删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

汉江上游沉积记录的东汉时期古洪水事件考证研究

本站小编 Free考研考试/2021-12-29

查小春, 黄春长, 庞奖励, 姬霖, 王光朋
陕西师范大学地理科学与旅游学院 地理学国家级实验教学示范中心,西安 710062

The palaeoflood events recorded by slackwater deposits in sedimentary profiles during the Eastern Han Dynasty in the upper reaches of the Hanjiang River

ZHAXiaochun, HUANGChunchang, PANGJiangli, JILin, WANGGuangpeng
School of Geography and Tourism, National Experimental Teaching Demonstration Center, Shaanxi Normal University, Xi'an 710062, China
收稿日期:2017-02-8
修回日期:2017-07-6
网络出版日期:2017-09-30
版权声明:2017《地理学报》编辑部本文是开放获取期刊文献,在以下情况下可以自由使用:学术研究、学术交流、科研教学等,但不允许用于商业目的.
基金资助:国家社会科学基金项目(14BZS070)国家自然科学基金项目(41471071, 41271108)中央高校基本科研业务费专项(GK201601006)
作者简介:
-->作者简介:查小春(1972-), 男, 陕西南郑人, 教授, 中国地理学会会员(S110005775M), 主要从事土地资源开发与环境演变研究。E-mail: zhaxch@snnu.edu.cn



展开

摘要
总结近年来在汉江上游古洪水研究成果的基础之上,采用文献资料分析和洪水模拟计算方法,对汉江上游6个沉积剖面纪录的东汉时期古洪水事件进行了年代考证和洪水模拟计算。结果表明,通过分析文献记载的汉江上游东汉时期洪水影响范围、强度和程度,以及结合洪痕沉积规律,在时间上考证认为这6个沉积剖面记录的东汉时期古洪水事件可能是东汉建安二年(197年)九月的一次特大洪水事件。选取合适的河槽横断面和糙率系数,采用HEC-RAS模型对距离较近的4个沉积面记录的东汉时期古洪水事件进行洪水模拟计算,模拟洪水位与各剖面依据古洪水SWD恢复的洪水位误差在-0.18%~0.25%,而且模拟的1983年洪水位与剖面及其附近发现的1983年洪痕水位误差小于0.25%,说明洪水模拟计算选取的河槽横断面和水文参数准确、可靠,从洪水模拟计算的角度也说明了汉江上游沉积记录的东汉时期古洪水事件可能为一次特大洪水事件。该研究结果不仅延长了汉江上游洪水序列,而且也为汉江上游水利工程建设、水资源管理和防洪减灾等提供重要的水文资料。

关键词:古洪水事件;沉积记录;东汉时期;汉江上游;考证研究
Abstract
Based on the research on palaeoflood hydrology in the upper reaches of Hanjiang River, the palaeoflood events recorded by slackwater deposits in upper layers of 6 loess-soil profiles were found to occur during the Eastern Han Dynasty. In this paper, the flood time of the palaeoflood events during the study period was examined textually by the historical literature analysis, and the flood simulaton was made using the HEC-RAS model. The study results showed that the palaeoflood during the Eastern Han Dynasty might be an extraordinary flood event that occurred in September (lunar month), the second year of the Jian'an period (197) in terms of the influence scope, degree, intensity, and the deposit rule of the floodmarks. Then selecting reasonable channel sections and roughness coefficient, and setting the river boundary conditions and initial conditions, we used the HEC-RAS model to conduct the flood simulation of the palaeoflood events. The errors between the simulated and the calculated flood stages were -0.18%~0.25%. Moreover, the errors of the simulated flood stages in 1983 were 0.25% less than those of the floodmark stages in 1983 found near the profiles. The flood simulation results showed that the selected channel sections and hydrological parameters were accurate and reliable, indicating that the palaeoflood events during the Eastern Han Dynasty might be an extraordinary flood event. The study results not only prolonged the flood sequences, but also provided the important hydrological data for the hydropower project construction, water resource management and the flood control and disaster mitigation in the upper reaches of the Hanjiang River.

Keywords:the palaeoflood events;sedimentary record;Eastern Han Dynasty;the upper reaches of Hanjiang River;textual research

-->0
PDF (1709KB)元数据多维度评价相关文章收藏文章
本文引用格式导出EndNoteRisBibtex收藏本文-->
查小春, 黄春长, 庞奖励, 姬霖, 王光朋. 汉江上游沉积记录的东汉时期古洪水事件考证研究[J]. , 2017, 72(9): 1634-1644 https://doi.org/10.11821/dlxb201709008
ZHA Xiaochun, HUANG Chunchang, PANG Jiangli, JI Lin, WANG Guangpeng. The palaeoflood events recorded by slackwater deposits in sedimentary profiles during the Eastern Han Dynasty in the upper reaches of the Hanjiang River[J]. 地理学报, 2017, 72(9): 1634-1644 https://doi.org/10.11821/dlxb201709008
古洪水是指发生在历史时期及其以前而被沉积物所记录的特大洪水事件[1-3],它是水文过程对极端性气候事件的瞬时响应。开展古洪水研究,不仅能挖掘出河流超长时间尺度特大洪水序列信息,弥补现代水文观测资料的不足,而且也能揭示区域水文变化对全球气候变化的响应[3-5]。目前,国内一些****[5-22]对部分河段开展了大量的古洪水研究,其中一些河段古洪水研究时段涉及到历史时期[15-22],但由于受测年技术手段的限制,即使采用地层年代框架、文化遗物考古以及测年数据综合断代,对历史时期古洪水事件年代的确定也只是一个范围,没有一个确切的年代值。中国拥有丰富的历史文献记载,特别是特大灾害事件记载往往与极端气候事件发生密不可分,相关记载史不绝书[23],并有确切的年代值。如果将沉积记录的历史时期古洪水事件与文献记载的特大洪水灾害事件结合起来进行综合研究,考证其确切的年代值,具有重要的科学价值。本文在总结和整理近年来汉江上游古洪水研究成果基础上,依据中国丰富的历史文献记载,对汉江上游沉积记录的东汉时期古洪水事件进行了年代考证,并采用HEC-RAS水文模型进行了洪水模拟计算。该研究结果不仅延长了汉江上游洪水序列,而且也为汉江上游水利工程建设、水资源管理和防洪减灾等提供了重要的水文资料。

1 研究区域概况

汉江是长江中游北岸最大的支流,发源于秦岭南麓米仓山西端的陕西省宁强县潘冢山。干流流经陕西、湖北两省,于武汉市汇入长江,全长1577 km,流域面积15.9×104 km2。丹江口大坝以上为上游,流经秦岭和大巴山之间,河长925 km,占汉江总长的59%,控制流域面积9.52×104 km2,涉及陕西、湖北和河南部分区域(图1)。上游主要为中低山,占79%,丘陵占18%,河谷盆地仅占3%[24]。这里属北亚热带边缘湿润季风气候区,由于受秦岭、米仓山、大巴山地形的影响,同时兼有暖温带和中温带山地气候的特征,气候温和,四季分明,雨量充沛,无霜期长,多年平均气温约16 ℃。年平均降水量700~1000 mm,呈上游向下游递增趋势,而且降水量年内分配严重不均。汛期一般从5月份开始,10月份结束。特别是在7月、8月、9月之间,由于太平洋副热带高压发展强盛,加上西南低涡及强台风影响,造成该流域降雨集中,易形成洪水灾害[25]。据文献统计[26],汉江上游在公元前208年至2010年发生洪水灾害336次,平均每6.6年发生1次。1983年汉江上游发生建国以来特大洪水,安康水文站实测最大洪峰流量为31000 m3/s,安康市遭遇200年一遇的特大洪水,经济损失巨大,导致安康老城区基本被毁[25]。历史最大洪水发生在明万历十一年(1583年)四月,推算出洪峰流量为34800 m3/s[27]
显示原图|下载原图ZIP|生成PPT
图1汉江上游6个纪录东汉时期古洪水事件的黄土—古土壤剖面位置图
-->Fig. 1Map showing the location of the 6 loess-palaeosol profiles which recorded the palaeoflood events during the Eastern Han Dynasty in the upper reaches of the Hanjiang River
-->

2 汉江上游东汉时期古洪水事件的沉积记录

1982年,Kochel等[28]首次提出了“古洪水水文学”概念,它是全球变化研究领域的一门综合性交叉学科,涉及第四纪地质学、沉积学、年代学、环境考古学和水文学等多学科理论和方法,研究历史时期及以前发生的而被沉积物所记录的特大洪水事件[1]。古洪水滞流沉积物(slackwater deposits, SWD)是研究古洪水事件的重要依据[2]。通过对古洪水SWD系统深入的研究,可以挖掘出河流已发生过的特大洪水序列信息,进而获得河流超长时间尺度洪水发生频率和规模等数据资料。
近年来,研究团队在汉江上游进行了一系列的野外实地考察,在T1阶地前沿发现多处含有古洪水SWD的黄土—古土壤沉积剖面,并对古洪水SWD沉积剖面进行了野外采样、室内理化性质测试分析、OSL测年,以及古洪水水位和流量重建等研究工作[5-8, 12-22]。其中,发现汉江上游安康市至郧县之间的LJT[15]、XTC-B[16]、LJZ[17]、TJZ[18-19]、QFC-B[20]、和LWD-A[21-22]6个沉积剖面上部的古洪水SWD,通过地层年代框架对比、文化遗物考古、释光测年等方法,在时间上确定记录了东汉时期(1900 a BP-1700 a BP)古洪水事件(图1,图2)。而且,对这6个沉积剖面采集的古洪水SWD样品进行磁化率、粒度等一系列沉积学特征分析和对比,说明1900 a BP-1700 a BP东汉时期确实有古洪水事件发生[15-22]。从空间范围来看(图1),这6个剖面均处于汉江上游T1阶地前沿,涉及陕西、湖北两省,而且有些沉积剖面位置相距不远(如图1中LJZ、TJZ、QFC-B和LWD-A剖面),说明这6个沉积剖面记录的东汉时期古洪水事件可能为一次洪水事件,但是具体发生在东汉时期哪一年,需要从历史文献中进行综合考证。
显示原图|下载原图ZIP|生成PPT
图2汉江上游LJT、XTC-B、LJZ、TJZ、QFC-B和LWD-A沉积剖面地层和年代对比
-->Fig. 2Pedo-stratigraphy correlations among the LJT profile, the XTC-B profile, the LJZ profile, the TJZ profile, the QFC-B profile and the LWD-A profile in the upper reaches of the Hanjiang River
-->

3 汉江上游沉积记录的东汉时期古洪水事件年代考证

中国拥有丰富的历史文献资料,文献蕴含的气候事件信息极其丰富,其独特的科学价值,使当代中国在气候变化研究领域中崭露头角。本文收集和整理了《中国气象灾害大典(综合卷)》[29]、《中国气象灾害大典(陕西卷)》[30]、《中国气象灾害大典(湖北卷)》[31]、《中国气象灾害大典(河南卷)》[32]、《中国三千年气象记录总集》[33]、《后汉书》[34]、《西北灾荒史》[35]、《陕西历史自然灾害简要纪实》[36],以及汉江上游宁强、勉县、汉中、南郑、城固、石泉、安康、白河等各县志[37-47]有关洪水灾害的文献资料,凡是涉及汉江上游所在地区的洪水灾害都统计在内。

3.1 汉江上游历史文献记载的洪水灾害发生频率和等级分析

首先,以朝代为单位,统计了汉江上游秦朝至隋朝(公元前221-公元618)840年间历史洪水灾害发生次数(图3)。图3a表明,汉江上游秦朝到隋朝共发生有年代记录的洪水灾害33次,其中东汉时期洪水灾害最多,为13次,明显高于其他朝代,超过秦朝到隋朝洪水灾害总数的1/3,说明汉江上游东汉时期为洪水灾害的频发时期,这与王尚义[48]从全国角度分析两汉时期水患结果,以及彭维英等[26]分析汉江上游历史时期洪水灾害结果一致。东汉时期洪水灾害发生频率统计表明(图3b),汉江上游东汉中期和末期的洪水灾害记录比较多,特别是193年以后洪水灾害发生频次相对频繁。
显示原图|下载原图ZIP|生成PPT
图3汉江上游历史洪水灾害频次统计
-->Fig. 3Statistical results of historical flood frequency in the upper reaches of Hanjiang River (a. From Qin Dynasty to Sui Dynasty; b. During the Eastern Han Dynasty)
-->

其次,依据卢越[49]、姬霖等[50]按照历史文献中对洪水灾害发生情况、洪水灾害影响范围、灾害持续时间长短,以及洪水灾害生危害程度等方面的描述,将汉江上游东汉时期洪水灾害级别划分为轻度、中度和重度三个级别(图4)。由图4可见,汉江上游东汉时期13次洪水灾害中,轻度和中度洪水灾害次数分别占46.2%和15.3%,这与洪水灾害发生的一般规律一致。而重度洪水灾害5次,占洪水灾害总数的38.5%,分别发生在东汉永寿三年(157年)七月、东汉建安二年(197年)九月、建安二十年(215年)夏、建安二十年(215年)九月和建安二十四年(219年)八月。但是,东汉永寿三年(157年)七月、东汉建安二十年(215年)夏、建安二十年(215年)九月的洪水灾害在文献中均仅有一处记载,例如《中国气象灾害大典(河南卷)》[32]记载东汉永寿三年(157年)“淅川七月壬午爆发水盛,许多池塘受灾,提坝被冲跨,灌渠被冲断”;《宁强县志》[40]记载东汉建安二十年(215年)“夏,汉水溢,漂6000余家”;《南郑县志》[44]记载东汉建安二十年(215年)“秋九月,汉水泛滥,人民被冲若干”,说明这3次洪水灾害可能是局地性灾害事件。而东汉建安二年(197年)九月和建安二十四年(219年)八月的洪水灾害,在多地的文献记载中均有记载。例如,东汉建安二年(197年)九月的洪水灾害,有10处文献记载,如《汉中地区志》[37]记载“九月,汉水流害人民”、《安康县志》[41]记载“秋九月汉水溢,流人民”、《中国气象灾害大典(湖北卷)》[31]记载“郧县:秋,九月,汉水溢,害民人”等。东汉建安二十四年(219年)八月的洪水灾害,文献记载有11处,如《中国气象灾害大典(陕西卷)》[30]记载“秋,大霖雨,汉水溢,平地数百丈”、《安康县志》[41]记载“秋八月,大霖雨,汉水溢”、《汉中地区志》[37]记载“八月,汉水流害民人”、《中国气象灾害大典(河南卷)》[32]记载“八月汉水爆发洪水,高出水面数丈,危害老百姓”等,这说明汉江上游东汉建安二年(197年)九月和建安二十四年(219年)八月的洪水灾害应为区域性的灾害事件,影响范围广。

3.2 汉江上游沉积记录的东汉时期古洪水事件年代考证

一般而言,灾害等级越低的洪水灾害,因其强度弱、灾情小,对当时的社会经济影响程度就小,影响范围就越窄;而等级越高的洪水灾害,因其强度高、规模大,则会给社会经济发展带来严重的灾难和损害,对社会经济影响范围就越广。从汉江上游6个记录东汉时期洪水事件的剖面分布地点来看,涉及陕西、湖北两省,说明要考证这次洪水事件,就应从重度灾害等级中东汉建安二年(197年)九月和建安二十四年(219年)八月这两次影响范围广的洪水灾害中进行考证分析。
从洪水灾害影响范围来看,《中国气象灾害大典(综合卷)》[29]、《中国气象灾害大典(陕西卷)》[30]、《中国气象灾害大典(湖北卷)》[31]、《中国气象灾害大典(河南卷)》[32]、《汉中地区志》[37]、《勉县志》[40]、《安康县志》[41]等均记载有东汉建安二年(197年)九月的洪水事件,说明这次洪水灾害,涉及汉江上游的陕西、湖北、河南三省。而东汉建安二十四年(219年)八月的洪水灾害,仅在《中国气象灾害大典(河南卷)》[30]以及陕西省的宁强、汉中、南郑、城固、安康、石泉等县志有所记录,在湖北省的文献中未见记载,涉及范围仅限河南省和陕西省的南部地区,表明东汉建安二十四年(219年)八月的洪水灾害比东汉建安二年(197年)九月的洪水灾害影响范围小。
从洪水灾害影响强度来看,文献中均有东汉建安二年(197年)九月和建安二十四年(219年)八月洪水灾害影响到当地人民生命安全的记载,如《中国气象灾害大典(湖北卷)》[31]记载东汉建安二年(197年)“郧县:秋,九月,汉水溢,害人民”、《汉中地区志》[37]记载东汉建安二年(197年)“九月,汉水流害民人”等;《中国气象灾害大典(河南卷)》[32]还记载东汉建安二十四年(219年)“八月汉水爆发洪水,高出水面数丈,危害老百姓”等。但是仅有《城固县志》[47]记载东汉建安二年(197年)“九月,汉水涨溢,淹没两岸村舍、农田”,说明东汉建安二年(197年)九月的洪水灾害,不仅“害人民”,而且还漫上河道,淹没了河岸周围的农田和村落。而文献中未见东汉建安二十四年(219年)八月洪水灾害对农田、村落影响的记载,说明东汉建安二年(197年)九月的洪水灾害比建安二十四年(219年)八月的洪水灾害影响强度要大。
最后,从洪水灾害影响程度来看,《中国气象灾害大典(综合卷)》[29]记载东汉建安二年(197年)“九月汉水爆发洪水,危害老百姓,当时天下大乱”,以及《中国气象灾害大典(河南卷)》[32]记载东汉建安二年(197年)“九月汉水溢,危害民人,是时天下大乱”,说明东汉建安二年(197年)九月洪水灾害,不仅严重危害到人民的正常生活和生命安全,而且造成社会“大乱”。而在文献中未见东汉建安二十四年(219年)八月洪水灾害这方面的记载,表明东汉建安二年(197年)九月的洪水灾害比建安二十四年(219年)八月的洪水灾害造成的社会影响程度更大。
此外,东汉建安二年(197年)九月的洪水灾害在汉江上游之外的其它地区也有记载。如《中国气象灾害大典(湖北卷)》[31]中记载东汉建安二年(197年)九月,汉阳、宜城、襄阳、汉口、光化、江陵、安陆等地“汉水溢”,说明这次洪水灾害遍及整个汉江流域;《中国三千年气象记录总集》[33]中记载东汉建安二年(197年)“九月,汉水溢。是岁饥,江淮间民相食”,说明这次洪水灾害引发严重的饥荒现象,甚至还出现了“民相食”的现象。而东汉建安二十四年(219年)八月洪水灾害未见相关记载。这说明东汉建安二年(197年)九月的洪水灾害,不仅影响范围广,而且也是一次全流域、灾情极其严重的洪水灾害。
河流发生洪水时,往往会在河流岸边遗留下泥沙、水印、杂草,或者群众设置指水碑,以及其他一切能够代表洪水位所能到达最高位置的标记物,即洪痕,都可作为推求洪水位的依据[51]。一般来说,洪水流量越大,对应的洪峰水位就越高,洪水过后在河流岸边遗留下的洪痕也就越高。而且,大流量洪水对应的高水位洪水往往会把前期发生的流量比较小的低水位洪痕冲刷掉或覆盖掉,而后期流量小、水位低的洪水难以到达该位置而使高水位洪痕得以保留下来。如果后期被高处崩塌的基岩风化物、坡积石渣土、风成黄土所掩埋,或者因处于洞穴、岩棚下(岩石下凹处)而不易被风雨侵蚀和生物扰动破坏,这些洪痕就可以长期保存下来[4]。古洪水SWD即为历史时期及其以前特大洪水发生过后遗留下的洪痕[1~2]。汉江上游安康至郧县之间T1阶地前沿LJT、XTC-B、LJZ、TJZ、QFC-B和LWD-A沉积剖面的古洪水SWD,在沉积之后即被后期的风成黄土所掩埋而得以长期保留,剖面最上部的古洪水SWD,则是东汉某个时间特大洪水的沉积纪录。
综合上述分析可知,发生在东汉建安二年(197年)九月的洪水灾害,其洪水规模、影响范围、影响强度和程度均为最大,再结合洪痕沉积规律可以认为,汉江上游沉积记录的东汉时期古洪水事件可能是东汉建安二年(197年)九月的一次特大洪水事件。
显示原图|下载原图ZIP|生成PPT
图4汉江上游东汉时期洪水灾害等级
-->Fig. 4Flood grades during the Eastern Han Dynasty in the upper reaches of Hanjiang River
-->

4 汉江上游东汉时期古洪水事件的洪水模拟计算

古洪水研究中,依据河流阶地沉积剖面发现的古洪SWD,就可以重建古洪水水位和流量。既然从历史文献考证认为汉江上游LJT、XTC-B、LJZ、TJZ、QFC-B和LWD-A沉积剖面记录的东汉时期古洪水事件可能是发生在东汉建安二年(197年)九月的一次特大洪水事件,那么依据这6个剖面古洪水SWD重建的洪峰流量应该一致或相差较少。但是,通过整理这6个剖面古洪水重建结果发现,****们[15-22]依据各剖面所在位置,用“古洪水SWD厚度与含沙量关系法”恢复了洪水位,然后选取合适的河槽断面和水力参数,采用面积—比降法,重建了各沉积剖面东汉时期古洪SWD所对应的洪峰流量,其值在58450~65420 m3/s之间,并利用现代洪痕验证了洪水计算的可靠性。从重建的洪峰流量结果来看,变化范围较大,其原因可能是在计算洪峰流量时,是依据各个沉积剖面所在河段特征,采用面积-比降法,从单个沉积剖面的角度,选择相应的水文参数来重建洪峰流量,较少从整个河段考虑一次洪水发生过程。
为此,选择距离较近的LJZ、TJZ、QFC-B和LWD-A沉积剖面所在的湖北省郧西县至郧县之间近50 km的河段作为研究河段(图1虚线框内),采用HEC-RAS模型对东汉时期古洪水事件进行洪水模拟计算。该模型是由美国陆军工程兵团水文工程中心开发,能够对天然的或人造的河网进行一维恒定流和非恒定流的河道水力推演。目前在古洪水研究广泛应用[17, 19, 53-55]的恒定流水面线计算模块,基于一维恒定总流能量方程能量方程,采用水面曲线推流法逐断面推求水面线,可对整个河网、树枝状河系或单河道模拟,也可应用于缓流、急流和混合流3种流态的水面线模拟[52]。此外,HEC-RAS模型的HEC-GeoRAS扩展模块,能够与ARC/INFO软件有效耦合,利用ArcGIS工具强大的地理信息分析处理功能,为重建古洪水洪峰流量提供三维地形数据、概化河网几何资料等。而且,采用HEC-RAS模型重建的古洪水流量,可以减少河道糙率系数对计算结果的影响,使古洪水流量计算结果更为可靠[53]
古洪水研究中河道的稳定性是关键性问题。汉江上游为基岩峡谷河段,河槽两岸均为古老变质岩,岩性硬度大,抗蚀能力强,河槽长期稳定,形态规则[56]。对LJZ、TJZ、QFC-B和LWD-A剖面所在的河段实地考察也发现,河谷形态均以峡谷为主,河宽大致相近,岩性类似。而且从河流地貌学和水文学角度来看,该段河槽在全新世时期已经发育形成均衡断面,没有明显的下切和沉积,断面变化小,水流状态稳定,适合开展古洪水研究。由此,首先在研究河段上选取100个河槽横断面,河槽横断面尽量与水流方向保持垂直,并用激光测距仪和高精度GPS实测各横断面形态,结合1:10000地形图校准测量结果。为了提高计算精度,减少计算误差,在生成的TIN数据中又内插了123个横断面,使河槽横断面总数达到223个。然后,利用ArcGIS对研究河段地形图进行数字化,耦合成HEC-GeoRAS模块,将其导入HEC-RAS模型中。
导入HEC-RAS模型后,参考《水力学》[57]中糙率表所描述天然河道的特征,确定主槽糙率系数n为0.03。根据研究河段两岸坡度的实际情况,选取缓坡糙率系数n为0.055、陡坡糙率系数n为0.05,上下调整幅度值为0.005。选用河床比降(S = 0.0005)代替能量坡度。研究河段水流属缓流状态,河槽逐渐收缩或扩张,故收缩和扩张系数取值分别为0.1和0.3。给定边界条件后,确定起始断面,输入不同洪峰流量的洪水,运用HEC-RAS模型可得到相应的洪水水面线,其中与由古洪水SWD恢复的洪水位高程配合最佳的水面线所对应的流量,即为洪水洪峰流量,由此得出洪峰流量为60800 m3/s。
从模拟水面线结果(图5)分析发现,模拟的LJZ、TJZ、QFC-B和LWD-A剖面的东汉时期古洪水水位分别为186.03 m、185.16 m、168.3 m和159.92 m,与这4个剖面采样“古洪水SWD厚度与含沙量关系法”恢复的洪水位(4个剖面采用“古洪水SWD厚度与含沙量关系法”恢复的洪水位分别为185.8 m、184.7 m、168.5 m和159.8 m)相比[15-22],误差介于-0.18~0.25%之间。同时,采用相同的河槽横断面和水文参数,依据在沉积剖面及其附近发现的1983年洪痕,运用HEC-RAS模型也模拟模拟出了1983年洪水水面线(图5),与1983年洪痕水位相比较,误差小于0.25%,模拟洪水位与洪痕水位吻合较好,说明模拟计算汉江上游东汉时期古洪水洪峰流量时选取的地形数据和水文参数准确、可靠,同时也从洪水模拟计算的角度表明汉江上游沉积剖面记录的东汉时期古洪水事件可能为一次特大洪水事件。
显示原图|下载原图ZIP|生成PPT
图5HEC-RAS模型模拟的汉江上游沉积记录的东汉时期古洪水面线与1983年洪水水面线
-->Fig.5Simulated flood line of the palaeoflood during the Eastern Han Dynasty and 1983 flood using HEC-RAS model in the upper reaches of the Hanjiang River
-->

5 结论

(1)对汉江上游古洪水研究成果的整理和分析发现,汉江上游安康市至郧县河段的LJT、XTC-B、LJZ、TJZ、QFC-B和LWD-A沉积剖面最上部的古洪水SWD,通过地层年代框架对比、文化遗物考古和释光测年等方法,记录有东汉时期(1900 a BP-1700 a BP)古洪水事件。
(2)整理分析汉江上游历史文献中秦朝至隋朝洪水灾害记载表明,东汉时期是汉江上游洪水灾害的频发时期;对东汉时期洪水灾害的的等级分析表明,东汉建安二年(197年)九月的洪水灾害和建安二十四年(219年)八月的洪水灾害不仅灾情严重,而且影响范围广;从文献记载的洪水灾害影响范围、强度、程度,以及洪痕沉积的规律综合分析表明,汉江上游沉积记录的东汉时期古洪水事件可能为东汉建安二年(197年)九月九月的一次特大洪水事件。
(3)在距离较近的LJZ、TJZ、QFC-B和LWD-A剖面所在湖北省郧西县至郧县之间河段上选取100个河槽横断面,并内插了123个河槽横断面,选择合适的糙率系数,采用HEC-RAS模型,对这4个剖面最上部古洪水SWD记录的东汉时期古洪水事件进行了模拟计算,模拟水位与采用“古洪水SWD厚度与含沙量关系法”恢复的洪水位误差在 -0.18%~0.25%之间。采用相同的河槽横断面、水文参数和水文模型,模拟得到的1983年洪水位与在各剖面及其附近发现的洪痕水位相比较,误差也小于0.25%,说明用于洪水模拟计算选取的河槽横断面和水文参数准确、可靠,同时也从洪水模拟计算的角度表明汉江上游沉积记录的东汉时期古洪水事件可能为一次特大历史洪水事件。
The authors have declared that no competing interests exist.

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

[1]Baker V R.Paleoflood hydrology: Origin, progress, prospects
. Geomorphology, 2008, 101: 1-13.
https://doi.org/10.1016/j.geomorph.2008.05.016URL [本文引用: 3]摘要
From an origin in diverse studies of flood geomorphology and Quaternary geology, paleoflood hydrology emerged as a geophysical and an applied hydrological science during the 1970s and 1980s. Since acquiring its formal name in 1982, the most productive approach in paleoflood hydrology has become energy-based inverse hydraulic modeling of discrete paleoflood events, recorded in appropriate settings as slackwater deposits and other paleostage indicators (SWD-PSI), or as various threshold indicators of non-exceedence. Technological advances, particularly in hydraulic modeling and geochronology, were instrumental in moving the discipline to its present status. The most recent advances include (1) new techniques for the accurate geochronology of flood sediments, notably TAMS radiocarbon analyses and OSL dating, and (2) the phenomenal increase in computer power that allows complex hydraulic calculations to become feasible for routine studies. From its initial demonstration in the southwestern United States, SWD-PSI paleoflood hydrology proved its widespread applicability to various landscape environments. Particularly important studies have been accomplished in Australia, China, India, Israel, South Africa, Spain, and Thailand. Paleoflood hydrology has also generated its share of controversy, in part because of the differing viewpoints and attitudes of the two scientific traditions from which it emerged: Quaternary geology/geomorphology versus applied hydrologic/hydraulic engineering. Nevertheless, the future growth of the discipline is assured, given the rapid pace of discoveries that it engenders. Indeed, so many international studies exist that it is appropriate to pursue global syntheses to address interesting and timely questions of extreme flood phenomena in relation to global climatic change.
[2]Baker V R.Palaeoflood hydrology in a global context
. Catena, 2006, 66(1/2): 161-168.
https://doi.org/10.1016/j.catena.2005.11.016URL [本文引用: 2]摘要
From its origins as a geological study of flood erosion and sediments the science palaeoflood hydrology matured to become an indispensable means for understanding the hydrology of very large, rare floods. Such floods are increasingly posing risks to human habitation. More that 3 decades of research in palaeoflood hydrology produced spectacular advances in capabilities for (1) accurately determining palaeoflood ages, (2) quantifying the magnitudes and dynamics of palaeoflood processes, and (3) incorporating palaeoflood data into various modeling procedures for risk assessments. Palaeoflood studies now have a global sweep, and it is appropriate to apply the information they provide to address questions of global environmental change. In doing so, it will be necessary to reconsider aspects of science ociety interactions because of the many failings of these in current practice.
[3]Knox J C.Sensitivity of modern and Holocene floods to climate change
. Quaternary Science Reviews, 2000, 19: 439-457.
https://doi.org/10.1016/S0277-3791(99)00074-8URL [本文引用: 2]摘要
Alluvial records of paleofloods show that natural floods resulting from excessive rainfall, snowmelt, or from combined rainfall and snowmelt are highly sensitive to even modest changes of climate equivalent or smaller than changes expected from potential future global warming in the 21st century. The high sensitivity results from effects of hemispheric or global-scale changes in circulation patterns of the ocean and atmosphere to influence the pathways and locations of air masses and storm tracks. Holocene paleoflood chronologies from the Upper Mississippi Valley in the Midwest United States and from the Colorado River drainage of the Southwest United States show that recurrence frequencies of large floods have been subject to abrupt changes over time. These flood chronologies and flood chronologies observed for other middle-latitude regions suggest that recurrence frequencies of large floods are increased when there is an increase in the number of waves and their amplitudes in the middle and upper tropospheric circum-polar westerly circulation. However, some middle-latitude regions on the western margins of continents experience increased frequencies of flooding during strong onshore zonal westerly circulation. Flood chronologies from several regions suggest that times of rapid climate change have a tendency to be associated with more frequent occurrences of large and extreme floods. The unusual high frequencies of large floods that have been observed in many regions since the early 1950s are often attributed to land use change, but the rapid climate forcing from the effects of increased atmospheric greenhouse gases may also be a contributing factor. Paleoflood records provide information that is useful for better interpretation and calibration of modern short-term instrumental records, and they provide unique event-scale information that is useful for calibrating and testing geophysical models of past and anticipated future climate conditions.
[4]Zhan Daojiang, Xie Yuebo. Palaeoflood Study.Beijing: China Water & Power Press, 2001. [本文引用: 1]

[詹道江, 谢悦波. 古洪水研究. 北京: 中国水利水电出版社, 2001.] [本文引用: 1]
[5]Zha Xiaochun, Huang Chunchang, Pang Jiangli.Holocene extreme floods and environmental change of Qishuihe River in western Guanzhong Basin
. Acta Geographica Sinica, 2007, 62(3): 291-300.
https://doi.org/10.3321/j.issn:0375-5444.2007.03.006URL [本文引用: 3]摘要
古洪水水文学研究是全球变化研究的前沿课题.本文通过对漆水河流域深入调查研究,在漆水河与湋河交汇的二级阶地全新世黄土-土壤剖面中发现古洪水沉积夹层.利用沉积地貌学、沉积学、考古学和释光年代学方法.确定了在全新世时期的11500年内,漆水河曾经在4650~4600a BP、4600~4300a BP、4300~4100a BP和3100~3000a BP发生了4期20次洪水事件.通过利用水位-流量关系模型,计算出这4期20次特大洪水的洪峰流量,大大延长了洪水水文数据序列,并建立了漆水河全新世洪水频率曲线.科学、系统地提高了漆水河洪水水文学计算精度,增强了渭河流域防洪减灾和水资源开发当中洪水频率分析的可靠性.这项研究成果对于我国著名的农业科技城-杨凌的防洪减灾、水资源开发和生态环境建设具有重要的应用价值,同时填补了渭河流域古洪水水文学研究的空白.对于渭河流域生态环境综合治理具有重要的科学意义.
[查小春, 黄春长, 庞奖励. 关中西部漆水河全新世特大洪水与环境演变
. 地理学报, 2007, 62(3): 291-300.]
https://doi.org/10.3321/j.issn:0375-5444.2007.03.006URL [本文引用: 3]摘要
古洪水水文学研究是全球变化研究的前沿课题.本文通过对漆水河流域深入调查研究,在漆水河与湋河交汇的二级阶地全新世黄土-土壤剖面中发现古洪水沉积夹层.利用沉积地貌学、沉积学、考古学和释光年代学方法.确定了在全新世时期的11500年内,漆水河曾经在4650~4600a BP、4600~4300a BP、4300~4100a BP和3100~3000a BP发生了4期20次洪水事件.通过利用水位-流量关系模型,计算出这4期20次特大洪水的洪峰流量,大大延长了洪水水文数据序列,并建立了漆水河全新世洪水频率曲线.科学、系统地提高了漆水河洪水水文学计算精度,增强了渭河流域防洪减灾和水资源开发当中洪水频率分析的可靠性.这项研究成果对于我国著名的农业科技城-杨凌的防洪减灾、水资源开发和生态环境建设具有重要的应用价值,同时填补了渭河流域古洪水水文学研究的空白.对于渭河流域生态环境综合治理具有重要的科学意义.
[6]Zha Xiaochun, Huang Chunchang, Pang Jiangli, et al.The holocene palaeoflood events in the Yunxi reach in the upper reaches of Hanjiang River
. Acta Geographica Sinica, 2012, 67(5): 671-680.
https://doi.org/10.11821/xb201205009URL摘要
古洪水水文学是全球变化科学领域的前沿课题。通过对汉江上游的深入调查研究,在郧西段基岩峡谷发现全新世古洪水滞流沉积地层。通过沉积学观察研究,采样分析和与2010年汉江洪水滞流沉积物的粒度、磁化率特征对比,判定为典型的全新世洪水滞流沉积物(SWD)。通过全新世地层对比和光释光(OSL)测年,确定其记录了全新世时期3200-2800aBP的特大古洪水事件。在确定了古洪水洪峰水位和相关参数的基础上,采用比降法水文模型推算出该期洪水洪峰流量在48830~51710m3/s之间。同时在该断面观测了汉江上游1983年、2005年和2010年洪水洪痕水位,采用相同水文参数和模型,恢复了其洪峰流量,与白河水文站实测流量比较,误差在1.99%~4.21%之间,说明我们对于古洪水水文参数选择与洪峰流量计算结果是合理的。从而将古洪水数据加入洪水频率序列中,建立了万年尺度洪水流量与频率关系。该研究成果为汉江上游水资源水能源开发利用和防洪减灾等,提供了重要的水文资料。
[查小春, 黄春长, 庞奖励, . 汉江上游郧西段全新世古洪水事件研究
. 地理学报, 2012, 67(5): 671-680.]
https://doi.org/10.11821/xb201205009URL摘要
古洪水水文学是全球变化科学领域的前沿课题。通过对汉江上游的深入调查研究,在郧西段基岩峡谷发现全新世古洪水滞流沉积地层。通过沉积学观察研究,采样分析和与2010年汉江洪水滞流沉积物的粒度、磁化率特征对比,判定为典型的全新世洪水滞流沉积物(SWD)。通过全新世地层对比和光释光(OSL)测年,确定其记录了全新世时期3200-2800aBP的特大古洪水事件。在确定了古洪水洪峰水位和相关参数的基础上,采用比降法水文模型推算出该期洪水洪峰流量在48830~51710m3/s之间。同时在该断面观测了汉江上游1983年、2005年和2010年洪水洪痕水位,采用相同水文参数和模型,恢复了其洪峰流量,与白河水文站实测流量比较,误差在1.99%~4.21%之间,说明我们对于古洪水水文参数选择与洪峰流量计算结果是合理的。从而将古洪水数据加入洪水频率序列中,建立了万年尺度洪水流量与频率关系。该研究成果为汉江上游水资源水能源开发利用和防洪减灾等,提供了重要的水文资料。
[7]Zha Xiaochun, Huang Chunchang, Pang Jiangli, et al.Reconstructing the extraordinary palaeoflood events during 3200-2800 a BP in the upper reaches of Hanjiang River Valley, China
. Journal of Geographical Sciences, 2014, 24(3): 446-456.
https://doi.org/10.1007/s11442-014-1099-xURL摘要
Palaeoflood hydrology study is a leading subject in global change study. Through field investigation in the upper reaches of Hanjiang River, palaeoflood slackwater deposits (SWD) were found in the bedrock gorges of the Yunxi reach. The results of field observation, laboratory analysis including particle-size distribution and magnetic susceptibility, and comparison with modern flood deposits, the SWD were identified as the most typical Holocene palaeoflood deposits of the Hanjiang River. By using stratigraphic correlation and OSL dating method, the palaeoflood event was dated to be 3200–2800 a BP at the turn from the middle to late Holocene. According to the palaeoflood peak stage and hydraulic parameters, the peak discharges of the palaeoflood were reconstructed as 48,830–51,710 m 3 /s by using the slope-area method. At same time, the flood peak discharges of 1983, 2005 and 2010 severe floods were reconstructed with the same method and hydraulic parameters in the same cross section. The error between the reconstructed and gauged discharges was 1.99%–4.21%. This showed that the reconstructed palaeoflood peak discharges were reliable. The flood peak discharge-frequency relationship at 10,000-year time scale was established by a combination of the gauged flood, historical flood and palaeoflood hydrological data. These results are very important for hydraulic engineering and flood mitigation on the Hanjiang River.
[8]Zha Xiaochun, Huang Chunchang, Pang Jiangli, et al. Reconstructing the palaeoflood events from slackwater deposits in the upper reaches of Hanjiang River, China
. Quaternary International , 2015, 380/381: 358-367.
https://doi.org/10.1016/j.quaint.2014.06.029URL [本文引用: 1]摘要
Through investigation in the upper reaches of Hanjiang River, China, an aeolian loess-soil profile with four palaeoflood slackwater deposit (SWD) interbeds was found on the cliffed riverbanks in Yunxian county reach of Hubei province. Based on field observation, and laboratory analysis including magnetic susceptibility and particle-size distribution, the four palaeoflood SWDs were differentiated from aeolian loess and soil by sedimentary criteria and analytical results, and recorded four episodes of palaeoflood events in the upper reaches of Hanjiang River. By using stratigraphic correlation and OSL dating, the four palaeofloods were dated to 12,600–12,400a B.P., 11,600–11,400a B.P., 5500–5000a B.P. and 1000–900a B.P., respectively. According to the calculated maximum palaeoflood stage, the maximum peak discharges of the palaeofloods events were reconstructed by using the HEC-RAS one-dimensional model. The same hydrological method was used to calculate the peak discharge of the 2010 flood in the same reach. The error between the calculated and gauged discharges was 4.9%, showing that the reconstructed four palaeoflood discharges were reliable. The flood peak discharge–frequency relationship at 10,000-year timescale was established by a combination of the gauged flood, historical flood and palaeoflood hydrological data in the upper reaches of the Hanjiang River, assessing reliability of peak discharge data in flood design for the water conservancy construction and flood mitigation.
[9]Zhu Cheng, Ma Chunmei, Wang Huilin, et al.Characteristics of palaeoflood deposits archived in unit T0403 of Yuxi Site in the Three Gorges Reservoir areas, China
. Chinese Science Bulletin, 2008, 53(Suppl. I): 1-16.
URL摘要
通过对玉溪遗址地层AMS14C测年、粒度、重砂矿物组分与形态、锆石微形态、磁化率、Rb/Sr和Hg等地球化学指标研究发现,7.6kaBP以来,水位在吴淞高程147.024m(a.s.l.)以上的古洪水至少在玉溪遗址T0403探方新石器时代地层中留下了16次沉积记录,判定依据主要是:(1)玉溪遗址古洪水层与该处现代洪水层以及中坝遗址现代洪水层沉积物在粒度概率累积曲线上具有相似的三段式河流相沉积特征;(2)古洪水层与现代洪水层沉积物在重砂矿物组分及形态特征上具有相似性;(3)洪水层磁化率值均很低(分布于40.44~70.10SI之间),而文化层较高(范围在59.59~188.68SI之间);(4)洪水层Hg的含量较低(在290.71~742.51ng/g)之间,文化层偏高,在344.16~10518.17ng/g之间;(5)洪水层的Rb/Sr值高于文化层,第4,5,6,7和8这5个文化层的Rb/Sr值亦较高表明遭受过洪水浸淹的影响.该遗址具有较多洪水层的原因,与其位于一级支流入长江干流交汇处一级阶地处的地貌部位有关.由于下游中坝遗址古洪水沉积亦有与此类似的特征,表明从以上几方面判定遗址古洪水层的存在与否是确实的.
[朱诚, 马春梅, 王慧麟, . 长江三峡库区玉溪遗址T0403探方古洪水沉积特征研究
. 科学通报, 2008, 53(增刊I): 1-16.]
URL摘要
通过对玉溪遗址地层AMS14C测年、粒度、重砂矿物组分与形态、锆石微形态、磁化率、Rb/Sr和Hg等地球化学指标研究发现,7.6kaBP以来,水位在吴淞高程147.024m(a.s.l.)以上的古洪水至少在玉溪遗址T0403探方新石器时代地层中留下了16次沉积记录,判定依据主要是:(1)玉溪遗址古洪水层与该处现代洪水层以及中坝遗址现代洪水层沉积物在粒度概率累积曲线上具有相似的三段式河流相沉积特征;(2)古洪水层与现代洪水层沉积物在重砂矿物组分及形态特征上具有相似性;(3)洪水层磁化率值均很低(分布于40.44~70.10SI之间),而文化层较高(范围在59.59~188.68SI之间);(4)洪水层Hg的含量较低(在290.71~742.51ng/g)之间,文化层偏高,在344.16~10518.17ng/g之间;(5)洪水层的Rb/Sr值高于文化层,第4,5,6,7和8这5个文化层的Rb/Sr值亦较高表明遭受过洪水浸淹的影响.该遗址具有较多洪水层的原因,与其位于一级支流入长江干流交汇处一级阶地处的地貌部位有关.由于下游中坝遗址古洪水沉积亦有与此类似的特征,表明从以上几方面判定遗址古洪水层的存在与否是确实的.
[10]Yang Dayuan, Xie Yuebo.A preliminary study on palaeoflood deposit and its level in Yellow River valley near Xiaolangdi village
. Journal of Hohai University, 1997, 25(3): 86-89.
URL摘要
在黄河小浪底河段的古洪水研究中,确定了古洪水平流沉积的基本特征,发现像黄河这样高含沙量河流的洪水平流沉积的尖灭端与洪痕一般高。本研究可以提高洪水研究的可靠性和精度度。
[杨达源, 谢悦波. 黄河小浪底段古洪水沉积与古洪水水位的初步研究
. 河海大学学报, 1997, 25(3): 86-89.]
URL摘要
在黄河小浪底河段的古洪水研究中,确定了古洪水平流沉积的基本特征,发现像黄河这样高含沙量河流的洪水平流沉积的尖灭端与洪痕一般高。本研究可以提高洪水研究的可靠性和精度度。
[11]Xie Yuanyun, Li Changan, Wang Qiuliang, et al.Sedimentary records of palaeoflood events during the last 3000 years in Jianghan plain
. Scientia Geographica Sinica, 2007, 27(1): 81-84.
URLMagsci摘要
洪水发生规律是洪灾预报的前提,已有的历史洪水记录时间尺度不足以认识和把握洪水的出现规律。因此,利用地质记录延长洪水时间序列,从地质记录中认识洪水的发生规律,显得非常重要和必要。江汉平原江陵地区的洪水地质记录表明,近3000年来,该区共发生了18次特大洪水漫滩事件。这些古洪水的频发与湿冷气候相对应。功率谱分析发现古洪水漫滩事件包含26、31、36、43、52、79、110年这样的周期。分析表明江陵地区古洪水发生的驱动因子可能是太阳活动。
[谢远云, 李长安, 王秋良, . 江汉平原近 3000年来古洪水事件的沉积记录
. 地理科学, 2007, 27(1): 81-84.]
URLMagsci摘要
洪水发生规律是洪灾预报的前提,已有的历史洪水记录时间尺度不足以认识和把握洪水的出现规律。因此,利用地质记录延长洪水时间序列,从地质记录中认识洪水的发生规律,显得非常重要和必要。江汉平原江陵地区的洪水地质记录表明,近3000年来,该区共发生了18次特大洪水漫滩事件。这些古洪水的频发与湿冷气候相对应。功率谱分析发现古洪水漫滩事件包含26、31、36、43、52、79、110年这样的周期。分析表明江陵地区古洪水发生的驱动因子可能是太阳活动。
[12]Huang Chunchang, Pang Jiangli, Zha Xiaochun, et al.Extraordinary floods related to the climatic event at 4200 a BP on the Qishuihe River, middle reaches of the Yellow River, China
. Quaternary Science Reviews, 2011, 30: 460-468.
https://doi.org/10.1016/j.quascirev.2010.12.007URL [本文引用: 1]摘要
Palaeo-hydrological study was carried out in the Qishuihe River valley in the middle reaches of the Yellow River. Several bedsets of flood slackwater deposit were identified in the Holocene loess-soil sequences on the riverbanks. They were differentiated from aeolian loess and soils by the parallel and waving beddings and the distinctive stratigraphic breaks separating individual palaeoflood events. Chronology of the flood events was established by OSL dating, checked by archaeological identification of the anthropogenic remains retrieved from the sequences. The results show that successive floods occurred between 4300 and 4000 a BP in association with the abrupt climatic event of 4200 a BP. These overbank floods had the riverbank settlement inundated repeatedly. Another series of extraordinary floods occurred between 3200 and 3000 a BP when monsoonal climate shifted from the mid-Holocene Climatic Optimum toward late Holocene dry conditions. The climatic event of 4200 a BP and the climatic decline at 3100 a BP were believed to be characterized by droughts previously. This work provides solid evidence that both severe droughts and extreme floods were parts of the climatic variability during abrupt climatic event and climatic decline in the semi-arid to sub-humid zones over the world.
[13]Huang Chunchang, Pang Jiangli, Zha Xiaochun, et al.Extraordinary floods of 4100-4000 a BP recorded at the Late Neolithic ruins in the Jinghe River gorges, middle reach of the Yellow River, China. Palaeogeography, Palaeoclimatology,
Palaeoecology, 2010, 289: 1-9.
https://doi.org/10.1016/j.palaeo.2010.02.003URL摘要
Holocene palaeohydrological investigations were carried out in the middle reach of the Jinghe River that drains the central part of the Loess Plateau. A set of palaeoflood slackwater deposits was found interbedded in the Holocene loess-soil sequence within the cliff riverbanks. Both the sedimentary criteria and the analytical results show that this sediment was sourced from a suspended sediment load of floodwater. The major cultural layer of a late Neolithic settlement (430061400002a BP) occurring at the same site is blanketed by this flood deposit directly. Slopewash with pottery shards, charcoal and burnt earth occurs in between the palaeoflood slackwater deposit beds. It indicates that each of the slackwater deposit beds has recorded one individual flood event, and that these extraordinary floods occurred when the late Neolithic people occupied the riverbank terrace land. This pre-historical settlement was abandoned after the floods eventually due presumably to repeated inundation by overbank floodwater. The flood events were OSL dated to between 4100 and 400002a BP and checked by archaeological dating of the anthropogenic remains retrieved from the sequences. Peak discharges of the floods were estimated to between 19,500 and 22,00002m 3 02s 61021 , which is several times gauged maximum floods. During the 4200–400002a BP climatic event, severe droughts were documented in China's monsoonal regions and great floods were known from an ancient legend. This study provides a well-dated sediment record of pre-historical floods which occurred at the transition from the Neolithic to the Bronze Age in the Yellow River basin. It shows that extraordinary floods were part of the abrupt climatic variability during the 420061400002a BP climatic event. The highly variable, unstable and catastrophic climate typified by both droughts and floods resulted in settlement abandonment, and possibly the decline of the highly developed late Neolithic civilizations in China's monsoonal regions.
[14]Huang Chunchang, Pang Jiangli, Zha Xiaochun, et al.Prehistorical floods in the Guanzhong Basin in the Yellow River drainage area
. Science China: Earth Science, 2011, 41: 1658-1669.


[黄春长, 庞奖励, 查小春, . 黄河流域关中盆地史前大洪水研究
. 中国科学, 2011, 41(1): 1658-1669.]

[15]ZhangYuzhu, Huang Chunchang, Pang Jiangli, et al. Holocene paleofloods related to climatic events in the upper reaches of the Hanjiang River valley, middle Yangtze River basin, China
. Geomorphology 2013, 195: 1-12.
https://doi.org/10.1016/j.geomorph.2013.03.032URL [本文引用: 5]摘要
Holocene slackwater deposits along the river channels were used to study the magnitude and frequency of the paleofloods that occurred prior to gaged and historical data sets all over the world. Paleoflood hydrological investigations were carried out in the upper reaches of the Hanjiang River, China. Four bedsets of paleoflood slackwater deposits were found interbedded in the Holocene loess–soil sequence within the cliff riverbanks. They were studied by field observations and laboratory analysis including magnetic susceptibility, particle size distribution and optically stimulated luminescence (OSL) dating. These provide a complete catalog of Holocene flood events at a watershed scale that is very important in understanding the regional hydrological response to monsoonal climatic change. Four episodes of Holocene overbank flooding have been recorded over the basin. These hydroclimatic events were dated to 8500–8400, 4200–4000, 3200–2800, and 1800–170002YBP by using the OSL method in combination with pedostratigraphic correlations with the previously studied Holocene pedostratigraphy in the Hanjiang River basin. The peak discharges of these flood episodes vary in a range from 26,610 to 47,90002m 3 02s 61021 as estimated by using the slope–area method of streamflow measurement. These flood events are therefore considered a regional expression of known climatic events and demonstrate Holocene climatic instability. The study provides a solid reference that magnitudes and recurrence frequencies of floods are highly sensitive to climate change in the monsoonal zone in other parts of the world.
[16]GuoYongqiang, Huang Chunchang, Pang Jiangli, et al. Comparative study on flood discharge restoration at 10000-years time scale in Xunyang-Baihe section of Hanjiang River
. Journal of Natural Disasters, 2014, 23(3): 41-49.
https://doi.org/10.13577/j.jnd.2014.0306URL [本文引用: 1]摘要
对汉江上游旬阳至白河段基岩峡谷进行了详细的野外调查,在全新世黄土地层中发现了古洪水滞流沉积层。综合野外宏观特征和粒度分析,并与现代洪水滞流沉积物的对比,判定是典型的古洪水滞流沉积物。通过全新世地层关系对比和光释光(OSL)测年表明,古洪水事件发生年代距今为1800~1700 a(A.D.200-300)。汉江上游旬阳至白河段万年尺度流量恢复比较发现,由古洪水SWD厚度与含沙量关系法恢复的洪水水位和流量更为合理。这些成果为汉江上游水资源开发与重大水利工程的安全校核提供了重要的科学依据。
[郭永强, 黄春长, 庞奖励, . 汉江旬阳至白河段万年尺度洪水流量恢复比较研究
. 自然灾害学报, 2014, 23(3): 41-49.]
https://doi.org/10.13577/j.jnd.2014.0306URL [本文引用: 1]摘要
对汉江上游旬阳至白河段基岩峡谷进行了详细的野外调查,在全新世黄土地层中发现了古洪水滞流沉积层。综合野外宏观特征和粒度分析,并与现代洪水滞流沉积物的对比,判定是典型的古洪水滞流沉积物。通过全新世地层关系对比和光释光(OSL)测年表明,古洪水事件发生年代距今为1800~1700 a(A.D.200-300)。汉江上游旬阳至白河段万年尺度流量恢复比较发现,由古洪水SWD厚度与含沙量关系法恢复的洪水水位和流量更为合理。这些成果为汉江上游水资源开发与重大水利工程的安全校核提供了重要的科学依据。
[17]Liu Tao, Huang Chunchang, Pang Jiangli, et al.Hydrological reconstructions of the prehistorical great floods in the Wufeng reach of Yunxian county in the upper Hanjiang River
. Acta Geographica Sinica, 2013, 68(11): 1568-1577.
https://doi.org/10.11821/dlxb201311012URL [本文引用: 2]摘要
通过深入的野外考察,在汉江上游郧县五峰段多个地点发现全新世古洪水事件的沉积学记录,为恢复史前特大洪水事件的洪峰水位和洪峰流量提供了物质基础.在系统获取河道水文参数的基础上,采用ArcGIS耦合HEC-RAS模型,推算出其洪峰流量介于42 220~63 400m3/s之间.对于河槽糙率的灵敏度检验表明,给定糙率变化士25%,模型模拟得到的洪峰流量误差在-10.6%~6.3%之间.这个误差范围远小于采用比降一面积法获得的结果.同时,采用该模型和同样的参数,依据该河段现代大洪水洪痕高程,恢复推算其洪峰流量,其结果与实测数据误差在-3.9%~1.0%之间.与其它方法相比较,这种新方法有效地提高了水文参数选取准确性,使得古洪水水文恢复计算结果更为可靠.本研究为超长尺度大洪水水文学恢复提供了新的途径,也获得了汉江上游万年尺度特大洪水的水文学数据资料,对汉江上游水利水电枢纽工程建设、水资源调度和防洪减灾具有重要的现实意义.
[刘涛, 黄春长, 庞奖励, . 汉江上游郧县五峰段史前大洪水水文学恢复研究
. 地理学报, 2013, 68(11): 1568-1577.]
https://doi.org/10.11821/dlxb201311012URL [本文引用: 2]摘要
通过深入的野外考察,在汉江上游郧县五峰段多个地点发现全新世古洪水事件的沉积学记录,为恢复史前特大洪水事件的洪峰水位和洪峰流量提供了物质基础.在系统获取河道水文参数的基础上,采用ArcGIS耦合HEC-RAS模型,推算出其洪峰流量介于42 220~63 400m3/s之间.对于河槽糙率的灵敏度检验表明,给定糙率变化士25%,模型模拟得到的洪峰流量误差在-10.6%~6.3%之间.这个误差范围远小于采用比降一面积法获得的结果.同时,采用该模型和同样的参数,依据该河段现代大洪水洪痕高程,恢复推算其洪峰流量,其结果与实测数据误差在-3.9%~1.0%之间.与其它方法相比较,这种新方法有效地提高了水文参数选取准确性,使得古洪水水文恢复计算结果更为可靠.本研究为超长尺度大洪水水文学恢复提供了新的途径,也获得了汉江上游万年尺度特大洪水的水文学数据资料,对汉江上游水利水电枢纽工程建设、水资源调度和防洪减灾具有重要的现实意义.
[18]Bai Kaixia, Zha Xiaochun, Huang Chunchang, et al.Holocene palaeoflood hydrological events of upper reaches of Hanjiang river in Tuojiazhou of Yunxian county
. Bulletin of Soil and Water Conservation, 2013, 23(4): 295-301.
URL [本文引用: 1]摘要
通过对汉江上游的实地调查,在湖北省郧县庹家洲段发现了含有4期古洪水滞流沉积层的典型全新世黄土—古土壤剖面。结合野外观察和室内粒度、磁化率和烧失量等指标的测定,判定为典型的古洪水滞流沉积物(SWD),记录了汉江上游4期古洪水事件。通过地层对比、OSL断代等方法,确定这4期古洪水事件分别发生在12 600—12 400aB.P.,4 200—4 000aB.P.,3 200—2 800aB.P.和东汉时期1 900—1 800aB.P.。然后利用沉积学和水文学原理恢复了洪峰水位,并选择合适的水文参数,采用比降法水文模型推算出了这4期特大古洪水洪峰流量。同时,根据相同的方法,推算了剖面附近1983,2005和2010年洪痕对应的洪峰流量,与实测流量相比,误差在1.99%~4.21%,说明计算古洪水洪峰流量的水文参数选择与计算结果是合理的,而且古洪水洪峰流量计算结果也符合洪峰流量与流域面积关系。
[白开霞, 查小春, 黄春长, . 汉江上游郧县庹家洲河段全新世古洪水研究
. 水土保持通报, 2013, 23(4): 295-301.]
URL [本文引用: 1]摘要
通过对汉江上游的实地调查,在湖北省郧县庹家洲段发现了含有4期古洪水滞流沉积层的典型全新世黄土—古土壤剖面。结合野外观察和室内粒度、磁化率和烧失量等指标的测定,判定为典型的古洪水滞流沉积物(SWD),记录了汉江上游4期古洪水事件。通过地层对比、OSL断代等方法,确定这4期古洪水事件分别发生在12 600—12 400aB.P.,4 200—4 000aB.P.,3 200—2 800aB.P.和东汉时期1 900—1 800aB.P.。然后利用沉积学和水文学原理恢复了洪峰水位,并选择合适的水文参数,采用比降法水文模型推算出了这4期特大古洪水洪峰流量。同时,根据相同的方法,推算了剖面附近1983,2005和2010年洪痕对应的洪峰流量,与实测流量相比,误差在1.99%~4.21%,说明计算古洪水洪峰流量的水文参数选择与计算结果是合理的,而且古洪水洪峰流量计算结果也符合洪峰流量与流域面积关系。
[19]Liu Ke, Zha Xiaochun, Huang Chunchang, et al.Reconstruction of the palaeoflood discharges at Tuojiazhou section in upper reaches of Hanjiang River by HEC-RAS model
. Journal of Arid Land Resources and Environment, 2014, 28(10):184-190.
URL [本文引用: 2]

[刘科, 查小春, 黄春长, . 基于HEC-RAS模型的汉江上游庹家洲河段古洪水流量重建研究
. 干旱区资源与环境, 2014, 28(10): 184-190.]
URL [本文引用: 2]
[20]Qiao Jing, Pang Jiangli, Huang Chunchang, et al.Palaeoflood hydrological study in the Qianfang section of Yunxian county in the upper reaches of the Hanjiang River
. Resources and Environment in the Yangtze Basin, 2012, 21(5): 533-539.
URLMagsci [本文引用: 1]摘要
<p>对汉江上游郧县段全新世古洪水滞流沉积层进行了沉积学和水文学研究。结果表明,该沉积物是古洪水悬移质泥沙在高水位滞流环境中堆积形成的,与黄土和古土壤显著不同。通过OSL测年和文化层的考古学断代,表明它所记录的特大古洪水事件发生在东汉时代(200 A.D.)。根据沉积学和水文学原理恢复古洪水水位高程,计算得到古洪水洪峰流量为65 830 m3/s;利用2011年汉江上游洪水洪痕记录的洪峰水位高程反演其洪峰流量,推算结果与实测数据误差仅09%,证明研究获得的古洪水水文数据合理可靠,从而为汉江上游的水利工程建设及流域内的防洪减灾提供了基础数据</p>
[乔晶, 庞奖励, 黄春长, . 汉江上游郧县前坊段全新世古洪水水文学研究
. 长江流域资源与环境, 2012, 21(5): 533-539.]
URLMagsci [本文引用: 1]摘要
<p>对汉江上游郧县段全新世古洪水滞流沉积层进行了沉积学和水文学研究。结果表明,该沉积物是古洪水悬移质泥沙在高水位滞流环境中堆积形成的,与黄土和古土壤显著不同。通过OSL测年和文化层的考古学断代,表明它所记录的特大古洪水事件发生在东汉时代(200 A.D.)。根据沉积学和水文学原理恢复古洪水水位高程,计算得到古洪水洪峰流量为65 830 m3/s;利用2011年汉江上游洪水洪痕记录的洪峰水位高程反演其洪峰流量,推算结果与实测数据误差仅09%,证明研究获得的古洪水水文数据合理可靠,从而为汉江上游的水利工程建设及流域内的防洪减灾提供了基础数据</p>
[21]Huang Chunchang, Pang Jiangli, Zha Xiaochun, et al.Extraordinary hydro-climatic events during the period AD 200-300 recorded by slackwater deposits in the upper Hanjiang River valley, China
. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013(374): 274-283.
https://doi.org/10.1016/j.palaeo.2013.02.001URL [本文引用: 1]摘要
The Hanjiang River, a major tributary of the Yangtze River in China, is noted for the current national South-to-North Water Diversion project. Palaeo-hydrological investigations were carried out along the upper reach gorges of the Hanjiang River that drains the Qinling and the Dabashan Mountains. A set of palaeoflood slackwater deposit beds (SWDs) was identified in Holocene pedo-stratigraphy of the riverbanks along the valley. These SWDs are interbedded in the eolian loess-soil profiles in the cliffy riverbanks and they thin out toward the upper slopes. The palaeoflood SWDs were differentiated from eolian loess and soil by the sedimentary criteria and analytical results. The minimum flood peak discharges were estimated to be 65,4006165,83002m 3 02s 61021 by using palaeo-hydrological methods. They are about twice of the largest gauged flood (34,30002m 3 02s 61021 ) that has ever been measured. They represent the largest flood events in the upper reaches of the Hanjiang River over the Holocene. These extraordinary flood events were dated to 1810611710 a (AD 20061300) with the optically stimulated luminescence method and checked by archaeological dating of the human remains retrieved from the profiles. This indicates that the extraordinary floods occurred during the dynasties of Eastern Han to Western Jin (AD 2561316) in Chinese history, during which severe droughts and floods were recorded in documents. In the reconstructed 2000-year temperature time series based on high-resolution climatic proxies from tree-rings, stalagmites, ice-cores and lake sediments from over the world, these extraordinary palaeoflood events are correlated with an increased climatic variability characterized by cooling and drying during the period AD 15061350. This result is important for understanding the effects of global change on river system dynamics.
[22]Wu Shuaihu, Pang Jiangli, Huang Chunchang, et al.Palaeoflood study in Liaowadian site of Yunxian county in upper reaches of Hanjiang River
. Bulletin of Soil and Water Conservation, 2012, 32(6): 182-186.
URL [本文引用: 7]摘要
以汉江上游谷地郧县辽瓦店全新世古洪水滞流沉积剖面为研究对象,对其进行了洪水沉积学和水文学研究,并对其粒度组成、磁化率、烧矢量等理化性质进行了测量。结果证明,辽瓦店(LWD)剖面中夹有典型的古洪水滞流沉积物(SWD),它记录了一次特大洪水事件。利用地层学方法确定该次洪水事件发生在AD100-300之间(东汉-魏晋时代之间)。根据沉积学和水文学原理恢复了古洪水的洪峰水位在159.80m,以此计算出洪峰流量为65 420m3/s。根据2011年9月19日汉江洪水洪峰水位痕迹高程并利用相同方法反推洪水流量,所获流量数据与实测数据误差小于1%。
[吴帅虎, 庞奖励, 黄春长,. 汉江上游郧县辽瓦店全新世古洪水研究
. 水土保持通报, 2012, 32(6): 182-186. ]
URL [本文引用: 7]摘要
以汉江上游谷地郧县辽瓦店全新世古洪水滞流沉积剖面为研究对象,对其进行了洪水沉积学和水文学研究,并对其粒度组成、磁化率、烧矢量等理化性质进行了测量。结果证明,辽瓦店(LWD)剖面中夹有典型的古洪水滞流沉积物(SWD),它记录了一次特大洪水事件。利用地层学方法确定该次洪水事件发生在AD100-300之间(东汉-魏晋时代之间)。根据沉积学和水文学原理恢复了古洪水的洪峰水位在159.80m,以此计算出洪峰流量为65 420m3/s。根据2011年9月19日汉江洪水洪峰水位痕迹高程并利用相同方法反推洪水流量,所获流量数据与实测数据误差小于1%。
[23]Huang Yuan, Li Beibei, Li Zhongming.Review of climate reconstruction based on ancient diary
. Progress in Geography, 32(10): 1545-1554.
https://doi.org/10.11820/dlkxjz.2013.10.012URLMagsci [本文引用: 1]摘要
重建历史时期的气候变化可为分析当前气候变化规律和模拟未来气候变化趋势提供历史参考情景。古代私人日记中保存的气候信息,因其直观性强、分辨率高等特点而受到研究者的重视,成为重建历史气候时使用较多的一类代用数据。近年来,国内外****利用日记资料,已经重建了多个地区历史上的温度、降水及物候变化,并已逐步由定性描述发展到定量研究。本文从代用指标、研究方法、研究成果3 个方面,对基于日记的历史气候重建研究成果进行综述,得到以下结论:① 重建指标选取上,国内外均较常使用天气情况日数和感应记录两类指标;此外,国内常用自然生长植物的物候期,而国外还使用风向、云量等指标;重建指标类型可分为定量、半定量、定性3 类,定量与定性指标使用较多,半定量指标使用相对较少。② 重建方法上,中外研究者多采用定性分析法和定量转换法等;资料校对方法上,西方****多采用器测资料进行检验,国内则常选用方志与官私文件进行校订。③ 国外研究的重建内容主要涉及区域温度和降水;而国内除了温度和降水重建外,还研究了沙尘和梅雨等中国特有的天气气候现象。利用日记重建历史气候的优势在于,日记中保存的历史气候信息细节丰富、时间分辨率高,因而能够很好地保证重建结果的准确性。未来这一领域的研究还应继续改进代用指标的定量转换和重建结果的校验方法,并加强对不同区域、不同时段的同类研究结果的集成研究。
[黄媛, 李蓓蓓, 李忠明. 基于日记的历史气候变化研究综述
. 地理科学进展, 2013, 32(10): 1545-1554.]
https://doi.org/10.11820/dlkxjz.2013.10.012URLMagsci [本文引用: 1]摘要
重建历史时期的气候变化可为分析当前气候变化规律和模拟未来气候变化趋势提供历史参考情景。古代私人日记中保存的气候信息,因其直观性强、分辨率高等特点而受到研究者的重视,成为重建历史气候时使用较多的一类代用数据。近年来,国内外****利用日记资料,已经重建了多个地区历史上的温度、降水及物候变化,并已逐步由定性描述发展到定量研究。本文从代用指标、研究方法、研究成果3 个方面,对基于日记的历史气候重建研究成果进行综述,得到以下结论:① 重建指标选取上,国内外均较常使用天气情况日数和感应记录两类指标;此外,国内常用自然生长植物的物候期,而国外还使用风向、云量等指标;重建指标类型可分为定量、半定量、定性3 类,定量与定性指标使用较多,半定量指标使用相对较少。② 重建方法上,中外研究者多采用定性分析法和定量转换法等;资料校对方法上,西方****多采用器测资料进行检验,国内则常选用方志与官私文件进行校订。③ 国外研究的重建内容主要涉及区域温度和降水;而国内除了温度和降水重建外,还研究了沙尘和梅雨等中国特有的天气气候现象。利用日记重建历史气候的优势在于,日记中保存的历史气候信息细节丰富、时间分辨率高,因而能够很好地保证重建结果的准确性。未来这一领域的研究还应继续改进代用指标的定量转换和重建结果的校验方法,并加强对不同区域、不同时段的同类研究结果的集成研究。
[24]Wang Wei, Chen Min.Thought about flood dispatching in 3 October 2005 in Hanjiang River
. Yangtze River, 2006, 37(8): 105-108.
URL [本文引用: 1]

[王威, 陈敏. 2005年汉江“10.3”洪水调度思考
. 人民长江, 2006, 37(8): 105-108.]
URL [本文引用: 1]
[25]Li Wenhao.Hydrologic characteristics analysis in the upper reaches of Hanjiang River
. Journal of Water Resources and Water Engineering, 2004, 15(2): 54-58.
https://doi.org/10.3969/j.issn.1672-643X.2004.02.013URL [本文引用: 2]摘要
通过安康长系列水文资料分析,论述了汉江上游流域内降水、径流、泥沙的变化规律,同时提出了暴雨洪水特性、水力资源有效利用两个主要问题.
[李文浩. 汉江上游流域水文特性分析
. 水资源与水工程学报, 2004, 15(2): 54-58.]
https://doi.org/10.3969/j.issn.1672-643X.2004.02.013URL [本文引用: 2]摘要
通过安康长系列水文资料分析,论述了汉江上游流域内降水、径流、泥沙的变化规律,同时提出了暴雨洪水特性、水力资源有效利用两个主要问题.
[26]Peng Weiying, Yin Shuyan, Zhu Yongchao, et al.Flood disaster in upper reaches of Hanjiang River during historical period
. Bulletin of Soil and Water Conservation, 2013, 33(4): 289-294.
URL [本文引用: 2]摘要
通过对汉江上游历史时期以来(208BC—2010AD)历史资料的搜集和整理,运用最小二乘法、小波分析和克里格插值等方法,对该区域洪涝灾害等级、时间(阶段、季节、周期等)和空间变化规律及成因进行了研究。结果表明,近2 220a间,汉江上游共发生洪涝灾害336次,平均6.6a发生1次,集中发生在夏秋季节(5—9月份)。该区域洪涝灾害划分为轻度洪灾、中度洪灾、重度洪灾和特大洪灾,分别占洪涝灾害总数的24.7%,29.5%,40.5%和5.3%。小波分析显示各级洪灾分别存在2~5a,38~40a,120a,160a的周期。洪涝灾害发生频率的变化呈现波动上升趋势,大致可分为3个阶段,清代道光年间前期、清代光绪年间和民国后期至20世纪末为洪涝灾害多发期。洪涝灾害空间分布差异明显,以安康盆地为中心向南、向北、向东、向西递减,存在两个高频中心和两个低频中心。大气环流异常,特殊地形条件,河流本身的水系特征,河道的弯曲程度及人类活动的影响是造成该区域洪涝灾害频发的主要原因。
[彭维英, 殷淑燕, 朱永超, . 历史时期以来汉江上游洪水灾害研究
. 水土保持通报, 2013, 33(4): 289-294.]
URL [本文引用: 2]摘要
通过对汉江上游历史时期以来(208BC—2010AD)历史资料的搜集和整理,运用最小二乘法、小波分析和克里格插值等方法,对该区域洪涝灾害等级、时间(阶段、季节、周期等)和空间变化规律及成因进行了研究。结果表明,近2 220a间,汉江上游共发生洪涝灾害336次,平均6.6a发生1次,集中发生在夏秋季节(5—9月份)。该区域洪涝灾害划分为轻度洪灾、中度洪灾、重度洪灾和特大洪灾,分别占洪涝灾害总数的24.7%,29.5%,40.5%和5.3%。小波分析显示各级洪灾分别存在2~5a,38~40a,120a,160a的周期。洪涝灾害发生频率的变化呈现波动上升趋势,大致可分为3个阶段,清代道光年间前期、清代光绪年间和民国后期至20世纪末为洪涝灾害多发期。洪涝灾害空间分布差异明显,以安康盆地为中心向南、向北、向东、向西递减,存在两个高频中心和两个低频中心。大气环流异常,特殊地形条件,河流本身的水系特征,河道的弯曲程度及人类活动的影响是造成该区域洪涝灾害频发的主要原因。
[27]Yang Yongde, Zouning, Guo Xiwang, et al.Analysis and calculation of design flood at Baihe gauge station in Hanjiang River
. Journal of Water Resources Research, 1997, 18(3): 36-38.
URL [本文引用: 1]摘要
汉江白河水站设计洪水分析计算,是丹江口水利枢纽后纽工程设计中的一项基本工作,本文通过介绍汉江白河水文站以上流域的地理概况、暴雨洪水特性的基础上,运用白河水文站丰富的历史洪水调查资料和实测资料,进行了年设计洪水,秋季设计洪水,非汛期分月设计洪水的分析计算,并对设计洪水成果进行了合理性分析。
[杨永德, 邹宁, 郭希望, . 汉江白河水文站设计洪水分析计算
. 水资源研究, 1997, 18(3): 36-38.]
URL [本文引用: 1]摘要
汉江白河水站设计洪水分析计算,是丹江口水利枢纽后纽工程设计中的一项基本工作,本文通过介绍汉江白河水文站以上流域的地理概况、暴雨洪水特性的基础上,运用白河水文站丰富的历史洪水调查资料和实测资料,进行了年设计洪水,秋季设计洪水,非汛期分月设计洪水的分析计算,并对设计洪水成果进行了合理性分析。
[28]Kochel R C, Baker V R. Paleoflood Hydrology. Science, 1982, 215: 353-361.https://doi.org/10.1126/science.215.4531.353URL [本文引用: 1]
[29]Ding Yihui, Wen Kegang.Eyclopedia of Meteorological Disasters in China (Comprehensive). Beijing: China Meteorological Press, 2008. [本文引用: 3]

[丁一汇, 温克刚. 中国气象灾害大典(综合卷). 北京: 气象出版社, 2008. ] [本文引用: 3]
[30]Zhai Youan, Wen Kegang.Eyclopedia of Meteorological Disasters in China (Shaanxi). Beijing: China Meteorological Press, 2008. [本文引用: 4]

[翟佑安, 温克刚. 中国气象灾害大典(陕西卷). 北京: 气象出版社, 2008.] [本文引用: 4]
[31]Jiang Hairu, Wen Kegang.Eyclopedia of Meteorological Disasters in China (Hubei). Beijing: China Meteorological Press, 2008. [本文引用: 5]

[姜海如, 温克刚. 中国气象灾害大典(湖北卷). 北京: 气象出版社, 2008.] [本文引用: 5]
[32]Pang Tianhe, Wen Kegang.Eyclopedia of Meteorological Disasters in China (Henan). Beijing: China Meteorological Press, 2008. [本文引用: 6]

[庞天荷, 温克刚. 中国气象灾害大典(河南卷) . 北京: 气象出版社, 2008.] [本文引用: 6]
[33]Zhang Deer.Compendium of Meteorological Records of China the Last 3000 Years. Nanjing: Phoenix Publishing House,2004. [本文引用: 2]

[张德二. 中国三千年气象记录总集. 南京: 凤凰出版社, 2004.] [本文引用: 2]
[34]Fan Ye. Hou Han Shou. Shanghai: Zhonghua Book Company, 2007. [本文引用: 1]

[范晔. 后汉书. 上海: 中华书局, 2007.] [本文引用: 1]
[35]Yuan Lin.Famine History of Northwest China. Lanzhou: Gansu People's Publishing House, 1994. [本文引用: 1]

[袁林. 西北灾荒史. 兰州: 甘肃人民出版社, 1994.] [本文引用: 1]
[36]Editorial Committee of Brief Report of History Natural Disasters in Shaanxi. Brief Report of History Natural Disasters in Shaanxi. Beijing: China Meteorological Press, 2002. [本文引用: 1]

[《陕西历史自然灾害简要纪实》编委会.陕西历史自然灾害简要纪实. 北京: 气象出版社, 2002.] [本文引用: 1]
[37]Compilation Committee for Chorography of Hanzhong Region. Chorography of Hanzhong Region. Xi'an: Sanqin Press,2005. [本文引用: 5]

[汉中地方志办公室. 汉中地区志. 西安: 三秦出版社, 2005.] [本文引用: 5]
[38]Compilation Committee for Chorography of Yangxian County. Chorography of Yangxian County. Xi'an: Sanqin Press,1996.

[洋县地方志编纂委员会. 洋县志. 西安: 三秦出版社, 1996.]
[39]Compilation Committee for Chorography of Mianxian County. Chorography of Mianxian county. X'an: Shaanxi People's Publishing House, 1989.

[勉县志编撰委员会. 勉县志. 西安: 陕西人民出版社, 1989.]
[40]Compilation Committee for Chorography of Ningqiang County. Chorography of Ningqiang County. Xi' an : Shaanxi Normal University Press, 1995. [本文引用: 2]

[宁强县志编纂委员会. 宁强县志. 西安: 陕西师范大学出版社, 1995.] [本文引用: 2]
[41]Compilation Committee for Chorography of Ankang County. Chorography of Ankang County. Xi'an: Shaanxi People's Publishing House, 1989. [本文引用: 3]

[安康市地方志编纂委员会. 安康县志. 西安: 陕西人民出版社, 1989.] [本文引用: 3]
[42]Compilation Committee for Chorography of Baihe County. Chorography of Baihe County. Xi'an: Shaanxi People's Publishing House, 1996.

[白河县地方志编纂委员会. 白河县志. 西安: 陕西人民出版社, 1996.]
[43]Compilation Committee for Chorography of Danfeng County. Chorography of Danfeng County. Xi'an: Shaanxi People's Publishing House, 1994.

[丹凤县地方志编纂委员会. 丹凤县志 . 西安: 陕西人民出版社, 1994.]
[44]Compilation Committee for Chorography of Nanzheng County. Chorography of Nanzheng County. Beijing: People's Public Security University of China Press, 1990. [本文引用: 1]

[南郑县地方志编纂委员会. 南郑县志. 北京: 中国人民公安大学出版社, 1990.] [本文引用: 1]
[45]Compilation Committee for Chorography of Liuba County. Chorography of Liuba County. Xi'an: Shaanxi People's Publishing House, 2002.

[留坝县地方志编纂委员会. 留坝县志. 西安: 陕西人民出版社, 2002.]
[46]Compilation Committee for Chorography of Shiquan County. Chorography of Shiquan County .Xi'an: Shaanxi People's Publishing House,1991.

[石泉县地方志编纂委员会. 石泉县志. 西安: 陕西人民出版社, 1991.]
[47] Compilation Committee for Chorography of Chenggu County . Chorography of Chenggu County. Beijing: Encyclopedia of China Publishing House, 1994. [本文引用: 2]

[ 城固县地方志编篡委员会 .城固县志 . 北京: 中国大百科全书出版社, 1994.] [本文引用: 2]
[46]Wang Shangyi.The relationship of the Yellow River flood and the land use in the middle reaches during the Han dynasties
. Acta Geographica Sinica, 2003, 58(1): 73-82.


[王尚义. 两汉时期黄河水患与中游土地利用之关系
. 地理学报, 2003, 58(1): 73-82.]

[49]Lu Yue, Zha Xiaochun, Huang Chunchang, et al.Extraordinary flood events recorded by historical documents in the upper reaches of the Hanjiang River in the eastern Han Dynasty
. Arid Zone Research, 2014, 31(3): 489-494.
URLMagsci [本文引用: 1]摘要
通过对汉江上游辽瓦店(LWD)、前坊村(QFC)、庹家洲(TJZ)全新世沉积剖面分析,判定在1 900~1 700 a B.P.的东汉时期(25&mdash;220 A.D.),汉江上游有发生过洪水事件的记录。根据历史文献资料的搜集和整理,说明东汉时期确实为洪水灾害频发时期。对洪水灾害的气候背景分析表明:东汉时期汉江上游地区的气候恶化转折,气候状态不稳定,降水变率增大,导致了汉江上游的洪涝灾害发生。
[卢越, 查小春, 黄春长, . 汉江上游东汉时期洪水事件的文献记录
. 干旱区研究, 2014, 31(3): 489-494.]
URLMagsci [本文引用: 1]摘要
通过对汉江上游辽瓦店(LWD)、前坊村(QFC)、庹家洲(TJZ)全新世沉积剖面分析,判定在1 900~1 700 a B.P.的东汉时期(25&mdash;220 A.D.),汉江上游有发生过洪水事件的记录。根据历史文献资料的搜集和整理,说明东汉时期确实为洪水灾害频发时期。对洪水灾害的气候背景分析表明:东汉时期汉江上游地区的气候恶化转折,气候状态不稳定,降水变率增大,导致了汉江上游的洪涝灾害发生。
[50]Ji Lin, Zha Xiaochun.Flood disasters and their impact on society and economy during Eastern Han Dynasty in upper reaches of Hanjiang River
. Acta Agriculturae Jiangxi, 2016, 28(2): 90-95.
URL [本文引用: 1]

[姬霖, 查小春. 汉江上游东汉时期洪涝灾害及其对社会经济的影响
. 江西农业学报, 2016, 28(2): 90-95.]
URL [本文引用: 1]
[51]Shi Fucheng, Yi Yuanjun, Mu Ping.Investigation, Research and Study on the Yellow River Historical Flood. Zhengzhou: Yellow River Conservancy Press, 2002. [本文引用: 1]

[史辅成, 易元俊, 慕平. 黄河历史洪水调查、考证和研究. 郑州: 黄河水利出版社, 2002.] [本文引用: 1]
[52]Gary W.HEC-RAS River Analysis System Hydraulic Reference Manual. U.S. Army Corps of Engineers, Davis,
CA, 2010.
[本文引用: 1]
[53]Xue Xiaoyan, Zha Xiaochun, Huang Chunchang, et al.Influence of channel roughness coefficient on the Holocene palaeoflood discharge calculation
. Arid Land Geography, 2015, 38(2): 292-297.
Magsci [本文引用: 2]摘要
洪水流量计算中河道糙率是一个重要的灵敏度参数。以汉江上游郧县尚家河台地前沿记录的四期古洪水流量计算为例,研究河道糙率系数在比降-面积法和HEC-RAS模型中对古洪水流量计算结果的影响。结果表明:其他水文参数一定时,河道糙率系数以&plusmn;15%变幅,比降-面积法重建的古洪水流量变幅在-13.04%~17.65%,HEC-RAS模型计算的流量变幅在-4.32%~4.57%;若河道糙率系数以&plusmn;25%变幅,比降-面积法和HEC-RAS模型计算的流量变幅分别为-20%~33.33%和-7.79%~9.18%,说明采用HEC-RAS模型重建古洪水流量,可减少河道糙率系数对计算结果的影响,使古洪水流量计算结果更为可靠。此外,假定其他参数不变,主河槽和左、右岸糙率系数依次变幅&plusmn;25%,主河槽糙率系数变化对流量计算结果影响最大,说明洪水流量计算时应准确选取主河槽的糙率系数。该结果对水利工程建设具有重要的现实意义。
[薛小燕, 查小春, 黄春长, . 河道糙率系数变化对全新世古洪水流量计算的影响研究
. 干旱区地理, 2015, 38(2): 292-297.]
Magsci [本文引用: 2]摘要
洪水流量计算中河道糙率是一个重要的灵敏度参数。以汉江上游郧县尚家河台地前沿记录的四期古洪水流量计算为例,研究河道糙率系数在比降-面积法和HEC-RAS模型中对古洪水流量计算结果的影响。结果表明:其他水文参数一定时,河道糙率系数以&plusmn;15%变幅,比降-面积法重建的古洪水流量变幅在-13.04%~17.65%,HEC-RAS模型计算的流量变幅在-4.32%~4.57%;若河道糙率系数以&plusmn;25%变幅,比降-面积法和HEC-RAS模型计算的流量变幅分别为-20%~33.33%和-7.79%~9.18%,说明采用HEC-RAS模型重建古洪水流量,可减少河道糙率系数对计算结果的影响,使古洪水流量计算结果更为可靠。此外,假定其他参数不变,主河槽和左、右岸糙率系数依次变幅&plusmn;25%,主河槽糙率系数变化对流量计算结果影响最大,说明洪水流量计算时应准确选取主河槽的糙率系数。该结果对水利工程建设具有重要的现实意义。
[54]Sridhar A.A mid-late Holocene flood record from the alluvial reach of the Mahi River, western India
. Catena, 2007, 70:330-339.
https://doi.org/10.1016/j.catena.2006.10.012URL摘要
Flooding of rivers in India is linked with the peak monsoons. Investigating the linkage between monsoonal patterns and flood history of various rivers is therefore of fundamental importance in the Indian context. In the present study, the slackwater deposits in the alluvial reaches of the Mahi river basin, western India have been documented. These occur in the ravines incised during the early Holocene on an alluvial surface comprising sediments of Late Pleistocene age. The slackwater deposits occur at elevations up to 20m from the present river level and extend to about 500m inland. The carbonate rich sediments forming the ravine cliffs have provided bank stability and the dissections in the ravines have helped in the accumulation of slackwater deposits due to backflooding of the floodwater from the main channel. Recent gullies have incised the sediments and exposed deposits related to major flood events. The best exposures of slackwater deposits have been observed at Dodka. The sediment succession of the slackwater deposits is dominated by bedsets and laminasets of silt and sand separated by colluvial sediments. Four events of flood deposition occurred during the mid to late Holocene. Two units of slackwater deposits, SWD 2 and 4 have been dated by IRSL at 4.6 1ka and 1.7 0.5ka. The stratigraphy of these deposits indicates that the first two slackwater units (SWD1 and SWD2) have resulted due to flooding in a regime of intense monsoon. The other two units, however, represent extreme high magnitude floods in a period of low average precipitation.
[55]England J F, Godaire J E, Klinger R E, et al.Paleohydrologic bounds and extreme flood frequency of the upper Arkansas River, Colorado, USA
. Geomorphology, 2010, 124: 1-16.
https://doi.org/10.1016/j.geomorph.2010.07.021URL [本文引用: 1]摘要
The Upper Arkansas River basin has experienced notable large floods, including the event of 2 6 June 1921 that devastated the city of Pueblo, Colorado. We investigated flood and paleoflood hydrology at strategic sites to determine the frequency and geographic extent of extreme floods within the basin for a dam safety application. Streamgage, historical, and paleoflood data were utilized to develop frequency curves at sites near Salida, Cotopaxi, Parkdale, and Pueblo. Soil/stratigraphic descriptions, radiocarbon dating, and hydraulic modeling were used to estimate paleoflood nonexceedance bounds at the four sites, which ranged from 400 to 2200 YBP for late Holocene surfaces to late Pleistocene surfaces near Cotopaxi. Peak-flow data are from lower-magnitude snowmelt runoff in May and June in the upper basin and from high-magnitude rainfall runoff from June to August in the lower basin. Flood frequency curves reflect this transition near Parkdale from snowmelt to extreme rainfall-runoff. For similar return periods, paleoflood peak discharges increase from about 480 m 3/s upstream at Loma Linda to about 4250 m 3/s downstream near Pueblo. This increase is attributed to the larger rainfall component derived from lower elevations between Loma Linda and Pueblo. Return periods for design floods at Pueblo Dam exceeded 10,000 years based on paleoflood frequency curve extrapolations.
[56]Shen Yuchang.Landscape and its development history of Hanjiang River valley
. Acta Geographica Sinica, 1956, 22(4):295-321.
URL [本文引用: 1]

[沈玉昌. 汉水河谷的地貌及其发育历史
. 地理学报, 1956, 22(4): 295-321.]
URL [本文引用: 1]
[57] School of Water Resource and Hydropower . Hydraulics. Beijing: Higher Education Press, 1986. [本文引用: 1]

[武汉水利电力学院水力学教研室. 水力学. 北京: 高等教育出版社, 1986.] [本文引用: 1]
相关话题/计算 水文 气象 洪水 历史