾害评估缺少体系化统计制度保障、时效性与精准性差等科技难题。在国际上率先提出了区域灾害系统理论;首次研发《特别重大自然灾害损失统计制度》并在全国应用;系统建立了基于区域灾害系统理论的综合风险评估模型;首次制定了中国自然灾害系列区划与农业风险与保险区划;研发了国家重大自然灾害评估业务运行技术支撑系统。系列成果支撑了汶川、玉树、芦山、鲁甸、九寨沟、海地、日本、尼泊尔地震和舟曲山洪泥石流、南方低温雨雪冰冻等重大自然灾害综合损失评估,其评估结果均被国家采纳,显著提升了国家综合减灾与灾害风险防范科技能力和重大自然灾害的应对能力。这一系列成果获得了2018年度国家科技进步二等奖。

2.4 荒漠化过程研究与防治技术研发促进国家荒漠化治理科学化

荒漠化是全球面临的最为严重的环境—经济—社会问题之一[90],早期仅被理解为沙漠扩展、沙丘入侵及干旱等导致的土地生产力退化[91]。1977年召开的联合国荒漠化大会首次有了荒漠化的官方定义,1992年的联合国环境与发展大会将荒漠化定义为“由气候变化和人类活动等各种因素造成的干旱、半干旱及干燥亚湿润地区的土地退化”,这一概念至今仍是指导各国开展荒漠化研究的基本概念。中国特殊的气候空间差异、多样的自然地理条件和悠久的人类活动历史[2, 15]导致中国荒漠化问题具有严重性和多样性的特点。根据国家第五次监测结果,截至2014年,全国荒漠化土地面积261.16万km2,占国土面积的27.20%[92]。荒漠化土地主要包括西南地区为主的石漠化、西北干旱半干旱地区的风沙灾害和沙漠化,以及东部季风区的水土流失等问题,自然地理学家在这几个方面均开展了卓有成效的应用基础研究和应用研究,为国家发展做出了重要贡献。

2.4.1 石漠化过程与防治研究为西南喀斯特地区可持续发展提供科学支撑 石漠化(Rock Desertification)是曾有植被和土壤覆盖的喀斯特地区转变为岩石裸露景观的过程[93]。中国西南的喀斯特分布面积达54万km2图1[94],是全球喀斯特集中分布三大片区之一的东亚片区中心,是“世界上最大的喀斯特连续带”[95]。该范围内居住着1亿多人口,包括4000万以上人口的31个少数民族。石漠化多发生在老、少、边、穷地区,与贫困问题相互交织、相互增强的恶性循环,成为制约喀斯特地区经济社会可持续发展的关键瓶颈。破解这种恶性循环是一个世界性难题[96,97,98]

图1

新窗口打开|下载原图ZIP|生成PPT
图120世纪50年代末至2010年中国沙漠化面积(a)及变率(b)(据王涛等[113]绘)

Fig. 1Desertification area (a) and variability (b) in China from late 1950s to 2010 (according to Wang Tao et al. [113])



1949年以来,尤其是进入21世纪,国家实施了一系列生态建设工程,不断地开展石漠化治理,取得了显著成就,科技研发成果在其中起到了重要支撑作用。中国喀斯特和石漠化研究首先从地貌学和水文地质学切入,继而以生态学和“人地关系”的视角开展,取得系列研究成果。在格局研究方面,提出了石漠化的概念和定义,制定了石漠化分级标准,明确了石漠化的空间分布,为分区治理提供了科学依据。迄2011年底,中国的石漠化土地总面积约为12万km2,主要分布在贵州、广西、云南、重庆、湖北、湖南、四川、广东8省(市、自治区)。在过程研究方面,将石漠化成因和驱动力归纳为自然和人为2个因素。自然因素包括碳酸盐岩地质背景、破碎多山的地貌、高温多雨的气候条件、稀缺且不稳定的土壤资源、结构简单而脆弱的生物群落;人为因素包括超载的人口、不合理的土地利用方式、相对落后的经济发展水平和产业结构[99,100],以及管理政策失误[101]。过程研究也关注石漠化的生态、社会效应。例如,探索了石漠化和土地利用变化对地下水水质[102,103]、土壤质量[104]、土壤侵蚀[105]的影响机制,分析了石漠化与当地经济[106]和贫困化[107]的关联。

在综合治理技术研发方面,针对不同喀斯特环境类型,以小流域为治理单元,进行多学科交叉、多种技术集成的综合开发治理,建立治理典型示范试验区。在喀斯特地下水探测、水资源调蓄与高效利用、土壤水分/养分优化利用与调控及漏失阻控、退化植被群落生态修复与优化配置、特色农业与复合经营等方面突破了一系列技术难题,创建了石漠化治理的“水—土—生—人”综合技术体系。通过石漠化治理,中国喀斯特石漠化面积2016年比2005年减少了3万km2 [108]Nature发文肯定了中国石漠化治理的成效[109]。在多空间尺度的综合研究和治理方面,发现石漠化的格局、过程、驱动力、效应与综合治理都表现出显著的空间尺度特征,以地理学家为主进行了多尺度的综合研究以反映其全面的系统特征,预测未来情景,制定相应对策,直接服务中国的区域可持续发展。

2.4.2 沙漠化和土壤风蚀研究直接服务西北地区的沙漠化防治 中国的沙漠化研究始于严钦尚[110]的“古沙翻新”(就地起沙)理论,随后****们逐渐认识到沙漠化只是荒漠化的一部分[111],并将其定义为“沙漠化是原非沙漠地区出现以风沙活动为主要标志的类似沙漠景观的环境变化过程”[112]。沙质荒漠化(沙漠化)是中国荒漠化的主要类型之一。中国西北干旱区(甘肃、新疆、内蒙西部、青海西部)和东部季风边缘区(内蒙中东部及陕西、山西、河北北部等)分布着广大的干旱、半干旱、半湿润地区[2,3],存在典型原生荒漠和沙漠化土地,截至2014年有沙化及流沙土地面积172.12万km2,占国土面积的17.93%[92],其中监测到中国北方的实际沙漠化面积在2010年为37.59万km2 [113],约占中国荒漠化土地总面积的14.39%。

土地沙漠化在不同时间尺度的动力机制不同,其中风沙活动是沙漠化的重要动力之一。目前的研究表明,20世纪50年代以来中国沙漠化地区风沙活动变化显著:20世纪70年代最为强烈,而1980—2000年代则处于低谷,其强度仅为70年代的20%~50%,甚至更低;而2000年以后,风沙活动减弱的趋势更为明显,呼伦贝尔、科尔沁及浑善达克等沙地发生沙漠化逆转;在鄂尔多斯地区,20世纪80年代前风沙活动强烈导致沙漠化迅速发展,而90年代以后风沙活动减弱,沙漠化发生逆转,风沙活动的强弱对沙漠化有决定性影响[114]。自20世纪50年代末至2015年,中国的沙化土地面积从30万km2增加到40万km2,在2000年达到峰值,之后逐年减少,21世纪以来,中国境内沙漠化面积已减少了约1.65万km2图1[113]。关于中国沙漠化成因的方面,自朱震达先生提出沙漠化主要是人类活动所导致的以来[115],许多****延续这一观点开展了相关研究[116],但一些研究发现,20世纪50年代末以来,人类活动对沙漠化过程的影响仅限于特定区域且成散点状分布[117],而中国沙漠化地区人类活动一直在增强,但20世纪80年代以来绝大部分沙漠化地区则发生沙漠化逆转[118]且表现为区域整体性逆转[119]。目前的研究也表明,在贺兰山以西的绿洲地区,沙漠化过程与水资源变化也密切相关[114]。因此,气候变化可能是中国北方地沙漠化整体变化的主导因素,人类活动则影响沙漠化变化的空间差异。

土壤风蚀是风力作用导致表土物质脱离原空间位置的过程[120],是导致土地沙漠化[121]、各种风沙灾害[122,123]、粉尘释放和大气环境污染[124,125]的首要环节,联合国环境署和100多个国家政府对此高度重视[126]。土壤风蚀的一个重要效应是粉砂细颗粒级被风力和沙尘暴吹离地表,在当地形成沙漠化土地,汉代以来等多次移民开发干旱区自然绿洲,形成以农田为主的农业绿洲,导致大规模干旱区绿洲沙漠化,河西走廊民勤、黑河下游居延海绿洲由于人类不合理的开发利用导致了随后的废弃和沙漠化,是人为作用导致沙漠化的典型例子[127,128,129]。在东部季风边缘区,近2000年来夏季风强盛时期会导致季风边缘降水丰沛,大规模移民开垦草原为农田,移民城镇和村落增加,但由于整体上气候是相对干旱的,随之发生大规模沙漠化,导致沙尘暴频发,耕地废弃,沙漠化土地得到自然恢复;随后的季风衰退时期,尽管降水减少,但由于人口减少,古城和耕地被荒弃,被开垦的土地自然恢复为草原,进而导致夏季风衰退背景下沙尘暴活动的减少。这就形成了多雨时期—沙尘暴次数多、强度大和少雨时期—沙尘暴少的组合特征(图2),说明距今2000年来的中国季风边缘区,人类活动对地表的影响就超过了自然过程[130],成为人类不合理活动导致土地沙漠化的典型例子。

图2

新窗口打开|下载原图ZIP|生成PPT
图2中国东部季风边缘区沙尘暴对人类活动和亚洲季风变化响应的示意图(据Chen[130]绘)

注:a夏季风强—人类活动强—沙漠化扩张—沙尘暴强时期;b夏季风弱—人类活动弱—植被恢复—沙尘暴弱的时期。
Fig. 2A schematic diagram of the response of sandstorms to human activities and Asian monsoon changes in the eastern monsoon marginal region of China (according to Chen[130])



中国的沙漠化整理、风沙灾害和土壤风蚀防治开始于1959年成立的中国科学院治沙队,由国内科研院所、高等院校和生产部门的约800名科技人员组成,对中国主要沙漠、戈壁、绿洲等开展大规模综合考察。1959—1965年间,建立了6个治沙综合试验站和20个治沙中心站,开展了防治风沙危害农田和铁路、防治土壤风蚀等的试验研究,揭开了综合研究沙漠及其治理的新篇章[131,132],此间取得了大量成果[133,134,135,136],锻炼培养出了一大批年轻科技人员,为后来风沙灾害、沙漠化和土壤风蚀防治的理论和技术研究以及工程布局奠定了坚实基础。1966—1977年科技人员克服困难坚持对多个绿洲的农田土壤风蚀和沙漠化防治开展技术研究,提出在绿洲外围实行封沙育草措施保护植被,在绿洲边缘建立带状和片状相结合的防沙林,靠近绿洲一带营造较宽的稀疏结构林带,选择长寿与速生、高大与低矮相间的树种搭配,绿洲内部采用窄林带小林网等技术[115],这些技术至今仍被广泛采用。1978—2000年是中国土壤风蚀理论和技术研究的大发展时期,土壤风蚀理论和技术研究走向定量化[137,138,139,140,141,142,143],为国家级防沙治沙工程,如“三北防护林工程”等的实施提供了可靠理论依据和技术支撑。进入21世纪,在诸如国家“退耕还林工程”(第二期)等区域性重大工程促进下,对20世纪60年代以来有关沙漠化和土壤风蚀研究成果进行了全面总结[112, 132, 144],同时在土壤风蚀防治理论和技术、土壤风蚀预测模型、风蚀物定向传输计算方法等方面也取得新进展[145,146,147,148,149,150,151],适应重大工程后期效益评估和未来技术需求。进一步发展出的包括耕地、沙地(漠)和草地(灌)3种土地利用类型的土壤风蚀模型,成为中国官方用于计算土壤风蚀模数的第一个定量模型[152],为准确掌握全国土壤风蚀面积、分布与强度及其影响因子的动态变化做出了积极贡献。

2.4.3 水土保持研究为东部季风区农业和生态持续发展提供理论支撑 水土流失是制约人类生存和社会可持续发展的重大环境问题。中国现代水土流失研究始于20世纪40年代的土壤侵蚀径流小区观测,此后陆续在黄河流域天水地区开展水土保持植被、防护堤坝和梯田等研究[153,154]。1949年以后,科技部、水利部和中国科学院等部门陆续在全国水土流失重点区域建立了野外观测试验台站,开展水土流失野外定位观测和科学研究。随着监测指标和监测设备的不断完善,逐步形成了完善的全国性监测网络。目前,全国已经建立了784个监测点和75846个野外调查单元,并形成了天地一体化监测网络[155]

随着中国水土保持基础研究的不断深化,中国地理学家在水土流失发生机理[156,157,158,159]、坡面土壤侵蚀模型及预报[159,160,161]、植被减蚀机理[159, 162-163]、水土保持效益评价[157, 159-160, 164-167]等基础研究方面取得了系列成果,逐步形成了具有中国特色的水土保持学科体系[168]

在应用研究方面,中国在土壤侵蚀分类、分区和制图等方面取得了一系列重要成果。20世纪60年代首次编制了中国土壤侵蚀类型图,经过多年的成果积累,逐步形成了对全国土壤侵蚀分异规律和水土流失分区防治的一些重要认识[159, 169-173]。在上述成果的基础上,结合区域经济、人文、社会分异规律,最终编撰完成了《中国水土保持区划》,将中国划分为东北黑土区、北方风沙区、北方土石山区、西北黄土高原区、南方红壤区、西南紫色土区、西南岩溶区和青藏高原区8个水土保持一级区、41个二级区和117个三级区。该规划为国内各级各类水土保持区划(或分区)、规划、实施方案制定以及其它水土保持工作提供了重要的技术支持。此外,在长期实践中还逐步形成了以小流域为单元的综合治理模式与技术体系[164, 174-175]。比如在水土流失最为严重的黄土高原地区,形成了具有黄土高原特色的28字国土整治方略[176]和水土保持型生态农业技术体系[164, 175]。经过不断努力,中国水土保持工作取得了巨大成就。2018年中国水土流失动态监测公报(http://www.mwr.gov.cn)显示,2018年中国水土流失面积273.69万km2,占全国国土面积(不含港澳台)的28.60%。与2011年相比,水土流失面积减少了21.23万km2,减幅为7.20%。其中水力侵蚀面积115.09万km2,占水土流失总面积的42.0%,占国土面积的12.0%;风力侵蚀面积158.60万km2,占水土流失总面积的58.0%,占国土面积的16.6%。当前,全国水土流失的基本特点表现为:① 水土流失面积持续减少;② 水土流失以中轻度为主,强度明显下降;③ 水力侵蚀减幅大,风力侵蚀减幅相对小;④ 东部地区减幅大,西部地区减少绝对量大。

中国水土流失治理理念不断随国家的需求而变化。20世纪50年代以植树种草为主要措施,旨在减少严重的土壤水土流失;60—80年代主要以基本农田建设为主,旨在解决农业生产力低下的问题;80年代以后在系统总结之前的经验基础上,提出了以大流域进行总体规划、以小流域为单元的水土流失综合治理方针,旨在提高流域生态保护与经济发展;21世纪10年代以后,中国开始推行“山水林田湖草生命共同体”建设,旨在提高生态—经济—社会三方的协同发展。在这些研究中,地理学家均发挥了积极作用,先后获得多项国家科技进步奖,为农业和生态可持续发展做出了贡献。

2.4.4 塔里木盆地水资源调控与生态屏障建设 塔里木河是发源于喀喇昆仑山流入新疆塔里木盆地的中国第一大内陆河,自然条件下支流众多、流入盆地后自然游荡摆动较大,沿岸时令湖泊众多且天然林草茂盛。塔里木河两岸从20世纪50年代开始,为了流域内人口迅速增加和粮食生产的需求,对中游地区土壤评级并分析了其改良利用前景[177],研究了沿岸地区的水文地质条件、生荒地开垦、盐渍土改良等问题[178],实行了大规模农业垦殖,客观上打破了原来就十分脆弱的自然生态系统平衡,土地沙漠化、盐渍化严重,水资源问题突出,影响呈逐步加剧态势,生态环境问题突显[179]。1949年以来,塔里木河流域经历了资源无序开发、生态环境恶化、综合规划治理和治理初见成效等4个时期,自然地理学研究在规划和治理上都起到重要的作用。

20世纪50—60年代大规模农垦导致塔里木河上游来水减少了近50%,阿拉尔到卡拉损失水量近80%,卡拉以下河水全部进入大西海子水库,大西海子水库以下河道全部断流[180];20世纪70年代末,专家****们关注到塔里木河流域生态环境的变化及成因,注重资源开发利用与生态环境的关系问题,塔里木河流域综合考察、遥感综合调查等重大综合性科研项目陆续开展[181,182];20世纪80年代,中国科学院新疆生物土壤沙漠所、新疆地理所等研究单位开展了塔里木河流域的沙漠化特征及其变化过程和主要植被群落特征等研究[183,184],并在塔里木河上游建立蒸发试验站;20世纪90年代,塔里木河流域生态环境趋于恶化,地理学家主导相继完成了“塔里木河干流轮廓规划设想”方案和“塔里木河干流流域规划”,塔里木河流域治理也列入了国家大江大河治理计划。

随着中国西部大开发战略的实施,塔里木河流域的生态环境问题进一步得到重视,在塔里木河治理工程、应急输水和水量调度等的生态环境效应研究方面取得新进展,支撑了塔里木河流域近期综合治理[185,186],中国科学院启动的塔里木河流域近期综合治理工程生态成效评估显示,2001—2013年间,塔里木河流域综合治理工程实现了向下游输水的目标,结束了下游断流近30年的历史,下游绿色走廊的自然环境得到了改善,地下水位明显升高、天然植被逐渐恢复、土地沙漠化的趋势得到了初步遏制,取得了良好的生态、经济和社会效益[187,188]。此外,地理学家还提出了适宜不同区域和不同立地条件的可持续生态建设和管理模式,特别是为塔里木盆地南缘区域的生态屏障建设和生态产业发展提供了科学指导和实践范例[189]

围绕塔里木沙漠公路防护林生态工程建设,中国科学院新疆生态与地理研究所开展了防沙植物选育技术[190]、土壤水盐运移规律研究[191,192]、立地造林技术[193]等的系统研究,筛选出了适用于塔里木沙漠公路防护林生态工程的植物种,解决了流动沙漠地区高矿化度水育苗和灌溉造林等技术难题,建立了流动沙漠地区非宜林区立地类型划分指标体系并划分了立地类型区和立地类型,提出了因害设防的植物种配置模式和林带结构模式,创建了流沙地高矿化度水灌溉造林技术模式[194],为贯穿塔克拉玛干沙漠的塔里木沙漠公路防护林生态工程建设提供了科技支撑。塔里木沙漠公路防护林生态工程开创了世界防沙治沙的先例,引起国内外广泛关注,《第一条绿色走廊穿越塔克拉玛干沙漠》被评为2006年度中国十大科技进展新闻、2008年度中国十大“国家环境友好工程”、2014年度“中国十大最美公路”。“塔里木沙漠公路防护林生态工程建设技术开发与应用”获2008年度国家科技进步二等奖。

2.5 地理综合研究推动黄淮海平原风沙盐碱地中低产田改造取得良好效果

黄淮海平原也称华北平原,指黄河、淮河和海河下游的冲积平原,包括京、津、冀、鲁、豫、苏、皖5省2市,总面积约35万km2,是中国最大的冲积平原和重要的粮食生产区,耕地面积达18万km2。黄淮海平原光照充足,热量资源丰富,地势平坦,土层深厚,开发历史悠久,是中国重要的农业区域之一。然而黄淮海平原长期以来受到洪涝、干旱、盐碱、风沙等多种自然灾害的危害,农业生产潜力难以发挥。1949年后中国对黄淮海平原5.47万km2退化土地进行了以改土治水为中心的大规模治理,取得了显著效果。20世纪50年代以来,中国科学院先后在黄淮海地区建立了地理研究所禹城综合试验站;石家庄现代农业研究所栾城生态农业试验站、南皮生态农业试验站;土壤研究所封丘农业生态试验站、怀远农业生态试验站;兰州沙漠研究所沙河试验站、延津试验站;南京地理与湖泊研究所辛店试验站。20世纪80年代,中国科学院地理研究所在山东禹城县农业发展中的工作目的与农业区划近似,而形式与方法不同。20世纪50—60年代在该县小范围开展了为排水不良的地域发展农业进行试验,比较快地取得明显增产效果。20世纪至80年代,工作范围扩大为禹城全县,在考察基础上布置试验,研究工作与推广工作紧密联系,全县农业生产不断提高。1990年起,又将禹城经验辐射到鲁西北地区,实际效果非常显著,该工作有3个特点:① 长期性;② 与生产密切结合;③ 以开发试验为主。禹城站的试验工作出色地兼具此3个特点[195]。本节重点总结自然地理发挥综合研究的学科优势,为华北平原主要粮食生产基地的建设做出的重要贡献。

2.5.1 盐碱地改良技术应用 早在1954年,中国科学院地理相关研究所与水利部等相关部门、单位合作,在中科院南京土壤所熊毅、席承藩等领导下,土壤调查队对华北平原的土壤进行了系统的调查,完成了一套1∶20万的土壤图集,编写了《华北平原土壤》专著,为华北平原的旱涝碱治理提供了基础资料,提出了综合治理方案。针对该地区的水盐运动规律和资源环境条件,改良措施可概括为3大类:水利改良、农业措施改良和化学改良。由于盐渍土形成条件和性质的复杂性,在研究和应用单项技术的同时,都趋向于强调综合措施改良[196]。20世纪90年代以前,盐渍土改良的综合措施强调的是水利工程和农业生物措施的结合,一个地区或流域的水盐平衡要通过灌排来调节和控制。在规划和设计灌排系统时,综合运用排、灌、调、蓄、补等各种措施,调控灌溉水量和地下水位及水盐动态变化,达到旱、涝、盐、碱的综合治理[197]

冲洗和排水是水利改良盐渍土的重要措施和基本条件。对于难以通过深沟进行自流排水的盐渍土地区,采用井灌井排,实行浅井、中井、深井结合,组成井、沟、渠体系,综合运用排、灌、蓄、补等措施[196]改良盐渍土。井灌井排适用于地下水位较高、土壤渗透性好,具有一定厚度含水层而水质又适用于灌溉的地区,地理学家们结合井灌井排及其他农业措施,提出了“井、沟、平、肥、林、改”的综合配套技术[198]。对于土壤含盐量高和地下水矿化度高的咸水区,采用浅群井强排灌技术,有效促进了耕作层土壤的迅速脱盐[199]。禹城试验站还构建了鱼塘—台田系统,通过抬高农田高度,促进鱼塘和台田的水盐交换速率,实现台田土壤快速脱盐,经济和生态效益明显[198]。对于碱化土壤,中国科学院南京土壤所提出了以石膏或磷石膏改良瓦碱土的有效措施,结合深翻,发现石膏或磷石膏施用量13.3~15.0 kg/m2效果明显。在天然文岩渠流域也采用放淤抬高地面、阻隔土壤返盐的放淤压盐改良盐碱地的措施[200]。这些措施均取得了良好效果。

在黄淮海平原近滨海缺水盐渍区,提出了浅层地下水的活化利用与调控技术、井灌条件下的盐分动态与调控技术、缺水盐渍区土壤供肥能力与调控技术[201]。针对滨海盐碱地,由于地下水埋深浅,通过水利工程降低地下水位困难,地下水矿化度高、土层结构差等关键问题,以生物有机肥为核心,快速改良土壤结构,切断毛管水上升通道,提高作物抗逆性,结合耐盐作物品种以及农艺调控技术,提出了滨海盐碱地快速改良的综合配套技术。

2.5.2 风沙地改良技术应用 风沙土地也是黄淮海平原的重要退化土地之一,面积约2.03万km2。其中丘垄状沙土与起伏沙地土壤0.83万km2,平沙地土壤1.20万km2。此外,引黄灌溉每年也造成大量淤沙沉积,形成大面积沙荒地[196]。大量实践得出,黄淮海平原半湿润地区季节性风沙化土地治理的基本模式是“水利先行、平丘固沙、林网建设、果农间作、土地用养结合”。采取的治理开发配套技术包括:平丘固沙工程技术、农田防护林体系建设技术、沙地经济林建设与栽培技术、沙地培肥改土技术、沙地农业立体种植技术。

以山东禹城沙地风蚀的防治与风沙地逆转技术为代表,建立了“水利调控、林草结合、生物覆盖和立体农业”综合治理配套技术,包括以渠、林、路、田分割沙地,构成网络化整体格局,用配套工程进行风沙地综合整治的宏观控制。形成乔、灌、草相结合的防护体系;渠、井水利体系和林网防护下的果农间作的防风蚀体系。风沙地通过改造后,沙地开发途径不尽相同,如夏津沙地生态农业模式、延津沙地生态农业模式等[196]。黄淮海平原经过数十年的综合治理和开发利用,大部分盐碱地、风沙地得到改良,成为高产农田(图3)。以黄淮海中地产田改造为主的技术成果获得国家科技进步奖特等奖。

图3

新窗口打开|下载原图ZIP|生成PPT
图3黄淮海盐碱地和风沙治理前后对比

注:a、b为禹城北丘洼采用浅群井强排强灌技术改造重盐碱地前后(1990年5月);c、d为禹城沙河洼古河道采用风沙地逆转综合技术治理前后(1989年3月)。
Fig. 3Comparison of saline-alkali land and sandy land in the Huang-Huai-Hai Plain before and after treatment



2.6 冻土工程研究为中国冻土工程与寒区大型建设提供科学支撑

中国作为世界第三冻土大国,多年冻土面积为215万km2 [202],多年冻土区的大型工程建设面临严峻挑战[203]。青藏铁路、青藏公路、寒区高速铁路等工程建设最具代表性,同时也代表着冻土区重大工程建设的世界先进水平。青藏铁路冻土路基工程、青藏公路冻土路基工程、哈尔滨—大连季节冻土区高速铁路路基工程展示中国冻土与寒区工程的主要进展。关于多年冻土的基础研究进展已有另文报道[2],本文仅总结中国地理学相关单位在冻土工程方面的研究成果。

2.6.1 青藏铁路冻土路基工程 青藏铁路是世界上海拔最高和线路最长的高原铁路,要穿越超过550 km的连续多年冻土区长度。由于青藏高原的多年冻土大多属高温冻土高含冰量地段,极易受工程和气候升温的影响产生融化下沉[204,205]。因此,如何克服高温高含冰量路段冻土路基融化下沉,并保证其路基稳定性是青藏铁路建设的核心关键问题[203, 206]

程国栋率领的团队在国际上创造性地提出了以调控热传导、对流、辐射为理论基础的冷却路基、降低多年冻土温度设计新思路,即冷却地基的办法。冷却地基法可以减少传入地基土体的热量,以保护冻土的热稳定性为核心,达到保护路基工程和其他铁路工程结构物稳定的目的,从根本上解决了青藏铁路多年冻土筑路技术核心难题,解决了高温高含冰量多年冻土路基稳定性世界性难题。程国栋团队还提出了以调控冻土路基热传导、对流和辐射为理论基础的一整套筑路工程技术,建立冻土工程长期稳定性评价理论和方法,解决了气候变化和工程热扰动影响下冻土路基修筑技术难题,促进了冻土工程理论研究的创新与突破[207,208,209]。研究成果在青藏铁路设计和建设得到全面应用,保障了青藏铁路成功建设和安全运营,平均时速达到100 km/h,创造了世界冻土区铁路的最高时速。2008年青藏铁路获国家科技进步特等奖,程国栋、马巍被俄罗斯工程院选为外籍院士,2014年程国栋获得国际冻土协会(IPA)终身成就奖,标志着中国冻土工程研究跻身于世界领先水平。

2.6.2 青藏公路冻土路基工程 青藏公路(国道109线)始建于20世纪50年代,跨越昆仑山和唐古拉山,穿越超过700 km的多年冻土区,它是人类高原多年冻土交通工程的奠基之作,尤其是中国在青藏高原气候寒冷、冻融循环剧烈、强紫外线辐射地区大面积修筑沥青路面获得成功,一举突破了多年冻土区不能铺筑黑色路面的“科学禁区”[210,211]

由于最初对冻土的不了解,青藏公路开始修建时没有采取任何防治冻土变化的措施,路基高度普遍较低,导致了以后不可逆的冻土工程病害隐患,冻土融化下沉、道路翻浆、路基纵向波浪沉陷等严,重影响行车安全[212]。1973—1985年青藏公路二级升级改造,实施了路基加宽和路面黑色化,虽然路面条件得到改善,但由于沥青路面强吸热和阻隔蒸发散热,路面下地温较正常值高出5 oC以上,长年的热量积累诱发了沥青路面下路基融化夹层的形成及路基融沉变形、路面沉陷,影响了道路功能的发挥;1992—1996年和1996—1999年实施了一、二期青藏公路多年冻土区整治工程,局部路段抬高路堤保护冻土,但高原环境下路堤阴、阳坡吸热的巨大差异又引发了阳坡侧路基人为上限下降,造成阳坡侧纵向开裂,路基纵向不对称变形加剧[213,214,215];2002—2004年又实施了青藏铁路施工期青藏公路病害整治改建工程,广泛吸纳了“主动保护冻土的”思路,提出了符合公路特点的冻土区划与冻土分类标准、多年冻土区公路路堤尺度与黑面效应、冻土区公路路面结构与材料设计技术、施工技术、公路养护技术等,保障了青藏公路的安全运行,提升了中国公路冻土工程研究的世界领先水平[211]。2008年该项工程成果荣获国家科技进步一等奖。2018年8月1号,中国首条穿越青藏高原多年冻土区的共和—玉树高速公路修建成功,标志着中国公路冻土工程研究更上了一个台阶,为未来青藏高速公路的修建奠定了良好的基础。

2.6.3 哈尔滨—大连季节冻土区高速铁路冻土路基工程 哈尔滨至大连高速铁路(哈大高铁)是世界上第一条寒区高速铁路。该线穿越东北地区中部山前平原,沿线冬季天然最大冻深处在0.88~2.90 m之间,地下水位埋深浅,防冻胀的问题是哈大高铁需要解决的主要问题。哈大高铁设计中确定了以温度为主导因素,合理确定季节冻深的合理取值;以岩性条件(土体性质)为基本因素,确定换填土体冻胀分类;以控制(截、排、堵)水分在土体冻胀过程不同阶段的迁移方向为辅助措施,最终达到控制地基土体季节冻胀和基础冻拔的工程目的,保证寒区高速铁路平稳运行[216,217]。但铁路修通后,由于对微冻胀问题认识不足,导致了路基普遍出现了冻胀变形,严重影响了高铁的安全运营[218,219]。哈大高速铁路建成通车初期运营实行冬季和夏季2张运行图,分别按200 km/h和300 km/h速度行驶。后经整治处理后直至2015年12月1日,全年按300 km/h速度运营。哈大高铁的成功修建不仅深化了微冻胀的研究,而且为世界寒区高速铁路建设奠定了重要的科技范式。

2.7 化学元素异常地理分布和机理研究服务国家地方病防治

人类的健康状况与其生存的地理环境密切相关,地理环境中化学元素异常和地域分异对人体健康的负面效应,导致地方病的发生。中国与地理环境化学因素有关的地方病有克山病、大骨节病、碘缺乏病、地方性氟中毒、地方性砷中毒等。20世纪60年代末,应中共中央北方防治地方病领导小组和卫生部的要求,地理研究所与中科院其他地学相关研究所及卫生和疾病控制部门通力合作,开始长达50多年的克山病、大骨节病等地方病的调查及其环境病因与防治的研究。在克山病、大骨节病、地方性甲状腺肿、地方性氟中毒、地方性砷中毒以及鼠疫等疾病的地理流行和防治等领域,承担了大量的国家和地方科研项目,共获得国家和省部级奖励近30项,为中国地方病病因研究和防治做出了巨大的贡献[220]

2.7.1 发现低硒带,确定环境病因,为克山病和大骨节病防治提供有效途径 20世纪60年代末至80年代初,中国科学院地理研究所研究发现克山病和大骨节病主要分布在中国从东北到西南、以温(暖)带森林和森林草原棕、褐土系和棕壤性紫色土系为中轴的地带性的空间分布规律和地理流行特点[221,222,223]。中国科学院地理研究所与有关单位通过大规模的考察和采样,发现中国从东北到西南的自然环境低硒带,克山病和大骨节病的地理分布与自然环境低硒带具有高度一致性[224,225],确定了克山病和大骨节病与自然环境低硒相关,并从地理学地域分异规律上阐述了环境和生物体中硒的地理分布规律及其形成机理,至此克山病和大骨节病病因学研究上取得了突破性进展[226,227]。该项研究成果获1978年全国科学大会奖和中国科学院重大科技成果奖,1986年中国科学院科技进步一等奖等。20世纪80—90年代,中国科学院地理研究所确定了人地生态系统硒分带指标体系,编制硒生态景观图(图4);系统地论证了大骨节病、克山病与硒缺乏的关系[228],提出施用硒肥和补硒为主的防病治病策略,卫生部利用这些成果在病区大面积推广补硒以提高人体的摄硒量,达到防病治病的效果,有效控制克山病和大骨节病的爆发流行[229,230]。进入21世纪以来,中国科学院地理科学与资源研究所通过对青藏高原等大骨节病持续活跃区的系统和动态研究,揭示病区大骨节病流行规律与膳食硒含量的关系,建立以膳食结构调整为主要途径,改善区域人群硒的营养状况,并在西藏大骨节病区的小学进行多年膳食调整实践,大大降低该区儿童大骨节病患病率,达到防控大骨节病的目的[231,232,233,234,235]

图4

新窗口打开|下载原图ZIP|生成PPT
图4中国硒带分布[236]

Fig. 4Distribution of selenium belt[236]



2.7.2 编制《中华人民共和国地方病与环境图集》,系统揭示中国地方病分布规律及其与地理环境的关系 中国科学院相关研究所和中共中央地方病防治领导小组办公室历时10年,编辑出版了《中华人民共和国地方病与环境图集》[236]。该图集首次系统、全面展示中国克山病、大骨节病、地方性甲状腺肿(包括地方性克丁病)和地方性氟中毒的分布规律、流行特点及其与生态环境,特别是与环境化学因素的关系,为中国地方病病因提供了科学依据,为布置地方病防治力量、因地制宜地开展地方病防治做出了重大贡献。为此,中国科学院地理研究所环境与地方病研究组先后获中共中央北方地方病防治领导小组办公室颁发的“全国地方病防治先进集体”称号和国家科技进步奖等多项奖项。

2.7.3 编制《中华人民共和国鼠疫与环境图集》,系统揭示了鼠疫流行的时空流行规律,阐明了鼠疫疫源地的类型、分布及其长期赋存机制 中国科学院地理科学与资源研究所等单位编辑的《中华人民共和国鼠疫与环境图集》于2000年出版[237]。该图集客观、科学地阐述了1754—1997年中国鼠疫流行的时空特征,揭示了疫源地成因与分类、鼠疫菌生态生化特征、宿主与媒介等的地域分异特征及其与环境的关系,并阐明鼠疫疫源地的形成和分布与地球化学环境密切相关,为鼠疫疫源地研究和鼠疫防治等提供了崭新思路[220]。在此基础上,还建立了鼠疫爆发和流行与气候因素如干旱、洪涝等的关系[238],分析了各鼠疫疫源地的适宜生境,预测气候变化情景下鼠疫疫源地的空间变化,为鼠疫防治提供科学依据[239]

2.7.4 建立了环境砷氟暴露与地方性砷氟中毒的剂量与效应关系,为地方性砷氟中毒防治和国家饮水安全工程实施提供了科技支撑 自20世纪80年代末在中国大陆发现地方性砷中毒以来,中国地理工作者就投身于地方性砷中毒的地理流行规律和环境防控研究。通过地理学调查与流行病学调查,查明中国大陆砷、氟中毒的空间分布规律与地理流行特点,及其与环境砷氟异常分布规律的关系[240,241]。阐明中国饮水型砷病区地下水砷异常分布的环境特征和成因机理[242]。来自中国科学院地理科学与资源研究所等单位的地理****通过对全国饮水型、燃煤型砷氟中毒和砖茶型氟中毒系统研究,阐述病区饮水砷暴露和燃煤砷暴露与砷中毒、以及饮茶氟暴露与氟中毒的剂量效应关系[243,244],系统揭示水质改善对砷中毒流行规律的影响机制[245],为地方性砷氟中毒防治和“十一五”“十二五”国家饮水安全过程实施提供了重要的科学依据。中科院地理资源所研究还发现,补硒可有效缓解砷中毒病人的临床症状、降低体内砷负荷水平,为砷中毒防治提供新思路[246];为研制出高效固氟固砷剂,为降低燃煤砷氟暴露提供经济实用的系列技术[247]

2.8 空间定位观测与监测保障自然地理过程的创新研究

自然地理定位观测与监测研究是自然地理学过程分析、定量研究和机理解析的必要手段,有力支撑保障了自然地理学创新发展,为中国农业生产、生态建设与环境保护、可持续发展等提供了系统的科技支撑和理论依据。

2.8.1 自然地理定位观测站建设推动地理学过程的定量化研究 为深入揭示地理动态过程并给出定量结果,黄秉维于20世纪50年代提出在地理学中引入数学、物理、化学、生物等学科知识和新技术,开展地表实验研究,探索陆地表层系统的物理过程、化学过程、生物过程,研究地表能量转换物质迁移的规律性。基于此,中国自然地理学界开始重视野外定位实验研究,兴办野外实验站,推动地理学由单一区域性的工作到点、片、面相结合,由以定性为主到定性、定量相结合的重要转变[248]

20世纪50年代定位观测与实验主要体现在沙漠、冰川与湖泊水文研究,60年代开展了地表热量平衡与水分平衡、积雪与雪崩以及坡地侵蚀等定位观测与实验[249]。70年代后期,建立了禹城综合试验站,自然地理要素和过程观测、试验和研究体系初步建成。20世纪80—90年代,野外台站加强网络化建设,在继续坚持长期观测和关注国家需求的同时,特别注重科学前沿的原始创新[250]。1988年中国科学院组建了中国生态系统研究网络(CERN),系统规范了野外站点生物、气候、土壤等共同的观测指标,通过一定的技术流程、规范和设备实现观测指标和数据统一,同时对生态系统结构与功能、格局与过程的动态变化进行连续追踪与比较,探索生态系统管理优化模式[251]

21世纪初,在中国科学院CERN观测网基础上,启动了国家生态系统观测研究网络台站的建设任务,目前已经建成了一个国家尺度生态系统野外监测体系与数据共享系统,制订了监测指标体系及其技术规范,涵盖了全国的主要生态系统类型与关键区域,由18个国家农田生态站、17个国家森林生态站、9个国家草地与荒漠生态站和7个国家水体与湿地生态站等共同组成。以CERN为代表的野外台站先后开展了生态系统结构和功能、碳水通量观测、气候变化适应性试验、生物多样性监测、农田养分和水分平衡、高产高效生态农业理论和技术等方面的科学观测与实验研究,深入研究中国应对气候变化、生物多样性保护、农业持续高产、生态系统恢复等方面重大理论和技术问题,尤其是在农业发展中的重要生态系统过程与演变规律、气候变化与生态系统的响应和适应性、生物多样性保育与生态系统稳定性、脆弱生态系统演变与退化等方面取得了重大进展[252]。总体上,野外观测网络建设不断完善,为解释地理要素相互作用机理提供了支撑。实验地理学以观测数据为基础,揭示自然过程和机理,成为地理学研究的一个主要分支[253]。由孙鸿烈牵头的“中国生态系统研究网络的创建及观测研究和试验示范”项目获得2012年国家科学技术进步一等奖。

2.8.2 定位观测和监测系统科技成果有力支撑国家生态文明建设 1949年以来,中国实验地理学以野外台站为依托的成果转化卓有成效,为保障国家粮食安全、生态安全等做出了重要贡献。野外台站根据长期观测和试验研究的结果,将遴选出来的优化模式在更大范围内推广应用,实现区域生态保护与社会发展的有机统一,通过示范推广应用,服务于国家生态建设,并为可持续发展提供科学基础的目标[251]。全国不同类型野外台站系统通过建立示范区,研发现代高效生态农业、草地保护利用、生态恢复、退化湖泊治理等生态系统管理模式,为自然生态保护、生态恢复、现代农业生产等生态文明建设提供了科技支撑,促进中国生态建设和农业生产科技水平,推进区域产业发展[252]。中国科学院禹城综合试验站提出了治理盐碱地的综合配套技术、中低产田治理开发技术、农牧结合配套技术、高产高效现代农业配套技术等一系列农业技术和模式,并开展了相关农业技术和生产模式示范,在华北平原乃至全国产生了深刻影响。这一系列研究支撑黄淮海平原中低产田改造成果获得国家科技进步一等奖和二等奖。

2.9 空间分异的度量与统计归因地理探测器

空间异质性指不同地点地理现象的属性存在差异[254],这是空间自相关性以外的地理数据另外一个重要性质。地理数据的空间自相关性提出已有半个多世纪,目前已广泛应用于空间插值、空间回归等研究[255,256,257,258],已成为空间统计的理论基础[259]。基于空间自相关性的空间统计学假设研究对象的总体(Population)具有空间平稳性(Stationarity),并且样本具有独立同质分布(Independent Identically Distributed, IID)的性质。但是,在现实世界中以上假设条件往往不能满足[254],因为地理现象往往还具有空间异质性。

国际上对于多种形式的空间异质性进行了长期的研究,取得了一系列重要成果。现有研究成果表明,空间异质性的形式主要表现在以下几个方面:① 空间自相关性。此现象表达空间临近的事物具有相似性,同时也说明空间距离较远的事物具有差异性[255];② 局域空间自相关性(Local Spatial Heterogeneity)。此现象表达局域范围内地理属性与邻近区域存在差异。基于此性质的地学模型有多种,例如Gi统计[260]、LISA(Local Indicator of Spatial Association)[261]、Satscan软件[262]、点格局统计[263,264],以及地理加权回归(GWR)[265];③ 空间层次异质性(Spatial Hierarchical Heterogeneity, SHH)。此现象表达地理属性在不同空间尺度上的异质性[266,267]。基于此性质的地学模型包括多种,例如半变异函数、Ripley K统计[268]、多水平回归(MLM)[267]以及贝叶斯层次回归(BHM)[269,270];④ 空间分层异质性(Spatial Stratified Heterogeneity, SSH),简称空间分异性[271]。此现象表达地理属性在层内(Within Strata)具有较大的相似性,而在层间(Between Strata)存在较大的差异性。需要注意统计学用词“层(Strata)”其含义大体对应地理学中的“类型(Class)”或“区域(Region)”,与地理学特别是GIS里的“层(Layer或Coveage)”含义完全不同。前3种异质性已有广泛的研究和应用,但是第4种空间分异性的度量与统计归因尚缺少方法。

空间分层异质性在自然界广泛存在,例如:气候区、土地利用类型等,是自亚里士多德和洪堡以来人类表达地理规律的方式和探索地理格局背后机理的窗口。地理探测器的q统计是度量和归因空间分异性的一种新的统计学理论和方法[271,272,273],其原理是假设研究对象划分为若干类型或区域(图5)。与传统模型比较,地理探测器q统计无线性假设,并且通过分层增加了样本代表性,对于小样本统计具有优势,使其在相同样本量条件下较普通线性回归具有较强的统计势,提示可能存在因果关系。本方法还可计算2个变量间的包括乘性在内的广义空间交互作用,克服了传统模型中自变量共线性难题。

图5

新窗口打开|下载原图ZIP|生成PPT
图5地理探测器原理示意(据王劲峰等[273]绘)

注:研究区包括被解释变量Y以及空间分层X两个图层;X可用于表达地理分类或分区;$\bar{Y}$、$σ^{2}$为整个研究区的均值及方差,$\bar{Y}_{h}$、$σ^{2}_{h}$为第h个层的均值及方差。
Fig. 5Principle of geodetector (according to Wang Jinfeng et al. [273]) (The study area consists of two layers: the explained variable Y and the spatial stratification X; X can be used to express geographical classification or partitioning. $\bar{Y}$ and $σ^{2}$ are the mean value and variance of the entire study area, $\bar{Y}_{h}$ and $σ^{2}_{h}$ are the mean value and variance of the h layer)



地理探测器与传统的方法相比,其地理学含义清晰、原理普适、形式简洁、统计结果具有明确的物理含义。自2010年提出,已被26个国家和地区的****运用于50多个自然与社会科学分支学科,发表了800多篇中英文文章(截至2020年1月31日)。在这些研究中地理探测器方法主要用于度量地理要素的空间分异性、解析空间分异的非线性驱动因子、研究多个解释变量的交互作用(详见http://www.geodetector.cn)。

3 展望

1949年以来,自然地理学通过综合自然区划、生态地理区划、综合区划和未来风险区划等的自然地理综合研究,直接服务了国家国土空间开发利用。土地资源的调查和研究、土地利用与土地覆被空间差异和变化驱动机制探索提供了中国人地关系协调发展的方案。以泥石流过程为主的主要灾害形成演化机理研究、单灾种到多灾种的综合风险研究、气候变化灾害风险评价体系建设、灾害风险评估等自然灾害过程和风险评估的系统研究直接服务了国家减灾救灾需求。中国西南地区的石漠化、西北干旱半干旱地区的沙漠化与土壤风蚀、东部季风区的水土保持等过程研究和防治技术研发促进国家荒漠化治理科学化。自然地理学家还根据国家需求积极投入到黄淮海平原风沙盐碱地中低产田改造,破解了盐碱地改良技术、风沙地改良技术的难题,取得了良好效果。针对中国多年冻土区普通和高速铁路、普通和高速公路等大型建设中遇到的冻胀变形等问题,自然地理学家积极投身到理论和实践研究,为中国冻土工程与寒区大型建设提供科学支撑。针对克山病和大骨节病、地方性砷中毒等地方病与地理环境关系探索,从化学元素异常的地理分布和地方病的空间分布关系解决了地方病防治的措施,为国家地方病防治做出了贡献。现代发展起来的地理探测器方法为地理空间分异研究提供了统计学工具,而空间定位观测与监测发展保障了自然地理过程的创新研究并支撑了国家生态文明建设。自然地理学的应用研究为国家经济社会发展和生态环境建设做出了应有贡献,获得了近30项国家科技进步奖,包括有重要贡献的特等奖2项、一等奖5项,也培养了一批自然地理学应用和实践研究的学术带头人。今后自然地理学应当与人文地理学和地理信息学进一步融汇,时刻根据国家需求和国际动态,积极开展应用基础和应用研究,将在下列3个方面进一步扩大自然地理的应用研究。

自然地理学在社会经济可持续发展需求的应用将继续增强。历经70年的发展,中国自然地理学在深入认识和了解掌握自然规律性的基础上,为农业生产、生态建设和区域可持续发展等提出了一系列新理念新方法新战略,起到积极的推动作用和科技支撑。中国自然地理学发展面临着广阔的应用前景。进入21世纪以来,可持续发展理念深入人心,强调保护地球生态系统,支持现在和将来的人类福祉[274]。2012年里约地球峰会上提出的可持续发展目标(SDGs),旨在承接千年发展目标(MDGs),是世界各国2016—2030年期间的关键目标任务[275]。2013年国际科学理事会(ICSU)、国际社会科学理事会(ISSC)等机构创立了“未来地球(Future Earth)”计划(2014—2023),并推动其成为应对全球环境变化、推进全球可持续发展的科学联盟。该计划强调自然科学研究与社会经济可持续发展相结合,为解决当前困扰人类发展的重点问题提供科学的解决对策,保障满足人类发展所需的食物、水、生物多样性与健康等的供给和其他环境功能与服务的有效管理[276,277]。中国将节约资源和保护环境确立为基本国策,以可持续发展为国家战略,高度重视生态环境保护、全球环境变化与人地关系。总体上,在联合国可持续发展目标、“Future Earth”等国际计划以及中国生态文明与小康社会建设、区域科学考察、“一带一路”倡议等国内发展目标需求的双重作用下,自然地理学区域基础与综合研究的学科特色,理论与实践相结合的研究机制,将对社会经济可持续发展的科技支撑作用不断加强,在中国特色社会主义建设上具有广阔的应用前景。

自然地理学应用研究领域与范围将进一步拓展。在全球环境变化驱动下,相关的国际重大科学计划相继启动,如从国际生物圈计划(IBP)到人与生物圈计划(MAB),再到千年生态系统评估(MA),从国际地圈—生物圈计划(IGBP)到全球变化的人文影响计划(IHDP)等,可以发现现代地理过程研究更加注重人类活动影响[278]。新时代自然地理学发展,需要更多地研究和考虑人类活动对自然环境的影响及反馈,提高研究成果的客观性和应用性,用以正确指导践行“绿水青山就是金山银山”的重要发展理念。未来应积极拓展自然地理学应用领域与范围,从传统的综合区划、荒漠化防治与农业增产等领域扩展到气候变化应对、灾害风险防范、环境污染控制、脆弱生态修复、生态系统和自然环境服务价值等与人类生产与生活密切相关的领域,为国家提供更加精准细致的决策建议和科学依据。

高科技应用与学科交叉融合将促进自然地理学应用能力提升。1949年以来,中国自然地理学与生存环境基础研究取得一系列重要进展[2],为自然地理应用与实践提供了重要的理论基础。在现代技术进步与学科交叉的有力推动下,中国自然地理学支撑解决社会经济可持续发展、自然与社会经济融合、生态文明建设等重大问题的能力将会有显著提升。自然地理学在过去积极学习物理、化学和生物学手段方法基础上,更应将地理信息系统和遥感等现代技术作为自然地理学主要技术手段,继续加强地理时空数据的可得性、连续性与拓展性;大数据方法与人工智能等新技术手段在自然地理学中将受到更为广泛地关注。同时,随着自然地理与人文地理、生态、经济等学科的深入融合,学科交叉的不断兴起,自然地理学将在更广阔范畴和更深入层次发挥独特优势。通过技术进步支撑与学科交叉相互促进,使得自然地理学将从过去的地理现象描述与表征,现在的过程机理解析,发展到未来的演化趋势预估,必将更好地应用于社会经济建设,有力推进中国生态文明与小康社会建设,服务国家和地区可持续发展。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Fu Bojie. Thoughts on the recent development of physical geography
Progress in Geography, 2018,37(1):1-7.

DOI:10.18306/dlkxjz.2018.01.001URL [本文引用: 2]
Physical geography is the cornerstone of comprehensive study in geography. On the basis of reviewing the main research progress of physical geography, this article discussed the new research directions of physical geography. Driven by global environmental changes, physical geography and its branches have achieved significant progress. Recent progress in physical geography mainly includes research on the synthesis of physical geographic processes, land surface system integration, land-sea interaction, and physical geography application for regional ecological or environmental management. Physical geography needs to face the global climate change and human needs, explore new methods of technology application, carry out integrated multi-factor and multi-process research, develop geographical models, model future environmental dynamics and sustainable development, and serve the national priorities. In the process of physical geography development, we should pay more attention to the following frontier areas and directions: (1) geomorphology needs to focus on the study of geomorphology and global environmental change, and geomorphology and human activities; (2) biogeography needs to focus on the exploration of frontier fields such as attribute geography, global change biogeography, and to connect spatial distribution in biogeography and human needs under the background of change; (3) hydrology needs to integrate the multi-factor, multi-process, and multi-scale research, and to promote the development of ecological hydrology, social hydrology, and hydrological morphology; (4) physical geography needs to play a key role in the research of climate change, and serve major international research projects in climate change; (5) comprehensive physical geography research needs to meet national priority demands, focusing on the coupling of human-land system, resource and environment carrying capacity assessment, ecological security pattern, and ecological civilization construction; (6) physical geography needs to merge the natural and human elements and processes, develop complex system simulation models, and analyze the coupling mechanism of natural and human factors and the dynamic change of land surface system.
[ 傅伯杰. 新时代自然地理学发展的思考
地理科学进展, 2018,37(1):1-7.]

[本文引用: 2]

Chen Fahu, Fu Bojie, Xia Jun, et al. Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects
Science China Earth Sciences, 2019,49(11):1659-1696.

[本文引用: 8]

[ 陈发虎, 傅伯杰, 夏军, . 近70年来中国自然地理与生存环境基础研究的重要进展与展望
中国科学: 地球科学, 2019,49(11):1659-1696.]

[本文引用: 8]

Zheng Du, Yang Qinye, Wu Shaohong. Physical Geography in China: Introduction. Beijing: Science Press, 2015.
[本文引用: 2]

[ 郑度, 杨勤业, 吴绍洪. 中国自然地理总论. 北京: 科学出版社, 2015.]
[本文引用: 2]

Cai Yunlong. New perspectives on physical geography
Geographical Research, 2010,29(1):1-12.

[本文引用: 1]

[ 蔡运龙. 当代自然地理学态势
地理研究, 2010,29(1):1-12.]

[本文引用: 1]

Lin Chao. Outline of physical regionalization of China (abstract)
Acta Geographica Sinica, 1954,20(4):395-418.

[本文引用: 1]

[ 林超. 中国自然区划大纲(摘要)
地理学报, 1954,20(4):395-418.]

[本文引用: 1]

Luo Kaifu. Chinese physical geography draft
Acta Geographica Sinica, 1954,20(4):379-394.

[本文引用: 1]

[ 罗开富. 中国自然地理分区草案
地理学报, 1954,20(4):379-394.]

[本文引用: 1]

Huang Bingwei. Draft of overall natural regionalization of China
Chinese Science Bulletin, 1959(18):594-602.

[本文引用: 1]

[ 黄秉维. 中国综合自然区划草案
科学通报, 1959(18):594-602.]

[本文引用: 1]

Ren Mei'e, Yang Renzhang. Natural regionalization in China
Acta Geographica Sinica, 1961,27:66-74.

[本文引用: 1]

[ 任美锷, 杨纫章. 中国自然区划问题
地理学报, 1961,27:66-74.]

[本文引用: 1]

Hou Xueyu, Jiang Shu, Chen Changdu, et al. Suggestion concerning the devdopmental directiom of agriculture, forestry, animal husbandry, sideline production and fishery in different natural regions of China
Chinese Science Bulletin, 1963,8(9):8-26.

[本文引用: 1]

[ 侯学煜, 姜恕, 陈昌笃, . 对于中国各自然区的农、林、牧、副、渔业发展方向的意见
科学通报, 1963,8(9):8-26.]

[本文引用: 1]

Zhao Songqiao. A new scheme for comprehensive physical regionalization in China
Acta Geographica Sinica, 1983,38(1):1-10.

[本文引用: 1]

[ 赵松乔. 中国综合自然地理区划的一个新方案
地理学报, 1983,38(1):1-10.]

[本文引用: 1]

Xi Chengfan, Zhang Junmin, Qiu Baojian, et al. Outline of China's Natural Divisions. Beijing: Science Press, 1984.
[本文引用: 1]

[ 席承藩, 张俊民, 丘宝剑, . 中国自然区划概要. 北京: 科学出版社, 1984.]
[本文引用: 1]

Qiu Baojian. A scheme for the comprehensive natural division of the country's agriculture
Journal of Henan University (Natural Science), 1986,16(1):21-28.

[本文引用: 1]

[ 丘宝剑. 全国农业综合自然区划的一个方案
河南大学学报(自然科学版), 1986,16(1):21-28.]

[本文引用: 1]

Hou Xueyu. The Regionalization of Natural Ecosystems in China and the Strategy in Macro-agricultural Development. Beijing: Science Press, 1988.
[本文引用: 1]

[ 侯学煜. 中国自然生态区划与大农业发展战略. 北京: 科学出版社, 1988.]
[本文引用: 1]

Fu Bojie, Liu Guohua, Chen Liding, et al. Scheme of ecological regionalization in China
Acta Ecologica Sinica, 2001,21(1):1-6.

[本文引用: 1]

[ 傅伯杰, 刘国华, 陈利顶, . 中国生态区划方案
生态学报, 2001,21(1):1-6.]

[本文引用: 1]

Zheng Du, et al. Eco-geographical Region System of China. Beijing: The Commercial Press, 2008.
[本文引用: 3]

[ 郑度, . 中国生态地理区域系统研究. 北京: 商务印书馆, 2008.]
[本文引用: 3]

Huang Bingwei. Notable issues on the work of regionalization in the new age//Editing Committee of Huang Bingwei Collection
Integrated Research in Physical Geography: Selected Papers of Huang Bingwei. Beijing: The Commercial Press, 2003.

[本文引用: 1]

[ 黄秉维. 新时期区划工作应当注意的几个问题
《黄秉维文集》编辑组. 地理学综合研究: 黄秉维文集. 北京: 商务印书馆, 2003.]

[本文引用: 1]

Wu Shaohong. The basic designation of integrated zonation: Case study of Chaidam Basin
Geographical Research, 1998,17(4):367-374.

[本文引用: 1]

[ 吴绍洪. 综合区划的初步设想: 以柴达木盆地为例
地理研究, 1998,17(4):367-374.]

[本文引用: 1]

Zheng Du, Fu Xiaofeng. A preliminary study on issues of integrated geographical regionalization
Scientia Geographica Sinica, 1999,19(3):193-197.

URL [本文引用: 1]
Regional study is an ancient and important tradition, forming the regional school of geography. In view of integrated or unified geography, regional study of sustainable development is an important level for approaching regional system of man-land relationship and effective way for coordinating man-nature relationship. Aimed at sustainable development the integrated geographical regionalization includes natural elements and human factors. Main principles for demarcation are as follows: combining regional differentiation of physical environments and human geography, integrating comprehensive analysis and principal factors, genetic unity, as well as linking regional frameworks with regional types, etc. Criterion and index system of the integrated geographical regionalization consists of environments, resources, economy, society and population, etc. The selected criteria and indices for demarcation should be practical, simplified, comparable, quantified, and reflecting dynamic state and trends of various regions. Regional types of development states may be identified based on the above mentioned results, then proposing a tentative scheme of the integrated geographical regionalization.
[ 郑度, 傅小锋. 关于综合地理区划若干问题的探讨
地理科学, 1999,19(3):193-197.]

[本文引用: 1]

Ge Quansheng, Zhao Mingcha, Zheng Jingyun, et al. Division of the terrestrial system in China: A case study from Huang's theory on terrestrial system science
Scientia Geographica Sinica, 2003,23(1):1-6.

[本文引用: 1]

[ 葛全胜, 赵名茶, 郑景云, . 中国陆地表层系统分区: 对黄秉维先生陆地表层系统理论的学习与实践
地理科学, 2003,23(1):1-6.]

[本文引用: 1]

Wu Shaohong, Liu Weidong. An integrated approach to classification of territorial systems: A case study of Tibetan Plateau
Geographical Research, 2005,24(2):169-177.

[本文引用: 1]

[ 吴绍洪, 刘卫东. 陆地表层综合地域系统划分的探讨: 以青藏高原为例
地理研究, 2005,24(2):169-177.]

[本文引用: 1]

Fan Jie. Draft of major function oriented zoning of China
Acta Geographica Sinica, 2015,70(2):186-201.

DOI:10.11821/dlxb201502002URL [本文引用: 1]
Major Function Oriented Zoning (MFOZ) is the blueprint for the future developmnt and protection pattern of China's territory, and has been raised to from major function zones planning to major function zoning strategy and major function zoning institution. From 2004 to 2014, the author organized a series of research projects to compose MFOZ for the country, studied basic theory of regional function and MFOZ technical process, and proposed that space controlling zones of national and provincial scales can be divided into four types: urbanized zones, foodstuff-security zones, ecological safety zones, cultural and natural heritage zones. On this basis, major function zones of county scale should be transferred to optimized, prioritized, restricted, and prohibited zones. In this paper, a regional function identification index system comprising nine quantitative indicators (including water resources, land resources, ecological importance, ecological fragility, environment capacity, disaster risk, economic development level, population concentration and transport superiority) and one qualitative indicator of strategic choice is developed. Based on the single index evaluation, comprehensive evaluation using regional function suitability evaluation index is conducted, aiming at testing several key parameters including lower limit of protection zones and upper limit of development zones at the provincial level. In addition, a planning-oriented zoning method of major function zones is also discussed, which has brought the first MFOZ planning in China. According to the MFOZ caliber, it is forecasted that national spatial development intensity will rise from 3.48% in 2010 to 3.91% in 2020. Furthermore, according to caliber of the provincial integrated MFOZ planning, the area of optimized, prioritized and restricted zones accounts for 1.48%, 13.60% and 84.92%, respectively, and that of urbanized, foodstuff-security and ecological safety zones accounts for 15.08%, 26.11% and 58.81%, respectively. In combination of analyses of development level, resources and environmental carrying status and quality of the people's livelihood, the main characteristics of MFOZ were identified. Through verification, MFOZ draft of national and provincial scales, which is interactively accomplished with "MFOZ Technical Process" put forward by the author, is mostly above 80% identical with what have been forecasted.
[ 樊杰. 中国主体功能区划方案
地理学报, 2015,70(2):186-201.]

[本文引用: 1]

Wu Shaohong, Zheng Du, Yin Yunhe, et al. Northward-shift of temperature zones in China's eco-geographical study under future climate scenario
Journal of Geographical Sciences, 2010,20(5):643-651.

URL [本文引用: 1]
Despite the well-documented effects of global climate change on terrestrial species’ ranges, eco-geographical regions as the regional scale of ecosystems have been poorly studied especially in China with diverse climate and ecosystems. Here we analyse the shift of temperature zones in eco-geographical study over China using projected future climate scenario. Projected climate data with high resolution during 1961–2080 were simulated using regional climate model of PRECIS. The number of days with mean daily temperature above 10℃ and the mean temperature of January are usually regarded as the principal criteria to indicate temperature zones, which are sensitive to climate change. Shifts due to future climate change were calculated by comparing the latitude of grid cells for the future borderline of one temperature zone with that for baseline period (1961–1990). Results indicated that the ranges of Tropical, Subtropical, Warm Temperate and Plateau Temperate Zones would be enlarged and the ranges of Cold Temperate, Temperate and Plateau Sub-cold Zones would be reduced. Cold Temperate Zone would probably disappear at late this century. North borderlines of temperature zones would shift northward under projected future climate change, especially in East China. Farthest shifts of the north boundaries of Plateau Temperate, Subtropical and Warm Temperate Zones would be 3.1°, 5.3° and 6.6° latitude respectively. Moreover, northward shift would be more notably in northern China as future temperature increased.

Li Mingxing, Ma Zhuguo. Soil moisture-based study of the variability of dry-wet climate and climate zones in China
Chinese Science Bulletin, 2012,57(28/29):2740-2754.

[本文引用: 1]

[ 李明星, 马柱国. 中国气候干湿变化及气候带边界演变: 以集成土壤湿度为指标
科学通报, 2012,57(28/29):2740-2754.]

[本文引用: 1]

Cheng Zhigang, Zhang Yuanmeng, Xu Ying. Projection of climate zone shifts in the 21st century in China based on CMIP5 models data
Climate Change Research, 2015,11(2):93-101.

[本文引用: 1]

[ 程志刚, 张渊萌, 徐影. 基于CMIP5模式集合预估21世纪中国气候带变迁趋势
气候变化研究进展, 2015,11(2):93-101.]

[本文引用: 1]

Chan Duo, Wu Qigang, Jiang Guixiang, et al. Projected shifts in K?ppen climate zones over China and their temporal evolution in CMIP5 multi-model simulations
Advances in Atmospheric Sciences, 2016,33(3):283-293.

DOI:10.1007/s00376-015-5077-8URL [本文引用: 1]

Yin Yunhe, Ma Danyang, Wu Shaohong. Enlargement of the semi-arid region in China from 1961 to 2010
Climate Dynamics, 2019,52(1-2):509-521.

DOI:10.1007/s00382-018-4139-xURL [本文引用: 1]

Sha Wanying, Shao Xuemei, Huang Mei. Climate warming in China since the 1980s and its impact on natural area boundaries
Science in China (Series D), 2002,32(4):317-326.

[本文引用: 1]

[ 沙万英, 邵雪梅, 黄玫. 20世纪80年代以来中国的气候变暖及其对自然区域界线的影响
中国科学(D辑), 2002,32(4):317-326.]

[本文引用: 1]

Zhao Xinyi, Zhang Huiyuan, Wan Jun. The impact of climatic change on the climate zones in the Qinghai-Tibetan Plateau
Scientia Geographica Sinica, 2002,22(2):190-195.

[本文引用: 1]

[ 赵昕奕, 张惠远, 万军. 青藏高原气候变化对气候带的影响
地理科学, 2002,22(2):190-195.]

[本文引用: 1]

Ye Duzheng, Jiang Yundi, Dong Wenjie. The northward shift of climatic belts in China during the last 50 years and the corresponding seasonal responses
Advances in Atmospheric Sciences, 2003,20(6):959-967.

DOI:10.1007/BF02915519URL [本文引用: 1]
Along the meridian of 105°E, the Chinese region are divided into two parts, east and west. The results show that in the east part of China the temperate extratropical belt, the warm extratropical belt, and the northern subtropical belt shift northward significantly, whereas the middle subtropical belt and the southern subtropical belt have less or no change. As for the northern subtropical belt, the maximal northward shift can reach 3.7 degrees of latitude. As for the warm extratropical belt, along the meridian of 120°-125°E, the maximal northward shift can reach 3-4 degrees. In the west part of China, each climatic belt changes little. Only in the Xinjiang area are the significant northward shifts. Correspondingly, it is found that in the last 50 years the traditional seasons have changed. For Beijing, Hailar, and Lanzhou, in general, summer becomes longer and winter shorter over the last 50 years. Summer begins early and ends late with respect to early 1950s. Contrary to the summer, winter begins late and ends early with respect to early 1950s. Furthermore, spring and autumn have changed over the last 50 years: with respect to early 1950s spring begins early and autumn begins late.

Wu Shaohong, Liu Wenzheng, Pan Tao, et al. Amplitude and velocity of the shifts in the Chinese terrestrial surface regions from 1960 to 2011
Chinese Science Bulletin, 2016,61(19):2187.

[本文引用: 1]

[ 吴绍洪, 刘文政, 潘韬, . 1960—2011年中国陆地表层区域变动幅度与速率
科学通报, 2016,61(19):2187-2197.]

[本文引用: 1]

Yang Jianping, Ding Yongjian, Chen Rensheng, et al. The interdecadal fluctuation of dry and wet climate boundaries in China in recent 50 years
Acta Geographica Sinica, 2002,57(6):655-661.

DOI:10.11821/xb200206004URL [本文引用: 1]
Based on the annual mean precipitation and evaporation data of 295 stations covering 1951-1999, the aridity index is calculated in this paper. The climatic regions in China are classified into three types, namely, arid region, semi-arid region and humid region. The number 0.20 (D) is the boundary between arid and semi-arid regions and 0.50 (D) is the boundary between semi-arid and humid climate regions. Dry and wet climate in China fluctuates markedly and differentiates greatly in each region in recent 50 years. The fluctuation amplitude is 20-400 km in Northeast China, 40-400 km in North China, 30-350 km in the eastern part of Northwest China and 40-370 km in Southwest China in recent 40 years. Before the 1980s (including 1980), climatic trend was dry in Northeast and North China, wet in the eastern part of the Northwest and very wet in the Southwest. In the 1990s dry signs appeared in the Southwest, the eastern part of Northwest China and North China. During the 1960s and 1970s dry and wet climates in China had single mutation changing wetness into drought. Moreover, drought shows an increasing trend. Dryly and wetly climatic boundary shows the fluctuation characteristics of the whole movement and the different fluctuations in East, West, South and North directions. The fluctuation of climatic boundary and the dry and wet variations of climate have 10 distinctive inter-annual features. It was drier in the 1950s, 1970s and 1990s in Southwest China, the eastern part of Northwest China (except Hexi region) and the first region in North China. It was wetter in the 1960s and 1980s.
[ 杨建平, 丁永建, 陈仁升, . 近50年来中国干湿气候界线的10年际波动
地理学报, 2002,57(6):655-661.]

[本文引用: 1]

Ma Zhuguo, Fu Congbin. Decadal variations of arid and semi-arid boundary in China
Chinese Journal of Geophysics, 2005,48(3):519-525.

[本文引用: 1]

[ 马柱国, 符淙斌. 中国干旱和半干旱带的10年际演变特征
地球物理学报, 2005,48(3):519-525.]

[本文引用: 1]

Chen Jie, Huang Wei, Jin Liya, et al. A climatological northern boundary index for the East Asian summer monsoon and its interannual variability
Science China Earth Sciences, 2018,48(1):93-101.

DOI:10.1360/02YD0148URL [本文引用: 1]

[ 陈婕, 黄伟, 靳立亚, . 东亚夏季风的气候北界指标及其年际变化研究
中国科学: 地球科学, 2018,48(1):93-101.]

[本文引用: 1]

Ma Danyang, Deng Haoyu, Yin Yunhe, et al. Sensitivity of arid/humid patterns in China to future climate change under a high-emissions scenario
Journal of Geographical Sciences, 2019,29(1):29-48.

DOI:10.1007/s11442-019-1582-5URL [本文引用: 1]
Changes in regional moisture patterns under the impact of climate change are an important focus for science. Based on the five global climate models (GCMs) participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5), this paper projects trends in the area of arid/humid climate regions of China over the next 100 years. It also identifies the regions of arid/humid patterns change and analyzes their temperature sensitivity of responses. Results show that future change will be characterized by a significant contraction in the humid region and an expansion of arid/humid transition zones. In particular, the sub-humid region will expand by 28.69% in the long term (2070-2099) relative to the baseline period (1981-2010). Under 2°C and 4°C warming, the area of the arid/humid transition zones is projected to increase from 10.17% to 13.72% of the total of China. The humid region south of the Huaihe River Basin, which is affected mainly by a future increase in evapotranspiration, will retreat southward and change to a sub-humid region. In general, the sensitivity of responses of arid/humid patterns to climate change in China will intensify with accelerating global warming.

Huang Wei, Yan Jingjing, Liu Chang, et al. Changes in climate regimes over China based on a high-resolution dataset
Science Bulletin, 2019,64(6):377-379.

DOI:10.1016/j.scib.2019.03.001URL [本文引用: 1]

Wu Shaohong, Pan Tao, Liu Yanhua, et al. Comprehensive climate change risk regionalization of China
Acta Geographica Sinica, 2017,72(1):3-17.

DOI:10.11821/dlxb201701001URL [本文引用: 2]
The influence of climate change on the natural environmental and socio-economic system leads to a series of adverse effects. With the development of socio-economy, climate change hazards interact with the environmental and socio-economic risk bearing body and form the spatial-temporal patterns of climate change risk. The systematic expression of the spatial-temporal patterns is the scientific foundation of climate changes adaptation. Based on the RCP8.5 climate scenario data from 2021 to 2050, we analyzed the variation trend and rate of temperature and precipitation, and assessed the hazard of extreme climate events including drought, heat wave and flood. Then, economy, population, food production and ecosystem were selected as the risk bearing bodies to assess the possible impacts of climate change as the indices qualifying the comprehensive climate change risk. Under the guidance of systematic principle, predominating factor principle, as well as the space consecution principle, we proposed a scheme of three-level regional division system for the comprehensive climate change risk regionalization in China. Finally, the Chinese mainland was divided into 8 climate change sensitive zones, 19 danger zones of extreme events and 46 comprehensive risk zones of bearing body. The result shows that the climate changes high risk zones in China under the RCP8.5 climate scenario from 2021 to 2050 include North China weak warming and precipitation increased sensitive zone, North China Plain heat wave danger zone, population-economy-food high risk zone, South China-Southwest China weak warming and precipitation increased sensitive zone, Yunnan-Guizhou mountain heat wave danger zone, ecosystem-economy-food-population high risk zone; coastal South China flood-heat wave danger zone, ecosystem-food-economy-population high risk zone. The comprehensive climate change risk regionalization of China covers the climate change scenarios, the extreme events, and the possible lost information of the socio-economy and ecosystem, which can provide scientific and technological support for national and local governments to cope with the climate change and risk management.
[ 吴绍洪, 潘韬, 刘燕华, . 中国综合气候变化风险区划
地理学报, 2017,72(1):3-17.]

[本文引用: 2]

Wu Shaohong, Liu Lulu, Liu Yanhua, et al. The Belt and Road: Geographical pattern and regional risks
Journal of Geographical Sciences, 2019,29(4):483-495.

DOI:10.1007/s11442-019-1611-4URL [本文引用: 1]
Building the Belt and Road is initiatives of China to promote win-win international cooperation in the new era, aiming at green, health, intellect and peace and the joint development with people of the countries along the route. Systematic analysis on environmental characteristics, evolutionary tendency and future risks are certainly the scientific fundamentals of sustainable development for the Belt and Road construction. Applied remote sensing monitoring, statistical analysis, this paper investigates the regional characteristics of climate, topography, soil, hydrology, vegetation cover and terrestrial ecosystems production, as well as socio-economic conditions. Based on the regional characteristics, the Belt and Road is divided into 9 sub-regions: Central and Eastern Europe sub-region with cold and humid climate, Mongolia and Russia sub-region with cold and arid climate, Central and West Asia arid sub-region, Southeast Asia sub-region with warm and humid climate, Pakistan arid sub-region, Bangladesh-India-Myanmar sub-region with warm and humid climate, Eastern China monsoon sub-region, Northwest China arid sub-region and Tibetan Plateau sub-region. Combining modeling simulation with scenario projections, natural disaster assessment methodology is used to assess the risk of extreme events including heat waves, droughts and floods in the coming 30 years (2021-2050). Results show that, on the basis of the regional framework, the western Eurasia would be a warming trend; both sides of Qinghai-Tibet Plateau in high temperature and heat waves risk; Central and Eastern Europe sub-region with cold and humid climate in high drought risk; Bangladesh-India-Myanmar sub-region with warm and humid climate as well as Eastern China in high risk of flooding.

Cai Yunlong. A study on land use/cover change: The need for a new integrated approach
Geographical Research, 2001,20(6):645-652.

[本文引用: 1]

[ 蔡运龙. 土地利用/土地覆被变化研究: 寻求新的综合途径
地理研究, 2001,20(6):645-652.]

[本文引用: 1]

Feddema J J, Oleson K W, Bonan G B, et al. The importance of land-cover change in simulating future climates
Science, 2005,310(5754):1674-1678.

DOI:10.1126/science.1118160URLPMID:16339443 [本文引用: 1]
Adding the effects of changes in land cover to the A2 and B1 transient climate simulations described in the Special Report on Emissions Scenarios (SRES) by the Intergovernmental Panel on Climate Change leads to significantly different regional climates in 2100 as compared with climates resulting from atmospheric SRES forcings alone. Agricultural expansion in the A2 scenario results in significant additional warming over the Amazon and cooling of the upper air column and nearby oceans. These and other influences on the Hadley and monsoon circulations affect extratropical climates. Agricultural expansion in the mid-latitudes produces cooling and decreases in the mean daily temperature range over many areas. The A2 scenario results in more significant change, often of opposite sign, than does the B1 scenario.

Foley J A, DeFries R, Asner G P, et al. Global consequences of land use
Science, 2005,309(5734):570-574.

DOI:10.1126/science.1111772URLPMID:16040698 [本文引用: 1]
Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fiber, water, and shelter to more than six billion people. Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity. Such changes in land use have enabled humans to appropriate an increasing share of the planet's resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality, and ameliorate infectious diseases. We face the challenge of managing trade-offs between immediate human needs and maintaining the capacity of the biosphere to provide goods and services in the long term.

Song X P, Hansen M C, Stehman S V, et al. Global land change from 1982 to 2016
Nature, 2018,560(7720):639-643.

URLPMID:30089903 [本文引用: 1]

Zhao Songqiao, Chen Chuankang, Niu Wenyuan. Thirty years in integrated physical geography in People's Republic of China
Acta Geographica Sinica, 1979,46(3):187-199.

[本文引用: 1]

[ 赵松乔, 陈传康, 牛文元. 近三十年来我国综合自然地理学的进展
地理学报, 1976,46(3):187-199.]

[本文引用: 1]

Shen Yuancun, Guo Huancheng. A national conference on 1:1 million land type maps and land use maps held in Chengdu
Acta Geographica Sinica, 1981,36(2):225-227.

[本文引用: 1]

[ 申元村, 郭焕成. 全国1:100万土地类型图和土地利用图工作会议在成都召开
地理学报, 1981,36(2):225-227.]

[本文引用: 1]

Shi Yulin. Land resource classification system of three maps of one millionth land resource in Northeast China
Resources Science, 1979(1):77-90.

URL [本文引用: 1]

[ 石玉林. 东北地区三幅百万分之一土地资源图的土地资源分类系统
自然资源, 1979(1):77-90.]

[本文引用: 1]

Wu Chuanjun. Land use survey and mapping for agricultural modernization
Resources Science, 1979(2):39-47.

URL [本文引用: 1]

[ 吴传钧. 开展土地利用调查与制图为农业现代化服务
自然资源, 1979(2):39-47.]

[本文引用: 1]

Su Biyao. Preliminary discussion on land quality evaluation method in large scale mapping: A case study of Southern Jiangsu
Journal of Nanjing Normal University (Natural Science Edition), 1981(2):45-52.

[本文引用: 1]

[ 苏璧耀. 大比例尺制图中土地质量评价方法的初步探讨: 以江苏南部地区为例
南京师院学报(自然科学版), 1981(2):45-52.]

[本文引用: 1]

Liu Yinhan. Research on the division, classification and grading of land resources in China
Journal of Shaanxi Normal University, 1983(1):187-196.

[本文引用: 1]

[ 刘胤汉. 关于我国土地资源分区、分类和分等的研究
陕西师大学报, 1983(1):187-196.]

[本文引用: 1]

Fu Bojie, Chen Liding, Ma Cheng. The index system and method of land sustainable use evaluation
Journal of Natural Resources, 1997,12(2):113-118.

[本文引用: 1]

[ 傅伯杰, 陈利顶, 马诚. 土地可持续利用评价的指标体系与方法
自然资源学报, 1997,12(2):113-118.]

[本文引用: 1]

Liu Jiyuan, Liu Mingliang, Zhuang Dafang, et al. Study on spatial pattern of recent land-use change in China
Science in China (Series D), 2002,32(12):1031-1040.

[本文引用: 1]

[ 刘纪远, 刘明亮, 庄大方, . 中国近期土地利用变化的空间格局分析
中国科学(D辑), 2002,32(12):1031-1040.]

[本文引用: 1]

Liu Jiyuan, Ning Jia, Kuang Wenhui, et al. Spatio-temporal patterns and characteristics of land-use change in China during 2010-2015
Acta Geographica Sinica, 2018,73(5):789-802.

DOI:10.11821/dlxb201805001URL [本文引用: 2]
3 km2, while cropland decreased by 4.9×103 km2, and the total area of woodland and grassland decreased by 16.4×103 km2. The spatial pattern of land-use changes in China during 2010-2015 was concordant with that of the period 2000-2010. Specially, new characteristics of land-use changes emerged in different regions of China in 2010-2015. The built-up land in eastern China expanded continually, and the total area of cropland decreased, both at decreasing rates. The rates of built-up land expansion and cropland shrinkage were accelerated in central China. The rates of built-up land expansion and cropland growth increased in western China, while the decreasing rate of woodland and grassland accelerated. In northeastern China, built-up land expansion slowed down continually, and cropland area increased slightly accompanied by the conversions between paddy land and dry land. Besides, woodland and grassland area decreased in northeastern China. The characteristics of land-use changes in eastern China were essentially consistent with the spatial governance and control requirements of the optimal development zones and key development zones according to the Major Function-oriented Zones Planning implemented during the 12th Five-Year Plan (2011-2015). It was a serious challenge for the central government of China to effectively protect the reasonable layout of land use types dominated with the key ecological function zones and agricultural production zones in central and western China. Furthermore, the local governments should take effective measures to strengthen the management of territorial development in future.]]>
[ 刘纪远, 宁佳, 匡文慧, . 2010—2015年中国土地利用变化的时空格局与新特征
地理学报, 2018,73(5):789-802.]

[本文引用: 2]

Cui Gonghao, Wu Jin. The spatial structure and development of Chinese urban fringe
Acta Geographica Sinica, 1990,45(4):399-411.

[本文引用: 1]

[ 崔功豪, 武进. 中国城市边缘区空间结构特征及其发展: 以南京等城市为例
地理学报, 1990,45(4):399-411.]

[本文引用: 1]

Yeh A G O, Li X. Economic development and agricultural land loss in the Pearl River delta, China
Habitat International, 1999,23(3):373-390.

DOI:10.1016/S0197-3975(99)00013-2URL [本文引用: 1]

Xu Yan, Zhang Fengrong, Yan Guoqiang, et al. The principles, criteria and methods for assessing policy of dynamic balance of total amount of cultivated land
China Land Science, 2005(1):44-48.

URL [本文引用: 1]

[ 徐艳, 张凤荣, 颜国强, . 关于建立耕地占补平衡考核体系的思考
中国土地科学, 2005(1):44-48.]

[本文引用: 1]

Zhao Qiguo, Yang Jinsong, Zhou Hua. "Ten Words" strategic policy for ensuring red line of farmland and food security in China
Soils, 2011,43(5):681-687.

[本文引用: 1]

[ 赵其国, 杨劲松, 周华. 保障我国“耕地红线”及“粮食安全”十字战略方针
土壤, 2011,43(5):681-687.]

[本文引用: 1]

Feng Zhiming, Zhang Pengtao, Yang Yanzhao. The scale of land conversion from farmland to forest or grassland, the grain response to it, and the relevant proposals in Northwest China
Geographical Research, 2003,22(1):105-113.

[本文引用: 1]

[ 封志明, 张蓬涛, 杨艳昭. 西北地区的退耕规模、粮食响应及政策建议
地理研究, 2003,22(1):105-113.]

[本文引用: 1]

Feng Z M, Yang Y Z, Zhang Y Q, et al. Grain-for-green policy and its impacts on grain supply in West China
Land Use Policy, 2005,22(4):301-312.

DOI:10.1016/j.landusepol.2004.05.004URL [本文引用: 1]

Li Xiubin, Zhao Yuluan. Forest transition, agricultural land marginalization and ecological restoration
China Population, Resources and Environment, 2011,21(10):91-95.

[本文引用: 1]

[ 李秀彬, 赵宇鸾. 森林转型、农地边际化与生态恢复
中国人口·资源与环境, 2011,21(10):91-95.]

[本文引用: 1]

Shao Quanqin, Zhao Zhiping, Liu Jiyuan, et al. The characteristics of land cover and macroscopical ecology changes in the source region of three rivers on Qinghai-Tibet Plateau during last 30 years
Geographical Research, 2010,29(8):1439-1451.

[本文引用: 1]

[ 邵全琴, 赵志平, 刘纪远, . 近30年来三江源地区土地覆被与宏观生态变化特征
地理研究, 2010,29(8):1439-1451.]

[本文引用: 1]

Zhang Yili, Qi Wei, Zhou Caiping, et al. Spatial and temporal variability in net primary production of alpine grassland on Tibetan Plateau since 1982
Journal of Geographical Sciences, 2014,24(2):269-287.

DOI:10.1007/s11442-014-1087-1URL [本文引用: 1]
12 gC yr-1(yr represents year),while the average annual NPP was 120.8 gC m-2 yr-1. (2) The annual NPP in alpine grassland on the TP fluctuates from year to year but shows an overall positive trend ranging from 114.7 gC m-2 yr-1 in 1982 to 129.9 gC m-2 yr-1 in 2009,with an overall increase of 13.3%;32.56% of the total alpine grassland on the TP showed a significant increase in NPP,while only 5.55% showed a significant decrease over this 28-year period. (3) Spatio-temporal characteristics are an important control on annual NPP in alpine grassland:a) NPP increased in most of the natural zones on the TP,only showing a slight decrease in the Ngari montane desert-steppe and desert zone. The positive trend in NPP in the high-cold shrub-meadow zone,high-cold meadow steppe zone and high-cold steppe zone is more significant than that of the high-cold desert zone;b) with increasing altitude,the percentage area with a positive trend in annual NPP follows a trend of "increasing-stable-decreasing",while the percentage area with a negative trend in annual NPP follows a trend of "decreasing-stable-increasing",with increasing altitude;c) the variation in annual NPP with latitude and longitude co-varies with the vegetation distribution;d) the variation in annual NPP within the major river basins has a generally positive trend,of which the growth in NPP in the Yellow River Basin is most significant. Results show that,based on changes in NPP trends,vegetation coverage and phonological phenomenon with time,NPP has been declining in certain places successively,while the overall health of the alpine grassland on the TP is improving.]]>

Qi Wei, Bai Wanqi, Zhang Yili, et al. Effects of ecological engineering on net primary production in the Chang Tang and Sanjiangyuan national nature reserves on the Tibetan Plateau
Biodiversity Science, 2016,24(2):127-135.

DOI:10.17520/biods.2015082URL [本文引用: 1]
Long term series of remotely sensed imagery of net primary production (NPP) data could reflect ecosystem health. In this study, we employed NPP to evaluate the effects of ecological engineering (nature reserve and new ecological engineering in 2004 or 2005 techniques) by the sampling area comparison method in the Chang Tang and Sanjiangyuan national nature reserves on the Tibetan Plateau. The results showed that: (1) among the 10 pairs of sampling areas, annual NPP of 9 pairs tended to increase between 1982 and 2009; (2) the new ecological engineering techniques improved the effectiveness of ecosystem conservation, with NPP in 8 pairs of sampling areas increasing faster than before; and (3) among all alpine grassland types, the new ecological engineering techniques remarkably improved the effectiveness of conserving the meadows.
[ 祁威, 摆万奇, 张镱锂, . 生态工程实施对羌塘和三江源国家级自然保护区植被净初级生产力的影响
生物多样性, 2016,24(2):127-135.]

[本文引用: 1]

Zhang Yili, Liu Linshan, Wang Zhaofeng, et al. Spatial and temporal characteristics of land use and cover changes in the Tibetan Plateau
Chinese Science Bulletin, 2019,64(9):2685-2875.

[本文引用: 1]

[ 张镱锂, 刘林山, 王兆锋, . 青藏高原土地利用与覆被变化的时空特征
科学通报, 2019,64(9):2685-2875.]

[本文引用: 1]

Chen Chi, Park Taejin, Wang Xuhui, et al. China and India lead in greening of the world through land-use management
Nature Sustainability, 2019,2:122-129.

DOI:10.1038/s41893-019-0220-7URLPMID:30778399 [本文引用: 1]
Satellite data show increasing leaf area of vegetation due to direct (human land-use management) and indirect factors (climate change, CO2 fertilization, nitrogen deposition, recovery from natural disturbances, etc.). Among these, climate change and CO2 fertilization effect seem to be the dominant drivers. However, recent satellite data (2000-2017) reveal a greening pattern that is strikingly prominent in China and India, and overlapping with croplands world-wide. China alone accounts for 25% of the global net increase in leaf area with only 6.6% of global vegetated area. The greening in China is from forests (42%) and croplands (32%), but in India is mostly from croplands (82%) with minor contribution from forests (4.4%). China is engineering ambitious programs to conserve and expand forests with the goal of mitigating land degradation, air pollution and climate change. Food production in China and India has increased by over 35% since 2000 mostly due to increasing harvested area through multiple cropping facilitated by fertilizer use and surface/ground-water irrigation. Our results indicate that the direct factor is a key driver of the

Chen Yong, Liu Jie, Chen Qi, et al. Earthquake Hazard Analysis and Earthquake Damage Prediction. Beijing: Seismological Press, 1999.
[本文引用: 1]

[ 陈颙, 刘杰, 陈棋, . 地震危险性分析和震害预测. 北京: 地震出版社, 1999.]
[本文引用: 1]

Zhou Chenghu, Wan Qing, Huang Shifeng, et al. A GIS-based approach to flood risk zonation
Acta Geographica Sinica, 2000,67(1):15-24.

DOI:10.11821/xb200001002URL [本文引用: 1]
Flood risk can, in general terms, be defined as probability time consequence. It consists of flood hazard analysis, vulnerability analysis and damage evaluation. A variety of methods have been developed and applied. Among them, Quantitative Risk Analysis (QRA) is a method of quantifying risk through systematic examination of the factors contributing to the flood hazard and affecting the severity of flood consequence, their interaction and relative contribution to the occurrence of the flood. The QRA technique is well established in many fields such as chemical engineering and hazardous materials processing. The application of QRA to flood risk is relatively new and still under development. While the basic risk assessment concepts and tools can be used, the methodologies need to be adapted. Category-based model for flood risk analysis is used to assign a value to each driven-factor such as triggering factor of rainfall, dam break, ground surface conditions of topography, land cover, and others. The keys to the model are to synthesis the spatial-referenced data and create the risk zone. The diffusion of Geographical Information Systems (GIS) technology opens up a range of new possibilities for hazard mitigation and disaster management. Microzonation is greatly facilitated by the kind of automation that GIS offers, especially as it involves comparison, indices and overlays in much the same way that GIS does. In this article, ArcInfo GIS has been chosen to quantitatively represent the influencing factors, spatialize the data into the uniform grid system, and transfer all the data item into the effect degrees on the probability of flooding. At last, with the support of Arc/Info GRID model, a categorical model for flood risk zonation has been put forward. The approach has been applied to the Liaohe river basin, the north-eastern of China, flood disaster risk zonation. The results show that the flood risk of the lower reaches of the Liaohe river is more serious than other places, which accord with the fact. The case study showes that the GIS-based category model is effective in flood risk zonation.
[ 周成虎, 万庆, 黄诗峰, . 基于GIS的洪水灾害风险区划研究
地理学报, 2000,67(1):15-24.]

[本文引用: 1]

Shi Peijun. Theory and practice on disaster system research in a fourth time
Journal of Natural Disasters, 2005,14(6):1-7.

[本文引用: 1]

[ 史培军. 四论灾害系统研究的理论与实践
自然灾害学报, 2005,14(6):1-7.]

[本文引用: 1]

Zhang Jiquan, Li Ning. The Quantitative Method and Its Application of Risk Assessment and Management of Major Meteorological Disasters. Beijing: Beijing Normal University Press, 2007.
[本文引用: 1]

[ 张继权, 李宁. 主要气象灾害风险评价与管理的数量化方法及其应用. 北京: 北京师范大学出版社, 2007.]
[本文引用: 1]

Tang Bangxing, Zhou Bifan, Wu Jishan, et al. Debris Flows in China. Beijing: Science Press, 2000.
[本文引用: 2]

[ 唐邦兴, 周必凡, 吴积善, . 中国泥石流. 北京: 科学出版社, 2000.]
[本文引用: 2]

Zhong Dunlun, Liu Shijian, Wang Chenghua, et al. Research Status and Advance of Catalogue and Database (IS) for Debris and Landslides in China//Zhong Dunlun, Wang Chenghua, Xie Hong, et al
Study on Catalogue Database and Regional Law for Debris and Landslides in China. Chengdu: Sichuan Science and Technology Press, 1998: 1-5.

[本文引用: 1]

[ 钟敦伦, 刘世建, 王成华 . 中国泥石流滑坡编目与数据库(信息系统)研究的现状与进展
// 钟敦伦, 王成华, 谢洪, 等. 中国泥石流滑坡编目数据库与区域规律研究. 成都: 四川科学技术出版社, 1998: 1-5.]

[本文引用: 1]

Zhou Bifan. Research and verification on mechanical model and motion equation for viscous debris flow
Science in China: Series B, 1995,25(2):196-203.

[本文引用: 1]

[ 周必凡. 粘性泥石流力学模型与运动方程及验证
中国科学(B辑), 1995,25(6):196-203.]

[本文引用: 1]

Cui Peng. Studies on condition and mechanism of debris flow initiation by means of experiment
Chinese Science Bulletin, 1992,37(9):759-763.

[本文引用: 1]

Zhou Bifan, Li Deji, Luo Defu, et al. The Guide of Debris Flow Prevention. Beijing: Science Press, 1991.
[本文引用: 2]

[ 周必凡, 李德基, 罗德富, . 泥石流防治指南. 北京: 科学出版社, 1991.]
[本文引用: 2]

Cui Peng, Zhou Gordon, Zhu Xinghua, et al. Scale amplification of natural debris flows caused by cascading landslide dam failures
Geomorphology, 2013,182:173-189.

DOI:10.1016/j.geomorph.2012.11.009URL [本文引用: 1]

Cui Peng, Zou Qiang, Xiang Lingzhi, et al. Risk assessment of simultaneous debris flows in mountain townships
Progress in Physical Geography. 2013,37(4):516-542.

[本文引用: 1]

Cui Peng, He Siming, Yao Lingkan, et al. Formation Mechanism and Risk Control of Mountain Disaster in Wenchuan Earthquake. Beijing: Science Press, 2011.
[本文引用: 2]

[ 崔鹏, 何思明, 姚令侃, . 汶川地震山地灾害形成机理与风险控制. 北京: 科学出版社, 2011.]
[本文引用: 2]

Chen Xiaoqing, Cui Peng, You Yong, et al. Engineering measures for debris flow hazard mitigation in the Wenchuan earthquake area
Engineering Geology, 2015,194:73-85.

DOI:10.1016/j.enggeo.2014.10.002URL [本文引用: 1]

Cui Peng, Liu Suqing, Tang Bangxing, et al. Research and Prevention of Debris Flow in National Parks. Beijing: Science Press, 2005.
[本文引用: 1]

[ 崔鹏, 柳素清, 唐邦兴 . 风景区泥石流研究与防治. 北京: 科学出版社, 2005.]
[本文引用: 1]

Chen Xiaoqing, Cui Peng, You Yong, et al. Dam-break risk analysis of the Attabad landslide dam in Pakistan and emergency countermeasures
Landslides, 2017,14(2):675-683.

DOI:10.1007/s10346-016-0721-7URL [本文引用: 1]

Shi Peijun, Li Ning, Ye Qian, et al. Research on global environmental change and integrated disaster risk governance
Advances in Earth Science, 2009,24(4):428-434.

URL [本文引用: 1]
      To achieve sustainable development, the understanding of impact of global environmental change on renewable resources and disaster frequency, strength and spatial-temporal pattern should be strengthened. In recent years, severe disasters have caused catastrophes all over the world, such as the freezing rain and snowstorm disaster that happened in China in 2008, Typhoon Sidr in Bangladesh in 2007, and Hurricane Katrina in the US in 2005. Strengthening the study of integrated disaster risk governance under the background of global environmental change has become a pressing problem of sustainable development. Supported by CNC-IHDP, the CNC-IHDP-RG workgroup proposed to the IHDP to launch a new international research project on integrated risk governance in the context of global environmental change in 2006. After two years′ efforts, the IRG Project is now accepted by IHDP-SSC to be the new core Scientific Program and it will be formally launched during the IHDP Open Science Conference held in Bonn, Germany in April, 2009. This core project will build a platform for top level researchers, government policy makers and practitioners in risk governance to exchange ideas, theories and methodologies. The research foci of this core project will be on the issues of science, technology and management of integrated disaster risk governance based on the case comparisons around the world. It is the goal of the project to make the innovations in concepts, theories and methodologies of integrated disaster risk governance, which could be useful and applied to practices of integrated disaster reduction in the real world. By proposing, preparing and organizing this important international cooperative project, it is helpful not only to promote the research results made by Chinese risk governance research community, but also to raise Chinese global environmental change research community in a highly respected position internationally.
[ 史培军, 李宁, 叶谦, . 全球环境变化与综合灾害风险防范研究
地球科学进展, 2009,24(4):428-434.]

[本文引用: 1]

Yue Xiliu, Wu Shaohong, Yin Yunhe, et al. Risk identification of seismic landslides by joint newmark and rockfall analyst models: A case study of roads affected by the Jiuzhaigou earthquake
International Journal of Disaster Risk Science, 2018,9(3):392-406.

DOI:10.1007/s13753-018-0182-9URL [本文引用: 1]

Shi Peijun, Lv Lili, Wang Ming, et al. Disaster system: disaster cluster, disaster chain and disaster compound
Journal of Natural Disasters, 2014,23(6):1-12.

[本文引用: 1]

[ 史培军, 吕丽莉, 汪明, . 灾害系统: 灾害群、灾害链、灾害遭遇
自然灾害学报, 2014,23(6):1-12.]

[本文引用: 1]

Ge Quansheng, Zou Ming, Zheng Jingyun. Integrated Assessment of Natural Disaster Risks in China. Beijing: Science Press, 2008.
[本文引用: 1]

[ 葛全胜, 邹铭, 郑景云. 中国自然灾害风险综合评估初步研究. 北京: 科学出版社, 2008.]
[本文引用: 1]

Fang Weihua, Wang Jing'ai, Shi Peijun. Comprehensive Risk Prevention-database, Risk Map and Network Platform. Beijing: Science Press, 2011.
[本文引用: 1]

[ 方伟华, 王静爱, 史培军. 综合风险防范—数据库、风险地图与网络平台. 北京: 科学出版社, 2011.]
[本文引用: 1]

Qin Dahe, Zhang Jianyun, Shan Chun, et al. China National Assessment Report on Risk Management and Adaptation of Climate Extremes and Disasters. Beijing: Science Press, 2015.
[本文引用: 1]

[ 秦大河, 张建云, 闪淳, . 中国极端气候事件和灾害风险管理与适应国家评估报告. 北京: 科学出版社, 2015.]
[本文引用: 1]

Liu Yanhua, Ge Quansheng, Wu Wenxiang. Risk Management: Challenges of the New Century. Beijing: China Meteorological Press, 2005.
[本文引用: 1]

[ 刘燕华, 葛全胜, 吴文祥. 风险管理: 新世纪的挑战. 北京: 气象出版社, 2005.]
[本文引用: 1]

Wu Shaohong, Pan Tao, He Shanfeng. Primary study on the theories and methods of research on climate change risk
Climate Change Research, 2011,7(5):363-368.

[本文引用: 1]

[ 吴绍洪, 潘韬, 贺山峰. 气候变化风险研究的初步探讨
气候变化研究进展, 2011,7(5):363-368.]

[本文引用: 1]

Wu Shaohong, Pan Tao, Yang Qinye. Risk Pattern and Prevention of Major Meteorological and Hydrological Disasters in China. Beijing: Science Press, 2014.
[本文引用: 1]

[ 吴绍洪, 潘韬, 杨勤业. 中国重大气象水文灾害风险格局与防范. 北京: 科学出版社, 2014.]
[本文引用: 1]

Su Buda, Huang Jinlong, Fischer T, et al. Drought losses in China might double between the 1.5 ℃ and 2.0 ℃ warming
Proceedings of the National Academy of Sciences, 2018,115(42):10600-10605.

[本文引用: 1]

Shi Peijun, Wang Ming, Hu Xiaobing, et al. Integrated risk governance consilience mode of social-ecological systems
Acta Geographica Sinica, 2014,69(6):863-876.

DOI:10.11821/dlxb201406012URL [本文引用: 1]
Based on the concept of ‘consilience’ in integrated risk governance, this paper aims to develop scientific meanings of consilience in a systemic manner from the perspectives of fundamental principles, synergistic efficacy, operational means, and optimization process to improve a system's robustness to resist external disturbs. This paper proposed a new consilience mode for the purpose of complementing the existing theoretical system of integrated risk governance. The results presented in this paper show that the four proposed synergistic principles (tolerance, constraint, amplification and diversification) can well describe the characteristics of consilience in integrated risk governance of a socioecological system. The principles set four optimization goals in terms of ‘consenting in minds’ and ‘gathering in force’ in the consilience theory. The consilience mode demonstrates how the synergistic principles and their optimization goals are converted into a series of tasks including the popularization of social perception, the rationalization of cost allocation, the systemization of optimization and the maximization of cost benefit. With implementation of all these tasks, the consensus and social welfare can be maximized while the cost and risk can be minimized in the integrated risk governance of the socio-ecological system. The modeling and simulation results show that a complex network system's robustness can be improved with increased system consilience when facing local or global disturbs. Moreover, this kind of improvement can be achieved by optimizing the structure and function of nodes in a socio-ecological system. The consilience mode also complements current disaster system theory in which the concepts of vulnerability, resilience and adaptation may face limitation of addressing integrated risk governance problems in a socio-ecological system.
[ 史培军, 汪明, 胡小兵, . 社会—生态系统综合风险防范的凝聚力模式
地理学报, 2014,69(6):863-876.]

[本文引用: 1]

Shi Peijun. Atlas of Natural Disaster Risk of China. Beijing: Science Press, 2011.
[本文引用: 1]

[ 史培军. 中国自然灾害风险地图集. 北京: 科学出版社, 2011.]
[本文引用: 1]

Reynolds J F, Smith D M S, Lambin E F, et al. Global desertification: Building a science for dryland development
Science, 2007,316:847-851.

DOI:10.1126/science.1131634URLPMID:17495163 [本文引用: 1]
In this millennium, global drylands face a myriad of problems that present tough research, management, and policy challenges. Recent advances in dryland development, however, together with the integrative approaches of global change and sustainability science, suggest that concerns about land degradation, poverty, safeguarding biodiversity, and protecting the culture of 2.5 billion people can be confronted with renewed optimism. We review recent lessons about the functioning of dryland ecosystems and the livelihood systems of their human residents and introduce a new synthetic framework, the Drylands Development Paradigm (DDP). The DDP, supported by a growing and well-documented set of tools for policy and management action, helps navigate the inherent complexity of desertification and dryland development, identifying and synthesizing those factors important to research, management, and policy communities.

Dregne H E. Land degradation in the drylands
Arid Land Research and Management, 2002,16:99-132.

DOI:10.1080/153249802317304422URL [本文引用: 1]

State Forestry Administration. A Bulletin of Status Quo of Desertification and Sandification in China
Beijing, 2015.

[本文引用: 2]

[ 国家林业局. 中国荒漠化和沙化状况公报
北京, 2015.]

[本文引用: 2]

Yuan Daoxian. Rock desertification in the subtropical karst of south China
Zeitschrift für Geomorphologie N F, 1997,108:81-90.

[本文引用: 1]

Bai Xiaoyong, Wang Shijie, Chen Qiwei, et al. Spatio-temporal evolution process and its evaluation method of karst rocky desertification in Guizhou Province
Acta Geographica Sinica, 2009,64(5):609-618.

DOI:10.11821/xb200905010URL [本文引用: 1]
2 per year, and the change rate of different type KRD land is inverse proportion to its degree of degradation. (5) The change frequencies of moderate and potential KRD land is highest and obviously higher than that of light KRD land. The regional characteristics of KRD spatial evolution and its influencing factors are analyzed, and some suggestions on comprehensive control of KRD land are put forward.]]>
[ 白晓永, 王世杰, 陈起伟, . 贵州土地石漠化类型时空演变过程及其评价
地理学报, 2009,64(5):609-618.]

[本文引用: 1]

Sweeting M M. Reflections on the development of Karst geomorphology in Europe and a comparison with its development in China
Zeitschrift fur Geomorphologie, 1993,37:127-138.

[本文引用: 1]

Dyson-Hudson R. Desertification as a social problem
Science, 1983,221(4618):1365-1366.

DOI:10.1126/science.221.4618.1365URLPMID:17759002 [本文引用: 1]

Cai Yunlong. Preliminary research on ecological reconstruction in Karst mountain poverty areas of southwest China
Advance in Earth Sciences, 1996,11(6):602-606.

[本文引用: 1]

[ 蔡运龙. 中国西南岩溶石山贫困地区的生态重建
地球科学进展, 1996,11(6):602-606.]

[本文引用: 1]

Cai Yunlong, Meng Jijun. Ecological reconstruction of degraded land: A social approach
Scientia Geographica Sinica, 1999,19(3):198-204.

URL [本文引用: 1]
Land degradation is a major representation of global environmental change. In degraded land, people get into the trouble of PPE (poverty-population-environment) spiral. Land degradation takes various forms in China, such as land desertification, soil erosion, farmland pollution, surface mining, farmland salinization and soil fertility deterioration. Among these the former two are the most distributing and the most influencing. A great amount of poor population assembles in these lands, for example, in the karst areas of southwest China and in the Loess Plateau of northwest China. This paper especially pays more attention to the reversal of impoverishment-degradation spiral in the karst areas of southwest China. Since the PPE spiral is caused by ecological and, in particular, social factors, the solution must be in a social approach. Poverty alleviation is a systematic project with great complexities. Any single approach can not success and integrated measures should be taken. Obviously, the key to escape the vicious spiral is the reconstruction of the local ecosystem, economy and society so that the self development capacity of the local people may be enhanced. Thus the poverty can be essentially eliminated. On the other hand, it is unrealistic to let the degraded land naturally recover under the pressure of population growth and economic development. The degraded land needs ecological reconstruction through social investment, while the local economy and society should be restructured. Ecological reconstruction of the degraded land involves not only the degraded and underdeveloped localities but also developed regions. The guidelines of degraded land reconstruction should be the concepts of sustainability and economic viability, and the theory of landscape ecology. Sustainability includes the idea of a type of development that does not compromise, and even promote, the future use of land. Economic viability is profitability of the reconstructed land, although in a long term consideration. In other words, the reconstructed land and its use should obtain productivity, stability, sustainability, equability and autonomy. According to landscape ecology, reasonable land use and landscape patterns should be allocated at a macro scale, and an appropriate productivity and ecological conditions should be created at a micro scale. It is necessary, in the degraded land reconstruction, to identify different issues at different spatial scales, for example, land productivity at site, land use pattern at local, urban rural relation at a region, and economic cooperation at inter region. In temporal scale, it is necessary to establish realistic targets of short term (to emphasize viability), middle term (to get into benign spiral) and long term (to realize sustainability) respectively. As a social approach, the reconstruction of degraded land includes ideology innovation, institute transformation, and science and technology popularization.
[ 蔡运龙, 蒙吉军. 退化土地的生态重建: 社会工程途径
地理科学, 1999,19(3):198-204.]

[本文引用: 1]

Wang Shijie. Concept deduction and its connotation of karst rocky desertification
Carsologica Sinica, 2002,21(2):101-105.

[本文引用: 1]

[ 王世杰. 喀斯特石漠化概念演绎及其科学内涵的探讨
中国岩溶, 2002,21(2):101-105.]

[本文引用: 1]

Cai Yunlong. Study on Land Change in Karst Plateau Mountain Area of Guizhou. Beijing: Science Press, 2015.
[本文引用: 1]

[ 蔡运龙. 贵州喀斯特高原山区土地变化研究. 北京: 科学出版社, 2015.]
[本文引用: 1]

Zhang Xinbao. History, achievements, problems and suggested countermeasures of karst desertification control in Guizhou
Carsologica Sinica, 2016,35(5):497-502.

[本文引用: 1]

[ 张信宝. 贵州石漠化治理的历程、成效、存在问题与对策建议
中国岩溶, 2016,35(5):497-502.]

[本文引用: 1]

Jia Yanan, Yuan Daoxian. The impact of land use change on karst water in Shuicheng Basin of Guizhou Province
Acta Geographica Sinica, 2003,58(6):831-838.

DOI:10.11821/xb200306005URL [本文引用: 1]
The paper chooses the industrial city-Shuicheng basin in Guizhou province-as research site because the karst water quality around the city has become deteriorated with land use and land cover change. The natural susceptibility of karst water system is the important factor leading to karst water pollution. But the change of land use and land cover is the main factor according to the changing data of the water quality analysis and land use change. So it is a good way to protect karst water through rational planning and managing land use and land cover.
[ 贾亚男, 袁道先. 土地利用变化对水城盆地岩溶水水质的影响
地理学报, 2003,58(6):831-838.]

[本文引用: 1]

Zhang Cheng, Yuan Daoxian. Hydrochemical variation of typical karst subterranean stream basin and its relationship with landuse change: A case study of Houzhai stream basin
Journal of Soil and Water Conservation, 2004,18(5):134-138.

[本文引用: 1]

[ 章程, 袁道先. 典型岩溶地下河流域水质变化与土地利用的关系: 以贵州普定后寨地下河流域为例
水土保持学报, 2004,18(5):134-138.]

[本文引用: 1]

Li Yangbing, Xie Deti. Features of water-stable soil aggregate structure under different land use in karst mountains
Journal of Soil and Water Conservation, 2001,15(4):122-125.

[本文引用: 1]

[ 李阳兵, 谢德体. 不同土地利用方式对岩溶山地土壤团粒结构的影响
水土保持学报, 2001,15(4):122-125.]

[本文引用: 1]

Wan Jun, Cai Yunlong, Lu Yunge, et al. Soil erosion risk assessment in karst area: Case study in Guanling County of Guizhou Province
Research of Soil and Water Conservation, 2003,10(3):148-153.

URL [本文引用: 1]

[ 万军, 蔡运龙, 路云阁, . 喀斯特地区土壤侵蚀风险评价: 以贵州省关岭布依族苗族自治县为例
水土保持研究, 2003,10(3):148-153.]

[本文引用: 1]

Xu Yueqing, Cai Yunlong. Economic loss analysis on soil erosion and estimation of its values: A case study of Maotiaohe basin, Guizhou province
Resources and Environment in the Yangtze Basin, 2006,15(4):470-474.

URL [本文引用: 1]
Taking Maotiaohe watershed in Guizhou province as study area, the mechanism of soil erosion was analyzed by applying basic principles and methodology of environmental economics. The economic loss of soil erosion was estimated, and the spatial distribution of economic loss caused by soil erosion was revealed, which provides scientific basis for soil and water prevention and sustainable development of the study area. The result showed that the total economic loss of soil erosion reached 36 602.44 × 104 Yuan, and the losses of soil nutrient, abandoned land, water and sediment accounted for 89.46%, 4.64%,1.05%, 4.85%, respectively. Among land use types, economic loss of soil erosion was the highest in dry land, accounting for 61.94% of the total loss. Among all counties, the economic loss caused by soil erosion was the highest in Qingzhen City, accounting for 32.87% of the total. The economic loss per unit area in the study area was 1 174.86 Yuan /hm2, and was higher in the north and southwest of the study area. Ecological compensation should be put in practice in order to prevent the soil erosion and water loss.
[ 许月卿, 蔡运龙. 土壤侵蚀经济损失分析及价值估算: 以贵州省猫跳河流域为例
长江流域资源与环境, 2006,15(4):470-474.]

[本文引用: 1]

Xu Yueqing, Li Shuangcheng, Cai Yunlong. Spatial simulation using GIS and artificial neural network for regional poverty: A case study of Maotiaohe watershed, Guizhou province
Progress in Geography, 2006,25(3):79-85.

DOI:10.11820/dlkxjz.2006.03.010URL [本文引用: 1]
Owing to the fragile eco- environment, terrain fragmentation, and serious soil erosion, the karst area in Southwest China is one of the distinct poor regions. Selecting Maotiaohe watershed as study area, taking villages and towns as studying unit, and using GIS and ANN model, this paper simulates the spatial distribution of natural impoverishing index and socio- economic alleviating impoverishing index, calculates the poverty degree of villages and towns, and reveals the spatial distribution of poverty in order to provide scientific basis for eliminating poverty and ecological reconstruction. The results show that the natural factors such as soil erosion and so on are the main impoverishing indexes, and socio- economic factors are the main alleviating impoverishing indexes. The villages and towns with smaller poverty degree are mainly distributed in the middle and east area of Maotiaohe watershed, and those with larger poverty degree are mainly distributed in the southern and northern area of Maotiaohe watershed. The results also indicate that application of BP neural network to simulating regional poverty is convenient, precise and feasible, which can be an alternative approach to simulating regional poverty.
[ 许月卿, 李双成, 蔡运龙. 基于GIS和人工神经网络的区域贫困化空间模拟分析: 以贵州省猫跳河流域为例
地理科学进展, 2006,25(3):79-85.]

[本文引用: 1]

Tong Xiaowei, Brandt M, Yue Yuemin, et al. Increased vegetation growth and carbon stock in China karst via ecological engineering
Nature Sustainability, 2018,1:44-50.

DOI:10.1038/s41893-017-0004-xURL [本文引用: 1]

Macias-Fauria M. Satellite images show China going green
Nature, 2018,553(7689):411-413.

DOI:10.1038/d41586-018-00996-5URLPMID:32094803 [本文引用: 1]

Yan Qinshang. Moving sand dune and its transformation in Yulin, northern Shaanxi Province
Chinese Science Bulletin, 1954(11):28-34.

[本文引用: 1]

[ 严钦尚. 陕北榆林定边间流动沙丘及其改造
科学通报, 1954(11):28-34.]

[本文引用: 1]

Zhu Zhenda. The status and prospect desertification in China
Acta Geographica Sinica, 1994,61(Suppl.1):650-659.

[本文引用: 1]

[ 朱震达. 中国荒漠化问题研究的现状与展望
地理学报, 1994,61(Suppl.1):650-659.]

[本文引用: 1]

Wu Zheng. Sandstorm Landform and Desertification Control Engineering. Beijing: Science Press, 2003.
[本文引用: 2]

[ 吴正. 风沙地貌与治沙工程学. 北京: 科学出版社, 2003.]
[本文引用: 2]

Wang Tao, Song Xiang, Yan Changzhen, et al. Remote sensing analysis on aeolian desertification trend in northern China during 1975-2010
Journal of Desert Research, 2011,31(6):1351-1356.

URL [本文引用: 4]
The data of aeolian desertification lands status in different periods have been extracted through visual interpretation method based on Landsat MSS, TM/ETM images in 1975, 1990, 2000, 2005 and 2010 over the northern China areas. Hence, we analyzed the changing trend of aeolian desertification in northern China during the last 35 years, and have got some results as follows: (1) The area of aeolian desertification lands in northern China in 2010 are 37.59×104 km2, among which the slight grade accounts for 33.80%, the moderate grade for 22.84%, the severe grade for 22.16%, and the extremely severe grade for 21.21%. (2) From 1975 to 1990, the net increase area of land desertification area of northern China was 33 838.32 km2 with an increasing rate of 2 255.89 km2·a-1; the net area of land desertification lands being intensified was 33 279.28 km2; thus the net developing rate was 4 474.51 km2·a-1. From 1990 to 2000, the net increasing rate of land desertification area was 3 441.49 km2·a-1 and net developing rate was 5 370.06 km2·a-1. Since 2000, there was a recovering trend of land desertification lands in northern China. From 2000 to 2005, the net area decreasing rate was 1 635.28 km2·a-1, and the net reversion rate was 10 071.02 km2·a-1. From 2005 to 2010, the net area decreasing rate was 1 114.35 km2·a-1, and the net reversion rate was 7 552.21 km2·a-1. Changes of land desertification mainly occurred in the agro-pasture ecotone of semi-arid area.]]>
[ 王涛, 宋翔, 颜长珍, . 近35a来中国北方土地沙漠化趋势的遥感分析
中国沙漠, 2011,31(6):1351-1356.]

[本文引用: 4]

Wang Xunming, Chen Fahu, Eardun H S, et al. Desertification in China: An assessment
Earth-Science Reviews, 2008,88:188-206.

DOI:10.1016/j.earscirev.2008.02.001URL [本文引用: 2]

Zhu Zhenda. Thirty years in research works on Chinese sandy deserts
Acta Geographica Sinica, 1979,46(4):305-314.

DOI:10.11821/xb197904003URL [本文引用: 2]
The sandy deserts which occupy about 7.7% of total land area in China have been investigated and studied with great concern by Chinese scientific personnels ever sinee the founding of People's Eepublic of China in 1949. Major contributions of these research works are summarized in the following six areas:1. Source of parent materials of the desert sands and process of formation of the sandy dunes;2. Environmental changes during historical time;3. Chief characteristics of major Chinese sandy deserts;4. Sand control in farmlands;5. Sand control along railways;6. Better use of natural resources and the establishment of new oases.
[ 朱震达. 三十年来中国沙漠研究的进展
地理学报, 1979,46(4):305-314.]

[本文引用: 2]

Wang T, Xue X, Zhou L, et al. Combating aeolian desertification in Northern China
Land Degradation & Development, 2015,26:118-132.

[本文引用: 1]

Cao S. Why large-scale afforestation efforts in China have failed to solve the desertification problem
Environmental Science & Technology, 2008,42:1826-1831.

DOI:10.1021/es0870597URLPMID:18409601 [本文引用: 1]

Wang Xunming, Yang Yi, Dong Zhibao, et al. Responses of dune activity and desertification in China to global warming in the twenty-first century
Global and Planetary Change, 2009,67:167-185.

DOI:10.1016/j.gloplacha.2009.02.004URL [本文引用: 1]

Zhu Zaichun, Piao Shilong, Myneni R B, et al. Greening of the Earth and its drivers
Nature Climate Change, 2016,6:791-795.

DOI:10.1038/nclimate3004URL [本文引用: 1]

Zou Xueyong, Zhang Chunlai, Cheng Hong, et al. Classification and representation of factors affecting soil wind erosion in a model
Advances in Earth Science, 2014,29(8):875-889.

DOI:10.11867/j.issn.1001-8166.2014.08.0875URL [本文引用: 1]
Soil erosion is an interaction of multi factors including wind, vegetation, soil characteristics, land use, precipitation, micro-geomorphology and so on. It is a continuous dynamic process occurring on airflow-soil interface in the specific geographical locations. Soil erosion empirical model, based on statistic theory, is difficult to avoid overlap of some factors affecting soil wind erosion between sub-models and not enable sub-models to be strictly independent from each other, thereby leading to lack of theoretical basis for modeling. Such empirical model is also not able to objectively reflect dynamic process of soil erosion. On the basis of clarifying basic concepts of soil erosion and analyzing the global research background and inadequacy, we proposed a new theoretical framework for soil erosion models based on wind erosion dynamics theory and the classification as well as representation of factors affecting soil wind erosion under the framework. We also elaborated the rationality of both the framework and the classification as well as the representation of factors affecting soil wind erosion, and further explored the research approaches on the latter.
[ 邹学勇, 张春来, 程宏, . 土壤风蚀模型中的影响因子分类与表达
地球科学进展, 2014,29(8):875-889.]

[本文引用: 1]

Shi Peijun, Yan Ping, Yuan Yi, et al. Wind erosion research in China: Past, present and future
Progress in Physical Geography, 2004,28(3):366-386.

[本文引用: 1]

Zhang Kecun, Qu Jianjun, Liao Kongtai, et al. Damage by wind-blown sand and its control along Qinghai-Tibet Railway in China
Aeolian Research, 2010,1(3/4):143-146.

DOI:10.1016/j.aeolia.2009.10.001URL [本文引用: 1]

Zou Xueyong, Zhang Chunlai, Cheng Hong, et al. Urban Sand Control Theory and Engineering. Beijing: Science Press, 2018.
[本文引用: 1]

[ 邹学勇, 张春来, 程宏, . 城镇防沙理论与工程. 北京: 科学出版社, 2018.]
[本文引用: 1]

Borbély-Kiss I, Kiss A Z, Koltay E, et al. Saharan dust episodes in Hungarian aerosol: Elemental signatures and transport trajectories
Journal of Aerosol Science, 2004,35:1205-1224.

DOI:10.1016/j.jaerosci.2004.05.001URL [本文引用: 1]
AbstractIn the present work the episodic appearance of Saharan dust in the Hungarian aerosol has been investigated using our 1991–2000 aerosol data obtained with proton-induced X-ray emission elemental analysis. For selecting local episodes of Saharan origin three different approximations have been applied. On the one hand, episodes have been selected in the time series of concentration ratios Ti/Ca, Si/Al, Al/Ca, Ti/Fe, Si/Fe, Ca/Fe generally accepted as regional signatures of Saharan dust. Remarkable similarity has been found between Italian and Hungarian observations of Saharan dust episodes in spring 1991. The tracing power of the regional signatures generally accepted as fingerprints of Saharan dust was found to be limited in the present region due to anthropogenic effects during transport. On the other hand, either backward air trajectories or TOMS aerosol index data from NASA satellites NIMBUS7 and EARTH PROBE have been used as additional tool for assigning local effects to Saharan sources. A nine-month overlap in the application of trajectories and TOMS maps permitted us to compare the applicability of these selection tools. During the period considered we assigned nearly 50 local episodes to Saharan sources. Data are presented for the frequency, the probable source areas and the seasonal distribution of Saharan episodes in the Hungarian atmosphere.]]>

Goudie A S. Desert dust and human health disorders
Environment International, 2014,63:101-113.

URLPMID:24275707 [本文引用: 1]

UNCCD. United nations convention to combat desertification in countries experiencing serious drought and/or desertification, particularly in Africa
International Legal Materials, 1994,33:1328-1366.

DOI:10.1017/S0020782900026711URL [本文引用: 1]

Jie Yaowen, Chen Fahu. Development and Evolution of Minqin Oasis-Land Use/Land Cover Change in Recent 2000 Years. Beijing: Science Press, 2008.
[本文引用: 1]

[ 颉耀文, 陈发虎. 民勤绿洲的开发与演变: 近2000年来土地利用/土地覆盖变化研究, 北京: 科学出版社, 2008.]
[本文引用: 1]

Xie Yaowen, Chen Fahu, Qi Jiaguo. Past desertification processes of Minqin oasis in arid China
International Journal of Sustainable Development and World Ecology, 2009,16(6):417-426.

DOI:10.1080/13504500903268780URL [本文引用: 1]

Zhao Hai, Sheng Yongwei, Zhang Jiawu, et al. Oasis evolution processes and mechanisms in the lower reaches of Heihe River, Inner Mongolia, China since 1 ka ago
The Holocene, 2015,25(3):445-453.

DOI:10.1177/0959683614561880URL [本文引用: 1]

Chen Fahu, Chen Shengqian, Zhang Xu, et al. Asian dust-storm activities dominated by Chinese dynasty changes since 2000 BP
Nature Communications, 2020,11:920. Doi: http://www.geog.com.cn/article/2020/0375-5444/10.1038/s41467-020-14765-4.

URLPMID:32060304 [本文引用: 3]

Wu Zheng. China Desert and Its Control. Beijing: Science Press, 2009.
[本文引用: 1]

[ 吴正. 中国沙漠及其治理. 北京: 科学出版社, 2009.]
[本文引用: 1]

Wu Zheng. Deserts in China and their management over the last 50 years
Arid Zone Research, 2009,26(1):1-7.

DOI:10.3724/SP.J.1148.2009.00001URL [本文引用: 2]

[ 吴正. 中国沙漠与治理研究50年
干旱区研究, 2009,26(1):1-7.]

[本文引用: 2]

Geng Kuanhong. Blown-sand wind and mobile sand
Acta Geographica Sinica, 1959,25(1):21-39.

[本文引用: 1]

[ 耿宽宏. 起砂风和流砂
地理学报, 1959,25(1):21-39.]

[本文引用: 1]

Liu Zhenxing. Study on blown-sand issue (II): Preliminary study on dune movement under wind effect
Journal of Meteorology, 1960,31(1):84-91.

[本文引用: 1]

[ 刘振兴. 关于风沙问题的研究(II): 在风力作用下沙丘移动规律性的初步研究
气象学报, 1960,31(1):84-91.]

[本文引用: 1]

Wu Zheng. Preliminary study on wind sand and soil erosion in Hotan area, Xinjiang//Geographical Society of China
Abstract of the Symposium on Geomorphology, 1961. Beijing: Science Press, 1962: 125-127.

[本文引用: 1]

[ 吴正. 新疆和田地区风沙及土壤风蚀的初步研究//中国地理学会
1961年地貌学术讨论会论文摘要. 北京: 科学出版社, 1962: 125-127.]

[本文引用: 1]

Wu Zheng, Ling Yuquan. A preliminary study on some laws of aeolian sand movement and its prevention//Desert Control Group of Academia Sinica
Research on Desertification Control. Beijing: Science Press, 1965: 7-14.

[本文引用: 1]

[ 吴正, 凌裕泉. 风沙运动的若干规律及防止风沙危害问题的初步研究//中国科学院治沙队
治沙研究. 北京: 科学出版社, 1965: 7-14.]

[本文引用: 1]

He Daliang, Zou Bengong, Li Changzhi, et al. A preliminary study of the experiment of the physical process of ground surface erosion in wind tunnel
Journal of Desert Research, 1986,6(1):25-31.

[本文引用: 1]

[ 贺大良, 邹本功, 李长治, . 地表风蚀物理过程风洞实验的初步研究
中国沙漠, 1986,6(1):25-31.]

[本文引用: 1]

Liu Yuzhang, Dong Guangrong, Li Changzhi. Study on some factors influencing soil erosion by wind tunnel experiment
Journal of Desert Research, 1992,12(4):41-49.

URL [本文引用: 1]
Soil wind erosion can be influenced by wind regime,vegetative cover,soil moisture content,soil texture,cultivation,grazing,and collection of fuelwoods etc..By the wind tunnel experiment,the influences of these factors on wind erosion are quantitatively and semi-quantitatively studied Experimental results showed that the erosive intensity of sand-carrying wind is 4.36-72.9 times higher than that of the wind without sand at the same wind velocity.The high soil moisture content favours wind erosion control.The erosive intensity of semi-fixed sandy land is 12.9 and 2.84 times higher than that of the aboriginal grassland and the vegetated sandy land respectively.Under the same physical conditions,the irrational human activities,such as over-cultivation,over-grazing and undue collection of fuelwoods,can greatly accelerate the natural wind erosion.Wind erosion process is an intergrated phenomenon related with many natural factors and human ones,human factors play an important role in wind erosion,the wind erosion loss caused by human factors occpies 78.6% of the total value and that caused by natural factors occupies 21.4%.
[ 刘玉璋, 董光荣, 李长治. 影响土壤风蚀主要因素的风洞实验研究
中国沙漠, 1992,12(4):41-49.]

[本文引用: 1]

Zou Xueyong, Liu Yuzhang, Wu Dan, et al. A study on some special ground wind erosion in the tunnel
Geographical Research, 1994,13(2):41-48.

[本文引用: 1]

[ 邹学勇, 刘玉璋, 吴丹, . 若干特殊地表风蚀的风洞实验研究
地理研究, 1994,13(2):41-48.]

[本文引用: 1]

Dong Zhibao. Establishing statistic model of wind erosion on small watershed basis
Bulletin of Soil and Water Conservation, 1998,18(5):55-62.

[本文引用: 1]

[ 董治宝. 建立小流域风蚀量统计模型初探
水土保持通报, 1998,18(5):55-62.]

[本文引用: 1]

Huang Fuxiang, Niu Haishan, Wang Mingxing, et al. The relationship between vegetation cover and sand transport flux at Mu Us sandland
Acta Geographica Sinica, 2001,56(6):700-710.

DOI:10.11821/xb200106009URL [本文引用: 1]
Wind erosion has played the major role in shaping Mu Us landscape. Although Mu Us Sand land is a hot spot, of research, the detail of wind erosion in Mu Us has been poorly understood. On the basis of observations in Mu Us Desert, we determine the threshold of wind velocity and present sand transport equations on bare and vegetated land. Furthermore, we discuss the quantitative relationship between vegetation cover and sand transport. We get a quite good understanding of the effect of vegetation on wind erosion.
[ 黄福祥, 牛海山, 王明星, . 毛乌素沙地植被覆盖率与风蚀输沙率定量关系
地理学报, 2001,56(6):700-710.]

[本文引用: 1]

Wang Xunming, Dong Zhibao, Wu Shengzhi, et al. A stochastic model for processes of soil wind erosion
Bulletin of Soil and Water Conservation, 2001,21(1):19-22.

[本文引用: 1]

[ 王训明, 董治宝, 武生智, . 土壤风蚀过程的一类随机模型
水土保持通报, 2001,21(1):19-22.]

[本文引用: 1]

Yan Ping, Dong Guangrong, Zhang Xinbao, et al. Preliminary results of using 137Cs to study wind erosion in the Qinghai-Tibet Plateau
Journal of Arid Environments, 2001,47(4):443-452.

DOI:10.1006/jare.2000.0749URL [本文引用: 1]

Ci Longjun (Editor-in-Chief). Desertification and Its Control in China. Beijing: Higher Education Press, 2005.
[本文引用: 1]

[ 慈龙骏(主编). 中国的荒漠化及其防治. 北京: 高等教育出版社, 2005.]
[本文引用: 1]

Zhang Chunlai, Zou Xueyong, Gong Jirui, et al. Aerodynamic roughness of cultivated soil and its influences on soil erosion by wind in a wind tunnel
Soil & Tillage Research, 2004,75:53-59.

[本文引用: 1]

Wu Xiaoxu, Zou Xueyong, Zhongquan Charlie Zheng, et al. Field measurement and scaled-down wind-tunnel model measurement of airflow field over a barchan dune
Journal of Arid Environments, 2011,75:438-445.

DOI:10.1016/j.jaridenv.2010.12.016URL [本文引用: 1]

Gao Shangyu, Zhang Chunlai, Zou Xueyong, et al. Benefits of Beijing-Tianjin Sand Source Control Engineering. Beijing: Science Press, 2012.
[本文引用: 1]

[ 高尚玉, 张春来, 邹学勇, . 京津风沙源治理工程效益. 北京: 科学出版社, 2012.]
[本文引用: 1]

Mei Fanmin. Experimental Observation and Numerical Simulation of Wind Erosion Dust Release in Typical Regions of Northern China. Xi'an: Press of Northwestern Polytechnical University, 2013.
[本文引用: 1]

[ 梅凡民. 中国北方典型区域风蚀粉尘释放的实验观测和数值模拟研究. 西安: 西北工业大学出版社, 2013.]
[本文引用: 1]

Wang Rende, Guo Zhongling, Chang Chunping, et al. Quantitative estimation of farmland soil loss by wind-erosion using improved particle-size distribution comparison method (IPSDC)
Aeolian Research, 2015,19:163-170.

DOI:10.1016/j.aeolia.2015.06.005URL [本文引用: 1]

Fang Hui, Wu Xiaoxu, Zou Xueyong, et al. An integrated simulation-assessment study for optimizing wind barrier design
Agricultural and Forest Meteorology, 2018,263:198-206.

DOI:10.1016/j.agrformet.2018.08.018URL [本文引用: 1]

Yang Dongliang, Liu Wei, Wang Jingpu, et al. Wind erosion forces and wind direction distribution for assessing the efficiency of shelterbelts in northern China
Aeolian Research, 2018,33:44-52.

DOI:10.1016/j.aeolia.2018.05.001URL [本文引用: 1]

The Leading Office of First-ever Nationwide Water Resources Survey of the State Council. No. 6 Training Materials of First-ever Nationwide Water Resources Survey. Beijing: China Water & Power Press, 2010: 94-117.
[本文引用: 1]

[ 国务院第一次全国水利普查领导小组办公室. 第一次全国水利普查培训教材之六—水土保持情况普查. 北京: 中国水利水电出版社, 2010: 94-117.]
[本文引用: 1]

Liu Jianshan. Preliminary analysis of soil and water loss test in Tianshui
Chinese Science Bulletin, 1953(12), 59-65.

[本文引用: 1]

[ 刘建善. 天水水土保持测验的初步分析
科学通报, 1953(12):59-65.]

[本文引用: 1]

Wang Yue. The Historical evolution and development countermeasures of soil and water conservation in China
Soil and Water Conservation in China, 2001(11):5-8.

URL [本文引用: 1]

[ 王越. 我国水土保持的历史沿革与发展对策
中国水土保持, 2001 ( 11):5-8.]

[本文引用: 1]

Zhao Yuan, Ma Ligang. Discussion on distribution of soil and water conservation monitoring stations
Soil and Water Conservation in China, 2016(1):23-25.

[本文引用: 1]

[ 赵院, 马力刚. 浅析全国水土保持监测站网布设方案
中国水土保持, 2016(1):23-25.]

[本文引用: 1]

Zhu Xianmo. Soil and Agriculture in the Loess Plateau. Beijing: Agricultural Science Press, 1989.
[本文引用: 1]

[ 朱显谟. 黄土高原土壤与农业. 北京: 农业出版社, 1989.]
[本文引用: 1]

Jiang Dingsheng. Soil Erosion and Control Models in the Loess Plateau. Beijing: China Water & Power Press, 1997.
[本文引用: 2]

[ 蒋定生. 黄土高原水土流失与治理模式. 北京: 中国水利水电出版社, 1997.]
[本文引用: 2]

Zhao Qiguo, et al. Temporal-spatial Changes, Mechanism and Controlling Counter Measures of Soil Degradation in Hilly Red Soil Region of Eastern China. Beijing: Science Press, 2002.
[本文引用: 1]

[ 赵其国, . 中国东部红壤地区土壤退化的时空变化、机理及调控. 北京: 科学出版社, 2002.]
[本文引用: 1]

Tang Keli. Soil and Water Conservation in China. Beijing: Science Press, 2004: 80-113.
[本文引用: 5]

[ 唐克丽. 中国水土保持. 北京: 科学出版社, 2004: 80-113.]
[本文引用: 5]

Cai Qiangguo, Wang Guiping, Chen Yongzong. Process and Simulation of Erosion and Sediment Production in Small Watershed on the Loess Plateau. Beijing: Science Press, 1998.
[本文引用: 2]

[ 蔡强国, 王贵平, 陈永宗. 黄土高原小流域侵蚀产沙过程与模拟. 北京: 科学出版社, 1998.]
[本文引用: 2]

Liu Baoyuan, Xie Yun, Zhang Keli. Erosion Prediction Model. Beijing: Science and Technology of China Press, 2001.
[本文引用: 1]

[ 刘宝元, 谢云, 张科利. 土壤侵蚀预报模型. 北京: 中国科学技术出版社, 2001.]
[本文引用: 1]

Li Yong, Zhu Xianmo, Tian Jiying. Effectiveness of plant roots to increase the anti-scourability of soil on the Loess plateau
Chinese Science Bulletin, 1991,36(24):2077-2082.

[本文引用: 1]

Yu Xinxiao, Zhang Xiaoming, Wu Sihong. The effect of vegetation and precipitation upon runoff and sediment production in sloping lands of loess area
Journal of Mountain Science, 2006,24(1):19-26.

[本文引用: 1]

[ 余新晓, 张晓明, 武思宏. 黄土区林草植被与降水对坡面径流和侵蚀产沙的影响
山地学报, 2006,24(1):19-26.]

[本文引用: 1]

Lu Zongfan. Chinese Loess Plateau Eco-Agriculture. Xi'an: Shaanxi Science And Technology Press, 1997.
[本文引用: 3]

[ 卢宗凡. 中国黄土高原生态农业. 西安: 陕西科学技术出版社, 1997.]
[本文引用: 3]

Fu Bojie. Effects of soil and water conservation by land utilization and landscape project
Land Development and Engineering Research, 2016(3):41-50.



[ 傅伯杰. 土地利用和景观工程的水土保持效应
土地开发工程研究, 2016(3):41-50.]



Yu Xinxiao, Chen Lihua, Zhang Zhiqiang, et al. Water Conservation Forest Technology, Research and Demonstration. Beijing: Science Press, 2016.


[ 余新晓, 陈丽华, 张志强, . 水源涵养林—技术、研究、示范. 北京: 科学出版社, 2016.]


Liu Guobin, Shangguan Zhouping, Yao Wenyi, et al. Ecological effects of soil conservation in Loess Plateau
Bulletin of Chinese Academy of Sciences, 2017,32(1), 11-19.

[本文引用: 1]

[ 刘国彬, 上官周平, 姚文艺, . 黄土高原生态工程的生态成效
中国科学院院刊, 2017,32(1):11-19.]

[本文引用: 1]

Guan Junwei. The subject system and prospect of soil and water conservation in China
Journal of Beijing Forestry University, 2002,24(5/6):273-276.

[本文引用: 1]

[ 关君蔚. 中国水土保持学科体系及其展望
北京林业大学学报, 2002,24(5/6):273-276.]

[本文引用: 1]

Xin Shuzhi, Jiang Deqi. Introduction to Soil and Water Conservation in China. Beijing: Agricultural Press, 1982.
[本文引用: 1]

[ 辛树帜, 蒋德麒. 中国水土保持概论. 北京: 农业出版社, 1982.]
[本文引用: 1]

Zhou Chenghu, Cheng Weiming, Qian Jinkai, et al. Research on the classification system of digital land geomorphology of 1:1000000 in China
Journal of Geo-Information Science, 2009,11(6):707-724.

DOI:10.3724/SP.J.1047.2009.00707URL

[ 周成虎, 程维明, 钱金凯, . 中国陆地1:100万数字地貌分类体系研究
地球信息科学学报, 2009,11(6):707-724.]



Ning Jia, Liu Jiyuan, Zhao Guosong. Spatio-temporal characteristics of disturbance of land use change on major ecosystem function zones in China
Chinese Geographical Science, 2015,25(5):523-536.

DOI:10.1007/s11769-015-0776-8URL

Wang Zhiguo, Zhang Chao, Ji Qiang, et al. Soil and water conservation regionalization and its application in China
Science of Soil and Water Conservation, 2016,14(6):101-106.



[ 王治国, 张超, 纪强, . 全国水土保持区划及其应用
中国水土保持科学, 2016,14(6):101-106.]



Yang Jiuchun, Zhang Shuwen, Chang Liping, et al. Gully erosion regionalization of black soil area in northeastern China
Chinese Geographical Science, 2017,27(1):78-87.

DOI:10.1007/s11769-017-0848-zURL [本文引用: 1]

Gong Shiyang, Jiang Deqi. Soil erosion and its control in small watershed of the Loess Plateau
Science in China, Series A, 1979,22(11):1302-1314.

[本文引用: 1]

Li Yushan. Fundamental experiences for harness and development in the Loess Plateau of China
Journal of Soil and Water Conservation, 1999,5(2):51-57.

[本文引用: 2]

[ 李玉山. 黄土高原治理开发之基本经验
土壤侵蚀与水土保持学报, 1999,5(2):51-57.]

[本文引用: 2]

Zhu Xianmo. Maintain soil reservoir and insure mountains beautiful of the Loess Plateau
Soil and Water Conservation in China, 2006(1):6-7.

[本文引用: 1]

[ 朱显谟. 维护土壤水库确保黄土高原山川秀美
中国水土保持, 2006(1):6-7.]

[本文引用: 1]

Bureau of Wildland Survey and Design in Xinjiang Uygur Autonomous Region. Soil and its utilization in the middle Tarim River
Xinjiang Agricultural Sciences, 1958(1):8-10.

[本文引用: 1]

[ 新疆维吾尔自治区荒地勘测设计局. 塔里木河流域中游地区的土壤及其利用
新疆农业科学通报, 1958(1):8-10.]

[本文引用: 1]

Chen Moxiang, Du Guoyuan, Wang Wenxian. Hydrogeological conditions and reclamation of waste land in the middle Tarim River
Scientia Geologica Sinica, 1959(12):377-382.

[本文引用: 1]

[ 陈墨香, 杜国垣, 汪文先. 塔里木河中游沿岸地区的水文地质条件及生荒地的开垦
地质科学, 1959(12):377-382.]

[本文引用: 1]

Deng Mingjiang. Water management strategy of Tarim River Basin
China Water Resources, 2009(21):32-34, 36.

[本文引用: 1]

[ 邓铭江. 塔里木河流域治水思路探析
中国水利, 2009(21):32-34, 36.]

[本文引用: 1]

Fan Zili. Natural environmental protection in Tarim River Basin
Environmental Protection of Xinjiang, 1979(2):1-6.

[本文引用: 1]

[ 樊自立. 塔里木河流域的自然环境保护问题
新疆环境保护, 1979(2):1-6.]

[本文引用: 1]

Tian Yongku. Briefing on comprehensive investigation of Tarim River Basin
Agricultural Economy, 1982(6):47.

[本文引用: 1]

[ 田永库. 塔里木河流域综合考察简讯
农业经济, 1982(6):47.]

[本文引用: 1]

Liu Peijun. Comprehensive survey of remote sensing in Tarim River Basin
Remote Sensing Technology and Application, 1989(4):55-57, 20.

[本文引用: 1]

[ 刘培君. 塔里木河流域遥感综合调查
遥感技术动态, 1989(4):55-57, 20.]

[本文引用: 1]

Ling Yuquan, Gao Pengxun, Jin Jiong, et al. Characteristics of desertification and its developmental trend in the lower reaches of Tarim River
Journal of Desert Research, 1985(1):5-17, 2.

[本文引用: 1]

[ 凌裕泉, 高鹏恂, 金炯, . 塔里木河下游沙漠化特征及其发展趋势
中国沙漠, 1985(1):5-17, 2.]

[本文引用: 1]

Li Huqun, Long Buyun, Zhou Rongnian, et al. A study on the biomass of the Tamarix communities and their management and utilization in Xinjiang
Acta Phytoecologica et Geobotanica Sinica, 1990,14(4):366-372.

[本文引用: 1]

[ 李护群, 龙步云, 周荣年, . 南疆塔里木河中游地区柽柳群落特征及经营利用研究
植物生态学与地植物学学报, 1990,14(4):366-372.]

[本文引用: 1]

Cong Zhentao, Zhou Haiying, Lei Zhidong, et al. Analyses and simulations of the water transfer from the lower Tarim River
Advances in Water Science, 2003,14(3):276-279.

[本文引用: 1]

[ 丛振涛, 周海鹰, 雷志栋, . 塔里木河下游输水过程的分析与模拟
水科学进展, 2003,14(3):276-279.]

[本文引用: 1]

Chen Yaning, Zhang Xiaolei, Zhu Xiangmin, et al. Analysis on the ecological effects of water transport in the cutoff channel of the lower Tarim River, Xinjiang
Science in China (Series D), 2004,34(5):475-482.

[本文引用: 1]

[ 陈亚宁, 张小雷, 祝向民, . 新疆塔里木河下游断流河道输水的生态效应分析
中国科学(D辑), 2004,34(5):475-482.]

[本文引用: 1]

Deng Mingjiang, Zhou Haiying, Xu Hailiang, et al. Research on the ecological operation in the lower reaches of Tarim River based on water conveyance
Scientia Sinica (Technologica), 2016,46(8):864-876.

[本文引用: 1]

[ 邓铭江, 周海鹰, 徐海量, . 塔里木河下游生态输水与生态调度研究
中国科学: 技术科学, 2016,46(8):864-876.]

[本文引用: 1]

Chen Xi, Bao Anming, Wang Xinping, et al. Ecological effect evaluation of comprehensive control project in Tarim River Basin
Bulletin of the Chinese Academy of Sciences, 2017,32(1):20-28.

[本文引用: 1]

[ 陈曦, 包安明, 王新平, . 塔里木河近期综合治理工程生态成效评估
中国科学院院刊, 2017,32(1):20-28.]

[本文引用: 1]

Xue Jie, Gui Dongwei, Lei Jiaqiang, et al. Model development of a participatory Bayesian network for coupling ecosystem services into integrated water resources management
Journal of Hydrology, 2017,554:50-65.

[本文引用: 1]

Di Kun, Xu Xinwen, Lei Jiaqiang, et al. Analysis on the growth of shelterbelt plants growing under different local conditions
Arid Zone Research, 2005,22(3):312-316.

[本文引用: 1]

[ 邸鲲, 徐新文, 雷加强, . 不同立地条件下防护林植物的生长分析
干旱区研究, 2005,22(3):312-316.]

[本文引用: 1]

Zhou Zhibin, Xu Xinwen, Lei Jiaqiang, et al. Salt balance and movement of Tarim Desert Highway Shelterbelt irrigated by saline water
Arid Land Geography, 2006,29(4):470-475.

[本文引用: 1]

[ 周智彬, 徐新文, 雷加强, . 咸水灌溉下塔里木沙漠公路防护林盐分平衡及盐分运移
干旱区地理, 2006,29(4):470-475.]

[本文引用: 1]

Li Hongzhong, Li Shengyu, Lei Jiaqiang, et al. Experimental study on afforestation irrigated with saltwater with different mineralizations in the Taklimakan Desert
Arid Land Geography, 2005,28(3):305-310.

[本文引用: 1]

[ 李红忠, 李生宇, 雷加强, . 塔克拉玛干沙漠不同矿化度水灌溉造林试验研究,
干旱区地理, 2005,28(3):305-310.]

[本文引用: 1]

Li Bingwen, Xu Xinwen, Lei Jiaqiang, et al. Site type classification of ecological project of highway protective forest in Tarim Desert
Chinese Science Bulletin, 2008,53(Suppl. 2):25-32.

[本文引用: 1]

[ 李丙文, 徐新文, 雷加强, . 塔里木沙漠公路防护林生态工程立地类型划分
科学通报, 2008,53(Suppl. 2):25-32.]

[本文引用: 1]

Xu Xinwen, Li Bingwen, Wang Xiaojing. Study on sandy irrigation (technology) in hinterland of Taklimakan Desert
Chinese Science Bulletin, 2006,51(Suppl. 1):133-136.

[本文引用: 1]

[ 徐新文, 李丙文, 王晓静. 塔克拉玛干沙漠腹地沙地成水灌溉(技术)研究
科学通报, 2006,51(Suppl. 1):133-136.]

[本文引用: 1]

Huang Bingwei, Xu Yuexian, Wu Kai, et al. Geography and Sustainable Agriculture. Beijing: China Meteorological Press, 1993.
[本文引用: 1]

[ 黄秉维, 许越先, 吴凯, . 地理学与农业持续发展. 北京: 气象出版社, 1993.]
[本文引用: 1]

Sun Honglie. Ecosystem of China. Beijing: Science Press, 2005: 1104-1111.
[本文引用: 4]

[ 孙鸿烈. 中国生态系统. 北京: 科学出版社, 2005: 1104-1111.]
[本文引用: 4]

Yu Renpei. Ideas about exploitation and utilization of saline soil resources
Chinese Journal of Soil Science, 2001,32(Suppl. 2):138-140.

[本文引用: 1]

[ 俞仁培. 对盐渍土资源开发利用的思考
土壤通报, 2001,32(Suppl. 2):138-140.]

[本文引用: 1]

Cheng Weixin. Lowland Improvement and Environmental Ecology. Beijing: Science Press, 1993: 35-245.
[本文引用: 2]

[ 程维新. 洼地整治与环境生态. 北京: 科学出版社, 1993: 35-245.]
[本文引用: 2]

Pang Chunhao. Model of harnessing saline-alkali in depression in the Huang Huai Hai alluvial plain: Take Beiqiuwa in Yucheng county, for example
Geographical Research, 1990,9(1):47-54.

[本文引用: 1]

[ 逄春浩. 黄淮海冲积平原盐碱低洼地的治理模式: 以禹城县北丘洼为例
地理研究, 1990,9(1):47-54.]

[本文引用: 1]

Wang Zunqin. Research on Agricultural Development Strategy and Comprehensive Management of Natural Wenyanqu Basin. Beijing: Science Press, 1987: iii-iv.
[本文引用: 1]

[ 王遵亲. 天然文岩渠流域农业发展战略和综合治理研究. 北京: 科学出版社, 1987: iii-iv.]
[本文引用: 1]

Tian Kuixiang. Integrated Management Techniques of Coastal Water Shortage Salinized Salty Areas. Beijing: Science Press, 1992: 6-9.
[本文引用: 1]

[ 田魁祥. 近滨海缺水盐渍区综合治理技术研究. 北京: 科学出版社, 1992: 6-9.]
[本文引用: 1]

Zhou Youwu, Qiu Guoqing, Guo Dongxin, et al. Permafrost in China. Beijing: Science Press, 2000.
[本文引用: 1]

[ 周幼吾, 邱国庆, 郭东信, . 中国冻土. 北京: 科学出版社, 2000.]
[本文引用: 1]

Cheng Guodong, He Ping. Linearity engineering in permafrost areas
Journal of Glaciology and Geocryology, 2001,9(3):213-217.

[本文引用: 2]

[ 程国栋, 何平. 多年冻土地区线性工程建设
冰川冻土, 2001,9(3):213-217.]

[本文引用: 2]

Wu Qingbai, Zhao Shiyun, Ma Wei, et al. Qinghai-Xizang railroad construction in permafrost regions
ASCE Journal of Cold Regions Engineering, 2007,21(2):60-67.

DOI:10.1061/(ASCE)0887-381X(2007)21:2(60)URL [本文引用: 1]

Ma Wei, Cheng Guodong, Wu Qingbai. Construction on permafrost foundations: Lessons learned from the Qinghai-Tibet railroad
Cold Regions Science and Technology, 2009,59(1):3-11.

DOI:10.1016/j.coldregions.2009.07.007URL [本文引用: 1]

Wang Zhijian. Permafrost engineering in Qinghai-Tibet railway construction
Chinese Railways, 2002(12):31-37.

URL [本文引用: 1]

[ 王志坚. 青藏铁路建设中的冻土工程问题
中国铁路, 2002(12):31-37.]

[本文引用: 1]

Ma Wei, Cheng Guodong, Wu Qingbai. Preliminary study on technology of cooling foundation in permafrost regions
Journal of Glaciology and Geocryology, 2002,24(5):579-587.

URL [本文引用: 1]
An active measure of protecting frozen soils, namely cooling foundation, is put forward in order to face the severe challenge of high temperature frozen soil and world warming, and to insure the stability of engineering in cold regions. The feasibility of the measure is analyzed and discussed in the aspects of roadbed of ventilation duct, the ballast revetment and ballast roadbed, the roadbed of heat pipe, the roadbed of awning, development and application of heat preservation materials of thermal semiconductor and application of artificially freezing technology, respectively. It is found that as a technology of actively adjusting and controlling temperature in foundation, the measure is effective in different ranges, able to effectively raise permafrost table and can insure the stability of frozen soil foundation. So, it is a feasible method and can be applied to constructions in cold regions.
[ 马巍, 程国栋, 吴青柏. 多年冻土地区主动冷却地基方法研究
冰川冻土, 2002,24(5):579-587.]

[本文引用: 1]

Cheng Guodong. Construction of Qinghai-Tibet Railway with cooled roadbed
China Railway Science, 2003,24(3):1-4.

[本文引用: 1]

[ 程国栋. 用冷却路基的方法修建青藏铁路
中国铁道科学, 2003,24(3):1-4.]

[本文引用: 1]

Cheng Guodong. The influence of local factors on the distribution of permafrost and its inspiration to the design of Qinghai-Tibet Railway
Science in China (Series D), 2003,33(6):602-607.

[本文引用: 1]

[ 程国栋. 局地因素对多年冻土分布的影响及其对青藏铁路设计的启示
中国科学(D辑), 2003,33(6):602-607.]

[本文引用: 1]

Wu Jingmin, Wang Shuangjie, Zhang Jinzhao. Highway Engineering in Permafrost Area. Beijing: People's Communication Press, 2005.
[本文引用: 1]

[ 武憼民, 汪双杰, 章金钊. 多年冻土地区公路工程. 北京: 人民交通出版社, 2005.]
[本文引用: 1]

Wang Shuangjie, Li Zhulong, Zhang Jinzhao, et al. Highway Construction Technology on Permafrost Regions. People's Communications Press, 2008.
[本文引用: 2]

[ 汪双杰, 李祝龙, 章金钊, . 多年冻土地区公路修筑技术. 人民交通出版社, 2008.]
[本文引用: 2]

Wu Qingbai, Liu Yongzhi, Zhang Jianming, et al. A review of recent frozen soil engineering in permafrost regions along Qinghai-Tibet Highway, China
Permafrost and Periglacial Processes, 2002,13(3):199-205.

DOI:10.1002/(ISSN)1099-1530URL [本文引用: 1]

Wang Shaoling, Mi Haizhen. The change of permafrost under roadbed with asphalt pavement along the Qinghai-Tibet highway
Journal of Glaciology and Geocryology, 1993,24(1):10-15.

[本文引用: 1]

[ 王绍令, 米海珍. 修筑沥青路面后青藏公路下覆多年冻土的变化
冰川冻土, 1993,24(1):10-15.]

[本文引用: 1]

Wu Qingbai, Tong Changjiang. Permafrost change and stability of Qinghai-Tibet Highway
Journal of Glaciology and Geocryology, 1995,17(4):350-355.

URL [本文引用: 1]
Climate Warming and human activity bring out a great influence on permafrost along Qinghai-Tibet highway. For example, the temperature of permafrost rises, the thickoness of permafrost eliminate, disconhnuous permafrost retreats toward north and so on. These changes seriously disturb and affect the stability of Qinghai-Tibet highway. Meanwhile, considering these changes and engineering stability, the stability of Qinghai-Tibet highway is divided into six zones: 1) very stable zone; 2) stable zone; 3) basically stable zone; 4) basically stable passing zone, 5) unstable zone; 6)extreme unstable zone.
[ 吴青柏, 童长江. 冻土变化与青藏公路的稳定性问题
冰川冻土, 1995,17(4):350-355.]

[本文引用: 1]

Zhang Jinzhao, Li Zhulong, Wu Jingmin. Discussion on main factors about frozen subgrade stability
Highway, 2000(2):17-20.

URL [本文引用: 1]

[ 章金钊, 李祝龙, 武憼民. 冻土路基稳定性主要影响因素探讨
公路, 2000(2):17-20.]

[本文引用: 1]

Ye Yangsheng, Wang Zhongjin, Cheng Aijun, et al. Frost heave classification of railway subgrade filling material and the design of anti-freezing layer
China Railway Science, 2007,28(1):1-7.

[本文引用: 1]

[ 叶阳升, 王仲锦, 程爱君, . 路基的填料冻胀分类及防冻层设置
中国铁道科学, 2007,28(1):1-7.]

[本文引用: 1]

Liu Hua, Niu Fujun, Niu Yonghong, et al. Study of design of filling material and setting anti-frost layer for high-speed railway roadbed in seasonally frozen regions
Chinese Journal of Rock Mechanics and Engineering, 2011,30(12):2549-2557.

URL [本文引用: 1]
Due to that the roadbed of the high-speed railway does not allow the serious deformation,the design of filling material and its anti-frost ability have become an important technical problem in the seasonally frozen regions. According to the referring and analysis for the frost-sensitive classification and the anti-frost method of roadbed filling material in different industries at home and abroad,the frost classification of filling material of the high-speed railway roadbed which is suitable for the seasonally frozen regions in China is discussed combining the specific engineering case,Harbin—Dalian passenger special line. About 70% frost heave amount of the high-speed railway roadbed is found at the upside of underlying roadbed by measured data and analyzing the distribution of frost heave amount along the frozen depth. The result will be used to estimate the thickness of anti-frost layer. The result calculated by the finite element method shows that the maximum frozen depth using modified materials A and B is less about 20 to 30 cm than that using common materials A and B,additionally the warming in the former is quicker than that in the latter. The results above also indicate that the roadbed using modified filling materials has good effects to heat preservation and temperature rising.
[ 刘华, 牛富俊, 牛永红, . 季节性冻土区高速铁路路基填料及防冻层设置研究
岩石力学与工程学报, 2011,30(12):2549-2557.]

[本文引用: 1]

Shi Gangqiang, Zhao Shiyun, Li Xianming, et al. The frost heaving deformation of high-speed railway subgrades in cold regions: Monitoring and analyzing
Journal of Glaciology and Geocryology, 2014,36(2):360-368.

DOI:10.7522/j.issn.1000-0240.2014.0044URL [本文引用: 1]
Harbin-Dalian High-Speed Railway, crossing Northeast China, is the first new-built and operating high-speed railway in cold regions around the world. The subgrades of the railway were treated with filling material replacement and taking waterproof measures and so on to prevent frost damages. For evaluating the effects of the frost heaving prevention and engineering operation status of the subgrades, the monitoring data during the first freeze-thaw period (2012-2013) from 9,641 monitoring points along the railway were analyzed. The occurrence, development and changing of the frost heaving were summarized. It is found that the development of the frost heaving includes the rapid growing stage, the stable frost heaving stage and the thawing settlement stage. The frost heaving deformation occurs along the whole line, but the frost heaving amount, great or small, is under control. The frost heaving degrees are related to the subgrade structures. The frost heaving occurs mainly in shallow part of a subgrade base, and its damage degree depends on the subgrade structure. On the whole, the frost heaving in the transition section is slight, followed by that in the embankments, and it is most serious in the cutting sections or in the base-plate jointing parts. As engineering treatments against frost heaving, it is suggested to focus on reducing surface water infiltration and control frost heaving deformation of the subgrade base. And in the designing of high-speed railway in seasonal frozen soil regions, bridges are strongly recommended instead of subgrade, and to modify the upper layer of the subgrade to no frost heaving structure.
[ 石刚强, 赵世运, 李先明, . 严寒地区高速铁路路基冻胀变形监测分析
冰川冻土, 2014,36(2):360-368.]

[本文引用: 1]

Cai Degou. Test on frost heaving spatial-temporal distribution of high speed railway subgrade in seasonal frozen soil region
China Railway Science, 2016,37(3):16-21.

[本文引用: 1]

[ 蔡德钩. 高速铁路季节性冻土路基冻胀时空分布规律试验
中国铁道科学, 2016,37(3):16-21.]

[本文引用: 1]

Yang Linsheng, Wang Wuyi, Tan Jianan, et al. Overview on the research works in the field of environmental geography and human health
Geographical Research, 2010,29(9):1571-1583.

[本文引用: 2]

[ 杨林生, 王五一, 谭见安, . 环境地理与人类健康研究成果与展望
地理研究, 2010,29(9):1571-1583.]

[本文引用: 2]

The Group of Environment and Endemic Disease. The characteristics of geographical epidemiology for Kaschin-Beck's disease in China and its pathogenicity
Scientia Geographica Sinica, 1985,5(1):1-8.

URL [本文引用: 1]
i be the direction of a river section and Li correspounding langth. A concept of concentrated degree is introduced as following: where {λ-k,......,λ0,......,λk} are a group of powers, λi=λ-i>0, λ0 is maximum of {λi}, and if j>i, then λj<λi. Obviously, reflects the concentrated degree of the directions of a river network at θm. The prefferred directions can be calculated by the following steps:1) compute 2) Suppose Max/n = a1, look for the maximum of , where n varies in (0°, 180°), (α1-45°, α1+45°) 3) Denote A=(α1+α2)/2, B=A+90, then compute new concentrated degree . in and 4) Suppose β1=max , then β1 is the first preffered direction. Similarly, if β2=max, then β2 is the second preffered direction. By computing it is found that the choice of power {λi} is important. We call η=λ0/λk by propertion of amplitude. η can be taken near 1 when the variance of data is rather small, on the contrary, it should be taken rather more.utational method. Let θi be the direction of a river section and Li correspounding langth. A concept of concentrated degree is introduced as following: where {λ-k,......,λ0,......,λk} are a group of powers, λi=λ-i>0, λ0 is maximum of {λi}, and if j>i, then λj<λi. Obviously, m reflects the concentrated degree of the directions of a river network at θm. The prefferred directions can be calculated by the following steps:1) compute m 2) Suppose Max/n =al, look for the maximum of , where n varies in (0°, 180°), (α1-45°, α1+45°) 3) Denote A=(α1+α2)/2, B=A+90, then compute new concentrated degree z. in and 4) Suppose β1=max , then β1 is the first preffered direction. Similarly, if β2=max, then β2 is the second preffered direction. By computing it is found that the choice of power {λi} is important. We call η=λ0/λk by propertion of amplitude. η can be taken near 1 when the variance of data is rather small, on the contrary, it should be taken rather more.]]>
[ 中国科学院地理研究所环境与地方病组. 我国大骨节病的地理流行病学特点和环境病因研究
地理科学, 1985,5(1):1-8.]

[本文引用: 1]

The Group of Environment and Endemic Disease. The Keshan disease in China: A study of the geographical epidemiology
Acta Geographica Sinica, 1979,34(2):85-103.

[本文引用: 1]

[ 中国科学院地理研究所环境与地方病组. 我国克山病的地理流行病学规律
地理学报, 1979,34(2):85-103.]

[本文引用: 1]

Tan Jianan, Zhu Wenyu, Wang Wuyi, et al. Selenium in soil and endemic diseases in China
The Science of the Total Environment, 2002,284:227-235.

DOI:10.1016/s0048-9697(01)00889-0URLPMID:11846167 [本文引用: 1]

The Group of Environment and Endemic Disease. The relationship between the distribution of Keshan disease and the selenium content of food grains as a factor of chemical geographical environment
Acta Geographica Sinica, 1981,36(4):369-376.

[本文引用: 1]

[ 中国科学院地理研究所环境与地方病组. 我国克山病的分布和以粮食低硒为表征的地理环境的关系
地理学报, 1981,36(4):369-376.]

[本文引用: 1]

Hou Shaofan, Zhu Zhenyuan. A study of the relation between the whole blood selenium content of the population and kaschin-beck disease in the low selenium regions in China
Geographical Research, 1984,3(2):14-23.

[本文引用: 1]

[ 侯少范, 朱振源. 我国低硒地带人群全血硒含量及其与大骨节病关系的研究
地理研究, 1984,3(2):14-23.]

[本文引用: 1]

Tan Jianan. Environmental Selenium and Health. Beijing: People's Medical Publishing House, 1989.
[本文引用: 1]

[ 谭见安. 环境硒与健康. 北京: 人民卫生出版社, 1989.]
[本文引用: 1]

Li Hairong, Yang Linsheng, Tan Jian'an, et al. Progress on selenium deficiency in geographical environment and its health impacts in China
Current Biotechnology, 2017,7(5):381-386.

[本文引用: 1]

[ 李海蓉, 杨林生, 谭见安, . 我国地理环境硒缺乏与健康研究进展
生物技术进展, 2017,7(5):381-386.]

[本文引用: 1]

Research Team of Environment and Endemic Disease. Studies on low selenium belt in China and pathogeny of Keshan and Kaschin-Beck diseases
Environmental Science, 1986,7(4):89-93.

[本文引用: 1]

[ 中国科学院地理研究所环境与地方病组. 我国低硒带及其与克山病、大骨节病病因关系的研究
环境科学, 1986,7(4):89-93.]

[本文引用: 1]

Li Jiyun, Chen Daizhong, Ren Shangxue, et al. Effect of applying selenium to increase its' content in food on the prevention and cure of big bone season
Chinese Journal of Endemiology, 1991,10(2):69-75.

[本文引用: 1]

[ 李继云, 陈代中, 任尚学, . 土壤施硒肥增加粮食硒含量防治大骨节病效果的研究
中国地方病学杂志, 1991,10(2):69-75.]

[本文引用: 1]

Li Ribang, Tan Jianan, Wang Wuyi, et al. Study on increasing selenium flux in food chain to control kaschin beck disease and Keshan disease
Acta Geographica Sinica, 1999,54(2):158-164.

[本文引用: 1]

[ 李日邦, 谭见安, 王五一, . 提高食物链硒通量防治大骨节病和克山病示范研究
地理学报, 1999,54(2):158-164.]

[本文引用: 1]

Yang Linsheng, Lv Yao, Li Hairong, et al. The relationship between kaschin-beck diseases distribution and mountain luvisols' distribution in Tibet
Journal of Mountain Science, 2005,23(4):385-390.

[本文引用: 1]

[ 杨林生, 吕瑶, 李海蓉, . 西藏山地淋溶土系列与大骨节病分布的关系
山地学报, 2005,23(4):385-390.]

[本文引用: 1]

Li Shunjiang, Li Wei, Hu Xia, et al. Distribution of Kashin-Beck disease (KBD) and its relation to selenium content in soil-plant-animal (human being) ecosystem in Tibet
Chinese Journal of Ecology, 2008,27(12):2167-2170.

URL [本文引用: 1]
P<0.05). The low soil selenium content in KBD areas was the critical reason leading to the low selenium level in grain and human bodies in these areas, and the KBD prevalence in Tibet. Therefore, to improve soil environment and to increase soil selenium content would be the critical way to prevent the KBD prevalence in Tibet. Moreover, selenium supplement could obviously improve the selenium content of children’s hair, and prevent and control KBD effectively. However, this supplement should be insisted on longtime.]]>
[ 李顺江, 李巍, 胡霞, . 西藏土壤—植物—动物(人)系统中硒含量与大骨节病的关系
生态学杂志, 2008,27(12):2167-2170.]

[本文引用: 1]

Chen Zhuo, Li Hairong, Yang Linsheng, et al. Staple food consumption and related selenium intake among residents in Kashin-Beck disease endemic areas of Lhasa municipality, China
Chinese Journal of Public Health, 2015,31(7):915-918.

[本文引用: 1]

[ 陈倬, 李海蓉, 杨林生, . 拉萨大骨节病区居民主粮消费特征及硒摄入量评估
中国公共卫生, 2015,31(7):915-918.]

[本文引用: 1]

Wang Jing, Li Hairong, Yang Linsheng, et al. Distribution and translocation of selenium from soil to highland barley in the Tibetan Plateau Kashin-Beck disease area
Environmental Geochemistry and Health, 2017,39:221-229.

DOI:10.1007/s10653-016-9823-3URLPMID:27071616 [本文引用: 1]
Kashin-Beck disease (KBD), which is still active and severe in the Tibetan Plateau, is considered to be a kind of selenium (Se)-deficient disease. Highland barley as the most popular staple food in the Tibetan Plateau is one of the dominant Se sources for local people. To improve Se levels in crops in the Tibetan Plateau KBD area, the distribution and translocation of Se from soil to highland barley in both non-KBD and KBD endemic areas were investigated. The results showed that Se levels in highland barley were too low to meet the minimum requirements of human for daily intake of Se. The total Se concentrations of highland barley fractions in KBD areas were lower than that in non-KBD areas (grain P = 0.238; straw P = 0.087; root P = 0.008). However, no significant difference was observed in corresponding cultivated soil Se between the two areas (P = 0.993). The calculation of Se transfer factors indicated that the restricting step for Se translocation was from soil to root. Water-soluble, exchangeable and fulvic acid-bound Se fractions in the soil are key species dominating in this transfer process, according to their significant correlations with root Se. Se transfer from soil to root significantly increases as the pH value of soil increases (P = 0.007), and soil organic matter content decreases (P = 0.019). The information obtained may have considerable significance for proposing effective agricultural measures to increase grain Se in KBD endemic areas.

Guo Yanan, Li Hairong, Yang Linsheng, et al. The relationship between environment selenium characteristic and distribution of Kaschin-Beck disease in the Yarlung Zangbo River banks
Chinese Journal of Endemiology, 2017,36(7):494-497.

[本文引用: 1]

[ 郭亚南, 李海蓉, 杨林生, . 雅鲁藏布江两岸环境硒分布特征及与大骨节病发病的关系
中华地方病学杂志, 2017,36(7):494-497.]

[本文引用: 1]

The Committee of Endemic Diseases and Their Environments in the People's Republic of China. Atlas of Endemic Diseases and Their Environments in the People's Republic of China. Beijing: Science Press, 1989.
[本文引用: 3]

[ 中华人民共和国地方病与环境图集编纂委员会. 中华人民共和国地方病与环境图集. 北京: 科学出版社, 1989.]
[本文引用: 3]

Liu Yunpeng, Tan Jianan, Shen Erli. Atlas of Plague and the Environment of the People's Republic of China. Beijing: Science Press, 2000.
[本文引用: 1]

[ 刘云鹏, 谭见安, 沈尔礼. 中华人民共和国鼠疫与环境图集. 北京: 科学出版社, 2000.]
[本文引用: 1]

Yang Linsheng, Chen Rugui, Wang Wuyi, et al. The temporal and spatial distribution of the plague foci since 1840 in China
Geographical Research, 2000,19(3):243-248.

[本文引用: 1]

[ 杨林生, 陈如桂, 王五一, . 1840年以来我国鼠疫的时空分布规律
地理研究, 2000,19(3):243-248.]

[本文引用: 1]

Li Hairong, Yang Linsheng, Wang Wuyi, et al. Medical geographical evaluation on 150 years plague epidemic
Progress in Geography, 2001,20(1):73-80.

DOI:10.11820/dlkxjz.2001.01.010URL [本文引用: 1]
Based on the data of plague in China since 1840, nine appropriate indictors are selected, which are total number of plague, total number of plague deaths, annual average of number of plague cases, annual average plague deaths, the number of plague occurring years, the number of human plague epidemic sites during the highest incident years, total number of human plague epidemic sites, incidents times for epidemic sites of human plague, and case fatality rate. The data of nine indictors show non normal distribution through distribution tests, so we establish the standards to divide the grades for all the plague indictors by the way of percentile. The spatial distribution features of each plague indicators are studied by using GIS. Moreover, a comprehensive indicator to assess plague for different areas is made through the method of factor analyzing, which is applied for regionalization of the plague in whole China. The results indicate that there are two plague prevalent regions: north of China and south of China in the past. In south of China, Yunnan, Fujian, Guangxi and Hainan provinces were seriously prevalent plague areas; Jilin, Inner-Mongolia, Shan&rsquo;xi provinces, in north of China, were also seriously prevalent plague areas. At present, almost all the plague areas are controlled, but there are still a few cases of plague in west especially in the south west of China. The comprehensive evaluation of plague will be benefit for watching out of plague prevalence and convenient for plague management according to various grades of different areas.
[ 李海蓉, 杨林生, 王五一, . 150年来中国鼠疫的医学地理评估
地理科学进展, 2001,20(1):73-80.]

[本文引用: 1]

Hou Shaofan, Wang Wuyi, Li Hairong, et al. Study on the geographically epidemic character of arsenism and its countermeasures
Progress in Geography, 2002,21(4):391-400.

DOI:10.11820/dlkxjz.2002.04.012URL [本文引用: 1]
The development models in the rapid growth areas along China coast after reform and opening up to the international market include two models, one of which is called the Jiangsu-Zhejiang model. This means that the principle power for economic development in these regions mainly relies on regional and domestic markets rather than on oversea ones. The economic development of the township enterprises and the coordination between the internal and external regions are the two characteristics in Zhejiang Province and Jiangsu Province. The local industrial clusters in Wenzhou, Zhejiang province, which has generated high rate of regional economic development, are now confronted with new challenges in the globalization age, because most local enterprises are middle and small sized ones and are engaged in traditional industrial productions, such as shoes, glasses, clothes and other commodities. However, the globalization will consolidate the important role of locally industrial system played in the regional development, rather than weaken it as some people have supposed to be. The main concern of this paper is firstly devoted to discuss the features of local networks in Wenzhou city, and then by employing the two cases, it is argued that local industrial clusters can maintain and further improve their competitiveness by expanding their national and global networks which are deeply embedded in local networks, as well as by keeping the dynamic capability of learning and innovation which is oriented to upgrade the local traditional industry. Furthermore, it is suggested local enterprises to develop networks which represent a set of selective and explicit linkages between one firm and others with which it has technological and marketing relations as well as other social and cultural linkages, aiming at mutual advantages. Such linkages may take a material or a non material form and include supplier user relationships, subcontracting, production sharing, joint ventures, licensing agreements, and R&amp;D collaboration, etc. This finding has important implications for the regional development and industrial structure adjustment ongoing in China.
[ 侯少范, 王五一, 李海蓉, . 我国地方性砷中毒的地理流行病学规律及防治对策
地理科学进展, 2002,21(4):391-400.]

[本文引用: 1]

Jin Yinlong, Liang Chaoke, He Gongli, et al. Study on distribution of endemic arsenismin China
Journal of Hygiene Research, 2003,32(6):519-540.

URLPMID:14963897 [本文引用: 1]
Drinking water and burning coal endemic arsenism as a severe disease is confirmed by National Ministry of Health in China in 1992. It is not uniform survey of the disease for the whole country from its report in 1980 in xijiang. Therefore National Ministry of Scientific and Technology in China supports to study on distribution of endemic arsenism in 21 provinces in China, so that it can know the basic distribution of endemic arsenism in China, and the data results will be a guide for the disease prevention and control. The project used environmental epidemiology study including retrospective epidemiology, present situation survey of the disease in severe areas and sampling investigation in unknown areas, collecting data of exposure population and arsenism cases. At the same time, the data of arsenic level in environment were collected, and environment samples were analyzed by standard chemical method. The both data were statistical analysis by access database and SAS procedure in computer. Through the study, it achieves the expected aim that grasps spreading distribution of drinking water arsenism and burning coal arsenism, including arsenic level in water, coal, food and air, as well as patient's condition of the disease at macroscopic. Drinking water endemic arsenism distributed in 8 provinces, 40 counties, affecting 2,343,238 peoples, among 522566 peoples expositing to the drinking water arsenic higher than 0.05 mg/L, and 7821 arsenism patients were diagnosed. Burning coal endemic arsenism spreads in 2 provinces, 8 counties, affecting 333905 peoples, 48438 peoples exposing to high arsenic of burning coal pollution, and 2402 peoples causing chronic arsenic poising by coal burning. Drinking water endemic arsenism: Nemeng, Shanxi is a severe drinking water endemic region also. Wusu city in Xinjiang is old arsenism area, which reformed drinking water to decrease arsenic, so chronic arsenic poisoning condition decreasing. Reforming drinking water measures to decreees arsenic were performed in some areas of Neimeng and Shanxi. On other hand, 1 county of Jilin and 1 county of Ningxia as drinking water arsenism areas were affirmed. 11 counties of Shanyi, 1 Banner of Nemeng, 1 city of Jilin, 1 county of Qinhai and 1 counties of Anhui province were discovered for new drinking water arsenism areas in this survey. Shunyi district of Beijing has high arsenic in drinking water. Otherwise, high arsenic content in drinking water in some areas decreased to lower than 0.05 mg/L, which including some villages of Liaoning province, Tongxing city of Zhejiang province, and Tianzhu village of Shunyi district in Beijing. Blackfoot disease related to high arsenic in drinking water in Taiwan province does not include in this study. Burning coal endemic arsenism: Guizhou province has a typical burning coal arsenism areas in China and world. Although to reform stove and decreasing arsenic pollution, but the chronic arsenic poisoning from domestic coal combustion exists, because it located high seal level and poor areas. Some new burning coal arsenism areas in Shanxi province were found, which produced air pollution and food pollution of arsenic from domestic coal combustion for cooking and heating. The paper summarizes the arsenic distribution levels in drinking water and in environment of burning coal. At the same time, preventive and control measures of endemic arsenism were provided.
[ 金银龙, 梁超轲, 何公理, . 中国地方性砷中毒分布调查(总报告)
卫生研究, 2003,32(6):519-540.]

PMID:14963897 [本文引用: 1]

Guo Huaming, Guo Qi, Jia Yongfeng, et al. Chemical characteristics and geochemical processes of high arsenic groundwater in different regions of China
Journal of Earth Sciences and Environment, 2013,35(3):83-96.

[本文引用: 1]

[ 郭华明, 郭琦, 贾永锋, . 中国不同区域高砷地下水化学特征及形成过程
地球科学与环境学报, 2013,35(3):83-96.]

[本文引用: 1]

Li Yonghua, Wang Wuyi. Environmental dose-effects of fluoride in endemic fluorosis of drinking type areas
Chinese Journal of Control of Endemic Disenaces, 2001,16(5), 262-265.

[本文引用: 1]

[ 李永华, 王五一. 饮水型氟中毒病区氟的环境剂量—效应研究
中国地方病防治杂志, 2001,16(5):262-265.]

[本文引用: 1]

Yang Linsheng, Chai Yuanqing, Yu Jiangping, et al. Associations of arsenic metabolites, methylation capacity, and skin lesions caused by chronic exposure to high arsenic in tube well water
Environmental Toxicology, 2017,32:28-36.

DOI:10.1002/tox.22209URLPMID:26494561 [本文引用: 1]
To investigate the interaction between skin lesion status and arsenic methylation profiles, the concentrations and proportions of arsenic metabolites in urine and arsenic methylation capacities of study subjects were determined. The results showed that the mean urinary concentrations of iAs (inorganic arsenic), MMA (monomethylarsonic acid), DMA (dimethylarsinic acid), and TAs (total arsenic) were 75.65, 68.78, 265.81, and 410.24 mug/L, respectively, in the skin lesions subjects. The highest values were observed in the multiple skin lesions subjects. Higher %iAs and %MMA, and lower %DMA, PMI (primary methylation index), and SMI (secondary methylation index) were found in skin lesions subjects. The multiple skin lesions subjects had highest %iAs and %MMA, and lowest %DMA, PMI, and SMI. The prevalence of skin lesions strongly, positively correlated with arsenic levels in drinking water. The elder persons also had higher frequency of skin lesions compared with younger persons. It can be concluded that arsenic levels in drinking water significantly affected the prevalence of skin lesions. Male subjects usually had higher proportions of skin lesions when compared with female subjects. Moreover, it may be concluded that MMA was significantly related to single skin lesion, whereas DMA and iAs were associated with multiple skin lesions. It seemed that MMA had greater toxicity to hyperkeratosis, whereas DMA and iAs had higher toxicity to depigmentation or pigmentation. (c) 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 28-36, 2017.

Wei Binggan, Yu Jiangping, Kong Chang, et al. Effects of arsenic methylation and metabolism on the changes of arsenic-related skin lesions
Environmental Science and Pollution Research, 2018,25:24394-24402.

DOI:10.1007/s11356-018-2512-2URLPMID:29948723 [本文引用: 1]
Little was known about the arsenic metabolism and arsenic methylation associated with the changes of skin lesions after reducing the arsenic in drinking water (WAs). Therefore, urinary concentrations and proportions of arsenic species were determined for recovery (RC), improvement (IC), persistent (PE), aggravation (AC), new incidence (NC), and no sign (HC) groups based on the changes of skin lesions between before (in 2004) and after (in 2017) WAs reduction. The results indicate that the urinary concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and total arsenic (TAs) were much higher for RC and IC groups than for the other groups in 2004, while these values varied slightly among the groups in 2017. The urinary %iAs of all the groups was significantly decreased after WAs reduction. In contrast, the urinary %DMA of RC, IC, AC, and NC groups was increased. From 2004 to 2017, the PE and HC groups had lower decrease rate of %iAs and %MMA, and increase rate of %DMA, primary methylation index (PMI), and secondary methylation index (SMI) after WAs reduction. The adjusted odd ratios (ORs) showed that the RC, IC, AC, and NC groups were positively related with %iAs and %MMA and were negatively correlated with %DMA, PMI, and SMI before WAs reduction. It can be concluded that higher urinary %iAs and %MMA before WAs reduction increased the probability of skin lesions recovery and improvement, and the risks of skin lesions aggravation and incidence. Higher increase rate of urinary %DMA was positively associated with of skin lesions recovery and improvement. Moreover, higher urinary %iAs and %MMA or lower increase rate of urinary %DMA might increase the risk of skin lesions aggravation.

Yang Linsheng, Wang Wuyi, Hou Shaofan, et al. Effects of selenium supplementation on arsenism: An intervention trial in Inner Mongolia
Environmental Geochemistry and Health, 2002. 24(4):359-374.

DOI:10.1023/A:1020514826108URL [本文引用: 1]
This paper reports the effects of a placebo-controlled Se-enriched yeast supplementation trial, conducted for 14 months, on arsenism in adult farmers living in a rural community in Inner Mongolia, China. The farmers had been naturally exposed to elevated concentrations of As in drinking water from tube-wells since 1983 but changed to arsenic-free drinking water when the trial began in June 1996. Blood and hair Se and As concentrations were analysed pre-intervention and at the end of the 3rd, 9th and 14th month, while skin lesions were assessed pre-intervention, as well as at the end of the 14th month, using the Arsenism Clinical Criteria established by the Ministry of Health, China. As the trial was a voluntary one, a number of farmers did not routinely have their blood and hair samples taken for analysis. Consequently, the data have been analysed in two categories. Fifty-four farmers from the Se-group and 29 from the placebo-group who were sampled on each occasion were considered as one group, which has been compared with the second group comprising up to a total of 100 farmers in the Se-group and 86 in the placebo-group. Results calculated for those farmers who were sampled on each occasion, showed that at the end of the trial, blood and hair Se concentrations of the Se-group increased from 0.130 to 0.186 µg ml–1 and from 0.431 to 0.502 µg g–1, respectively, while those of the placebo-groups remained constant. Blood and hair As concentrations of the Se-group decreased from 0.051 to 0.015 µg ml–1 and from 2.57 to 0.680 µg g–1, respectively, a greater reduction than those in the placebo-group that went from 0.064 to 0.024 µg ml–1 and from 2.62 to 1.25 µg g–1, respectively. When the data from all patients were examined, the analytical trends were similar. An evaluation of skin lesions in the category who were sampled for hair and blood on each occasion showed that 41.2% of hyperkeratosis, 50.0% of depigmentation and 44.7% of pigmentation in the Se-group improved one or more degrees, while those in the placebo-group improved by only 7.1, 12.0 and 6.7%, respectively. A total of 61.1% of the adults in Se-group improved in one or more type of skin lesion, but only 17.2% improved in the placebo-group. Comparable results were obtained when all the data from both categories of farmers were examined. Results from the trial showed that Se supplementation was more effective for the improvement of adults who were affected by double or triple skin lesions. In the placebo-group, most of the severely affected adults improved in only one kind of skin lesion, but in the Se-group, more adults improved in two or three kinds of skin lesions. Although the trial was limited by its relatively small size, the results have provided some evidence of the usefulness of Se supplementation for people affected by arsenism.]]>

Yu Jiangping, Wang Wuyi, Feng Fujian, et al. Expiration of prevention action of coating technique on fluoride and sulfur pollution from civilian high-fluorine stone coal
China Environmental Science, 2004,24(6):662-664.

[本文引用: 1]

[ 虞江萍, 王五一, 冯福建, . 包裹法对民用高氟石煤氟硫污染的防治作用
中国环境科学, 2004,24(6):662-664.]

[本文引用: 1]

Yang Qinye, Zheng Du. Huang Bingwei and the study of physical geography
Acta Geographica Sinica, 2010,65(9):1146-1150.

DOI:10.11821/xb201009012URL [本文引用: 1]

[ 杨勤业, 郑度. 黄秉维与自然地理研究
地理学报, 2010,65(9):1146-1150.]

[本文引用: 1]

Huang Bingwei, Zuo Dakang, Chen Fazu. Field experimentation of physical geography in China
Acta Geographica Sinica, 1990,45(2):225-234.

[本文引用: 1]

[ 黄秉维, 左大康, 陈发祖. 我国自然地理野外定位实验研究的进展
地理学报, 1990,45(2):225-234.]

[本文引用: 1]

Survey Report on the Development of Field Stations of the Chinese Academy of Sciences. 2014. http://www.cas.cn/ggzy/kycx/ywtz/201409/t20140905_4198278.
URL [本文引用: 1]

[ 中国科学院野外台站发展状况调查报告. 2014. http://www.cas.cn/ggzy/kycx/ywtz/201409/t20140905_4198278.]
URL [本文引用: 1]

Sun Honglie. China Ecosystem Research Network provides technological support for ecosystem assessment
Resources Science, 2006,28(4):2-10.

URL [本文引用: 2]

[ 孙鸿烈. 中国生态系统研究网络为生态系统评估提供科技支撑
资源科学, 2006,28(4):2-10.]

[本文引用: 2]

Yu Guirui, Yu Xiubo. Chinese Ecosytem Research Network (CERN) and natural ecosystem protection
Bulletin of Chinese Academy of Sciences, 2013,28(2):275-283.

[本文引用: 2]

[ 于贵瑞, 于秀波. 中国生态系统研究网络与自然生态系统保护
中国科学院院刊, 2013,28(2):275-283.]

[本文引用: 2]

Song Changqing, Leng Shuying. Characteristics and trend of modern geography and progresses of geographical research in China
Advances in Earth Science, 2005,20(6):5-9.

[本文引用: 1]

[ 宋长青, 冷疏影. 当代地理学特征、发展趋势及中国地理学研究进展
地球科学进展, 2005,20(6):5-9.]

[本文引用: 1]

Dutilleul P R L. Spatio-temporal Heterogeneity: Concepts and Analysis Cambridge: Cambridge University Press, 2011.
[本文引用: 2]

Matheron G. Principles of geostatistics
Economic Geology, 1963,58:1246-1266.

DOI:10.2113/gsecongeo.58.8.1246URL [本文引用: 2]

Cliff A D, Ord J K. Spatial Processes: Models and Applications
London: Pion, 1981.

[本文引用: 1]

Anselin L. Spatial Econometrics: Methods and Models
Dordrecht: Kluwer, 1988.

[本文引用: 1]

Haining R. Spatial Data Analysis in Environmental and Social Sciences. Cambridge: Cambridge University Press, 1990.
[本文引用: 1]

Wang Jinfeng, Ge Yong, Li Lianfa, et al. Spatiotemporal data analysis in geography
Acta Geographica Sinica, 2014,69(9):1326-1345.

DOI:10.11821/dlxb201409007URL [本文引用: 1]
Following the emergence of large numbers of spatiotemporal datasets, the literatures related to spatiotemporal data analysis increase rapidly in recent years. This paper reviews the literatures and practices in spatiotemporal data analysis, and classifies the methods available for spatiotemporal data analysis into seven categories: including geovisualization of spatiotemporal data, time series analysis of spatial statistical indicators, coupling spatial and temporal change indicators, detection of spatiotemporal pattern and abnormality, spatiotemporal interpolation, spatiotemporal regression, spatiotemporal process modelling, and spatiotemporal evolution tree. We summarized the principles, input and output, assumptions and computer software of the methods that would be helpful for users to make a choice from the toolbox in spatiotemporal data analysis. When we handle spatiotemporal big data, spatial sampling appears to be one of the core methods, because (1) information in a big data is often too big to be mastered by human physical brain, so has to be summarized by statistics understandable; (2) the users of Weibo, Twitter, internet, mobile phone, mobile vehicles are neither the total population nor a random sample of the total population, therefore, the big data sample is usually biased from the population, and the bias has to be remedied to make a correct inference; (3) the data quality is usually inconsistent within a big data, so there should be a balance between the variances of inferences made by using data with various quality and by using small but high quality data.
[ 王劲峰, 葛咏, 李连发, . 地理学时空数据分析方法
地理学报, 2014,69(9):1326-1345.]

[本文引用: 1]

Getis A, Ord J K. The analysis of spatial association by distance statistics
Geographical Analysis, 1992,24(3):189-206.

DOI:10.1111/gean.1992.24.issue-3URL [本文引用: 1]

Anselin L. Local indicators of spatial association: LISA
Geographical Analysis, 1995,27(2):93-115.

DOI:10.1111/gean.1995.27.issue-2URL [本文引用: 1]

Kulldorff M. A spatial scan statistic
Communications in Statistics: Theory and Methods, 1997,26:1481-1496.

DOI:10.1080/03610929708831995URL [本文引用: 1]

Upton G, Fingleton B. Spatial Data Analysis by Example
New York: Wiley, 1985.

[本文引用: 1]

Diggle P J. Statistical Analysis of Spatial Point Patterns. 2nd ed
London: Edward Arnold, 2003.

[本文引用: 1]

Fotheringham A S, Brunsdon C, Charlton M E. Quantitative Geography: Perspectives on Spatial Data Analysis
London: SAGE Publications, 2000.

[本文引用: 1]

Openshaw S. The Modifiable Areal Unit Problem: Concepts and Techniques in Modern Geography
Norwich: Geo Books, 1984.

[本文引用: 1]

Goldstein H. Multilevel Statistical Models. 4th ed
New York: Wiley, 2011.

[本文引用: 2]

Ripley B D. Modelling spatial patterns
Journal of Royal Statistical Soceity B, 1977,39(2):172-192.

[本文引用: 1]

Haining R. Spatial Data Analysis: Theory and Practice. Cambridge: Cambridge University Press, 2003.
[本文引用: 1]

Banerjee S, Carlin B P, Gelfand A E. Hierarchical Modeling and Analysis for Spatial Data. Boca Raton: CRC Press, 2004.
[本文引用: 1]

Wang Jinfeng, Zhang Tonglin, Fu Bojie. A measure of spatial stratified heterogeneity
Ecological Indicators, 2016,67:250-256.

[本文引用: 2]

Wang Jinfeng, Li Xinhu, Christakos G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China
International Journal of Geographical Information Science, 2010,24(1):107-127.

[本文引用: 1]

Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective
Acta Geographica Sinica, 2017,72(1):116-134.

[本文引用: 3]

[ 王劲峰, 徐成东. 地理探测器: 原理与展望
地理学报, 2017,72(1):116-134.]

[本文引用: 3]

Griggs D, Stafford- Smith M, Gaffney O, et al. Policy: Sustainable development goals for people and planet
Nature, 2013,495:305-307.

DOI:10.1038/495305aURLPMID:23518546 [本文引用: 1]

United Nations. Transforming our world: The 2030 Agenda for Sustainable Development
New York: United Nations, 2015: 3-36.

[本文引用: 1]

Future Earth. Future Earth initial design report. http://www.futureearth.org/media/future-earth-initial-design-report, 2013.
URL [本文引用: 1]

Qin Dahe. Climate change science and sustainable development
Progress in Geography, 2014,33(7):874-883.

[本文引用: 1]

[ 秦大河. 气候变化科学与人类可持续发展
地理科学进展, 2014,33(7):874-883.]

[本文引用: 1]

Fu Bojie, Zhao Wenwu, Chen Liding. Progress and perspective of geographical-ecological processes
Acta Geographica Sinica, 2006,61(11):1123-1131.

[本文引用: 1]

[ 傅伯杰, 赵文武, 陈利顶. 地理—生态过程研究的进展与展望
地理学报, 2006,61(11):1123-1131.]

[本文引用: 1]

相关话题/地理 综合 土壤 技术 系统