Dynamic coupling of the resource-economic-environment systems of China’s steel industrial chain based on scrap steel recycling
LIU Yanxin,1,2,3, LI Huajiao,2,3, AN Haizhong2,3, GUAN Jianhe4, LIU Ning5, HAN Xiaodan2,3, LI Chao6, SHI Jianglan7通讯作者:
收稿日期:2020-09-24修回日期:2021-03-10网络出版日期:2021-03-25
基金资助: |
Received:2020-09-24Revised:2021-03-10Online:2021-03-25
作者简介 About authors
刘妍心,女,山东临沂人,博士生,主要研究方向为资源环境经济与政策。E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (7666KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
刘妍心, 李华姣, 安海忠, 管建和, 刘宁, 韩晓丹, 李超, 史江兰. 基于“废钢回收”的中国钢铁产业链资源-经济-环境动态耦合. 资源科学[J], 2021, 43(3): 588-600 doi:10.18402/resci.2021.03.15
LIU Yanxin, LI Huajiao, AN Haizhong, GUAN Jianhe, LIU Ning, HAN Xiaodan, LI Chao, SHI Jianglan.
1 引言
随着城市化的不断推进,钢铁工业在快速发展的同时消耗了大量资源,也对生态环境产生了影响[1,2]。作为钢铁工业的主要废弃物,废钢在中国的产量逐年增加[3]。但由于循环体制尚不成熟[4],目前废钢回收率仅为19%[5]。因此,为了推动钢铁产业链可持续发展,有必要对产业链中资源、经济、环境耦合关系及废钢回收率可能造成的潜在影响进行研究。近年来****们对钢铁产业链的资源、经济、环境间关系展开了广泛研究,并取得了丰富成果。如对钢铁产业链相关产品、企业、行业主体进行了界定[6,7,8];对钢铁产业的环境-经济[9,10,11,12,13,14,15],资源-环境[16,17,18,19]和资源-经济[20,21,22,23]间关系进行了研究,确定了影响因素。为了更进一步研究钢铁产业链的耦合,有必要从以下几个方面补充研究:①从研究角度看,耦合关系大多针对的是两两间关系,对三者间关系的讨论有助于更全面地分析系统耦合;②从研究对象看,以往****侧重于分析钢铁产品[24,25,26]、企业[27,28]、行业[29,30]单一主体或维度,缺乏对多维主体及主体间关系的讨论;③从研究过程看,现有文献广泛关注产业链中单一流程[31,32,33],基于生命周期对多流程展开研究有助于从全局角度了解产业链耦合情况;④从研究内容看,耦合关系的影响研究大多围绕经济制度[34,35]、城市化[36]等因素,忽略了与主体自身活动相关的外部政策。
基于此,为研究产业链系统耦合关系,首先要量化主体活动过程中的环境影响。量化的方法中,能值核算和生命周期评估最有助于解决此类问题。能值核算,通过计算所有直接和间接资源流入来量化生产过程的环境成本[37,38],研究人员常利用该方法来分析中国相关生态系统资源及环境方面的可持续性[39,40]。生命周期评估可以分析物质转化过程中的环境影响[41,42],常被用于量化中国生产系统的经济及环境影响[43,44]。将两种方法结合使用有助于更全面地分析主体造成的环境影响,对后续构建模型揭示钢铁产业链在资源、经济、环境方面的耦合情况有积极作用。
本文以能值核算和生命周期评估方法为基础,建立耦合系统模型,从产品、企业、行业层面对钢铁产业链生产、利用及回收阶段的资源-经济-环境间耦合进行研究。之后基于相关政策设定了5种情景以模拟废钢回收率对主体耦合关系的动态影响。研究结果可帮助国家及相关企业了解不同情况下钢铁产业链在资源利用、经济收益、环境影响中的变化,识别关键政策,为可持续发展提供针对性建议。
2 研究方法
2.1 研究框架
研究资源-经济-环境间耦合关系有助于了解产业链系统耦合现状,从外部政策角度模拟废钢回收对主体耦合的影响有助于识别主体耦合变化的关键因素。为了更全面地研究钢铁产业链主体,本文从产品、企业、行业层面出发,基于主体自身特点构建资源-经济-环境耦合评价指标,进而构建耦合系统模型。了解钢铁产业链主体耦合现状,并结合评价指标分析影响耦合的主导因素。之后基于行业背景从5个角度设定政策情景,通过调节废钢回收率来分析情景模拟下各主体的耦合变化,识别关键驱动政策。最后根据研究结果提出政策建议,为行业管理者提供参考依据。具体技术路线见图1。图1
新窗口打开|下载原图ZIP|生成PPT图1技术路线图
Figure 1Technology roadmap of the study
2.2 资源消耗-经济收益-环境成本耦合系统模型
本文首先构建耦合评价指标来评估中国钢铁产业链产品、企业和行业3个主体在资源消耗-经济收益-环境成本间的耦合关系。指标构建所使用的数据是基于能值核算和生命周期评估两种方法计算得到。能值核算可用于计算钢铁产业链所有生产过程的直接和间接可用输入能量。换言之,所有产品的能量均通过太阳能能级焦耳(sej)进行测量。单位能值代表产生产品单位所需的太阳能值。它使用“统一标准”来量化不同产品或过程的环境成本[45]。能值公式如下所示:
式中:
生命周期评估旨在从大气[47]、土壤[48]、水文[49]等多个角度评估产品在生产过程中对环境造成的总体影响,本文应用该方法来评估钢铁产业链企业主体在生产过程中造成的环境影响。环境影响评估使用与Ecoinvent v3.1数据库集成的OpenLCA 1.10.3完成。
利用这两种方法计算评价指标,有助于全面地分析中国钢铁产业链在资源消耗,经济收益及环境成本间的耦合关系。
2.2.1 资源消耗-经济收益-环境成本耦合评价指标
为确定钢铁产业链中资源、经济、环境间相关关系,本文首先从产品、企业、行业层面构建了耦合评价指标[50]。为突显产业链各层面耦合特征,分别围绕不可再生性资源、土地资源、人力资源,构建与经济成本和环境影响相关的耦合评价指标。
(1)产品层面
表1首先定义了产品层面的耦合指标。由于产品生产对自然资源的消耗一直是****们的研究重点[51,52],因此,该层面指标围绕各阶段钢铁产品在生产过程中对不可再生性资源的消耗而构建,3个指标分别从资源-经济、资源-环境、环境-经济角度讨论了与不可再生性资源消耗相关的经济收益及环境影响。
Table 1
表1
表1钢铁产业链产品层面耦合评价指标
Table 1
评价指标 | 公式 | 含义 | 角度 |
---|---|---|---|
单位资源成本强度( | 生产过程中经济成本与消耗的资源间关系 | 资源-经济 | |
环境负荷率( | 产品生产过程中可再生性资源和不可再生性资源消耗对环境的影响比值 | 资源-环境 | |
单位环境成本收益( | 产品净利润与生产所需能值间关系 | 经济-环境 |
新窗口打开|下载CSV
(2)企业层面
土地资源是当前****对企业发展的重点研究内容[54,55,56]。基于此,从土地利用的角度定义子系统间耦合评价指标,研究了各企业主体在土地资源消耗-经济收益-环境影响间的关系(表2)。
Table 2
表2
表2钢铁产业链企业层面耦合评价指标
Table 2
评价指标 | 公式 | 含义 | 角度 |
---|---|---|---|
单位土地生产效益( | 企业在生产过程中单位土地获得的收益 | 资源-经济 | |
环境影响强度( | 企业生产活动对单位土地造成的环境影响 | 资源-环境 | |
单位价值影响强度( | 企业生产的环境影响与经济收益间关系 | 经济-环境 |
新窗口打开|下载CSV
(3)行业层面
行业发展离不开从业人员的支持[57,58,59],重点关注与人力资源相关的耦合问题,表3中定义的指标分别从子系统间关系角度研究了行业经济密度、从业人员造成的环境影响程度及行业环境负荷率。
Table 3
表3
表3钢铁产业链行业层面耦合评价指标
Table 3
评价指标 | 公式 | 含义 | 角度 |
---|---|---|---|
行业经济密度( | 各行业人均经济发展程度 | 资源-经济 | |
从业人员环境影响指数( | 各行业从业人员生产活动造成的环境影响占比 | 资源-环境 | |
行业环境负荷率( | 行业收益与环境压力间关系 | 经济-环境 |
新窗口打开|下载CSV
为便于比较各指标间影响程度及各层面间的耦合关系,本文使用了归一化的指标相对值进行后续计算及分析。归一化公式如下:
式中:
2.2.2 资源消耗-经济收益-环境成本耦合协调度
为量化各层面间相互作用的程度,本文借鉴了以往研究来构建耦合协调度模型[50]。首先基于构建的耦合评价指标计算了资源消耗-经济收益-环境成本的耦合度(C)。为保证相关关系是正向且积极的,又计算了资源-经济-环境综合发展指数(T)及耦合协调度(D)。具体公式如下:
式中:
为比较钢铁产业链产品,企业和行业层面的耦合发展水平,对耦合协调度也进行了标准化。
2.3 情景模拟
随着2019年中国海关总署等部门将废钢确定为“限制进口类别”,废钢的回收开始受到广泛关注。为定量分析废钢回收对中国钢铁产业链的影响,本文建立了仿真模型①(①篇幅限制,模型公式及详细信息未在文中呈现。如有需要,可通过邮件向作者索取。),并基于国内相关政策设定了5个模拟情景(表4)。Table 4
表4
表4政策情景设置
Table 4
模拟角度 | 情景设计 | 变量设计 | 政策含义 |
---|---|---|---|
技术进步 | 提高矿山采选率 | 矿山开采效率提高5% | 模拟“提高矿山采选率” 来增加铁精粉产量 |
突发事件 | 降低进口矿配比 | 铁精粉进口量减少20% | 模拟了“国际突发事件”可能造成进口铁产品供给不足的情况 |
产能置换 | 提高球团矿配比 | 烧结铁产能降低25%,球团铁产能增加25% | 模拟“使用球团铁替代部分烧结铁”来优化生产过程环境绩效 |
去产能 | 提高转炉废钢比 | 生铁用量降低25%,废钢用量增加25% | 模拟“增加废钢使用” 来限制国内生铁生产进而保护环境 |
提高资源利用率 | 提高再生钢使用比 | 电炉炼钢占比增加,转炉炼钢占比减少 | 模拟“使用更多废钢冶炼”来降低钢铁行业的环境成本 |
新窗口打开|下载CSV
技术进步政策情景主要考察优化生产技术的情况下提高废钢回收率对主体耦合的影响。该情景基于2015年制定的“矿产资源总体规划”[60],将优化流程选定为原材料开采环节。假设矿石开采效率提高5%,以此模拟技术进步对产业链主体的影响。
突发事件情景模拟了因突发情况引起的外部因素对钢铁产业链主体耦合关系的冲击。考虑到中国钢铁产业链的铁矿石大量依赖进口[61],该情景模拟了国际突发事件可能对原材料进口造成的影响。本文假设进口的铁精粉总量降低20%,由此模拟突发事件带来的后果。
产能置换政策情景考虑了通过结构调整来优化生产过程。为推动钢铁业的转型升级,产能置换近年来颇受关注。该情景基于2019年地方政府提出的“烧结机限产比例不低于50%”[62],将优化对象选定为烧结工艺,通过设置烧结铁和球团铁的置换比例(25%)来达到提高环境绩效的目的。
去产能政策情景模拟了削减生铁产能的政策影响。基于2017年制定的“减少生铁产能19万t”[63]计划,该情景将优化流程定为粗钢生产,通过模拟降低生铁25%的用量,来定量研究去产能对产业链主体在资源、经济、环境间关系的改变。
提高资源利用率情景从增加再生钢用量的角度考虑了产业优化的政策措施。2019年中华人民共和国工业和信息化部出台了“关于引导短流程炼钢发展的指导意见”[64],提出要大力推广短流程炼钢。根据这一文件,该情景基于行业现状对粗钢冶炼方式的占比进行了设定。通过增加废钢用量来提高电炉炼钢占比,以达到提高资源利用率的目的。相关变量的设计及含义如表4所示。
2.4 数据来源
2.4.1 产品主体为研究中国钢铁产业链在生产过程中的资源-经济-环境耦合关系,首先基于当前文献[65]确定了主要生产流程及对应的钢铁产品,基于中国产业信息网(
图2
新窗口打开|下载原图ZIP|生成PPT图2中国钢铁全产业链框架体系图
Figure 2Framework of China’s steel industrial chain system
2.4.2 企业主体
“企业”部分包括生产各环节产品的企业,考虑到中国钢铁产业链部分环节的企业集中度较低,本文根据产量选择了排名前10或整体产量占80%的主要企业作为研究对象(图2)。企业主体的选择基于中国钢铁新闻网(
2.4.3 行业主体
与前两个层面相比,行业主体的确定更加直接。图2展示的产业链“流程”即为本文行业主体。由于产品、企业、行业间呈递进关系,因此行业主体的活动过程基于产品和企业主体整理得到。数据来源包括此前列出的文献[65,66,67,68,69,70,71]和Ecoinvent v3.1数据库。
研究过程所使用的UEV数据主要来自Brown等[46]构建的UEV数据库和国家环境核算数据库NEAD v2.0(
2.5 不确定性分析
考虑到基础数据来自不同文献及数据库,本文利用蒙特卡洛模拟[72,73]来研究这一因素对结果的不确定性影响。为保证模拟结果的准确性,我们将模拟次数设定为1000次。结果显示,尽管个别类别的标准偏差值较大,但大部分类别的标准偏差值较小,尤其是对环境有显著影响的“全球变暖”和“生态毒性”。这一结果证实了研究结果的可靠性。3 结果与分析
3.1 中国钢铁产业链主体的资源消耗-经济收益-环境成本耦合机制分析
中国钢铁产业链主体的资源消耗-经济收益-环境成本间耦合现状如图3所示。从产品层面来看,产品主体的耦合协调度大多低于0.5,尤其是产业链上游环节。图4的耦合评价指标结果反映了子系统间关系对整体耦合的主导作用。与其他指标相比,单位环境成本效益(ECB)的值在产品主体中更加突出,这表明当前经济-环境间关系对钢铁产业链大部分产品的系统耦合起主导作用。由于该层面指标强调了钢铁产品生产时不可再生性资源的消耗,这一结果反映出生产过程的环境成本与经济收益间关系对产品耦合发展最重要。图3
新窗口打开|下载原图ZIP|生成PPT图3钢铁产业链资源-经济-环境耦合协调度
Figure 3Resource-economic-environment system coupling coordination degree of the steel industrial chain
图4
新窗口打开|下载原图ZIP|生成PPT图4钢铁产品主体的资源-经济-环境间耦合评价指标
Figure 4Resource-economic-environment system coupling evaluation indicators of steel products
从企业层面来看,中国铁矿、粗钢和家电制造企业的耦合协调度均在0.5以下(图3),系统耦合较弱。造成这一现象的原因主要与生产技术有关。传统企业生产技术中转炉炼钢等工艺能耗巨大,而受经济成本、管理机制等因素影响,有助提高生产效率、降低环境污染的新兴技术尚未完全在中国钢铁产业中普及[74]。与此同时,中国钢铁企业的集中度较低,也在一定程度上导致了企业规模和收益不成正比。图5的耦合指标雷达图显示,LPB在3个评价指标中影响最显著,表明资源-经济间关系推动了各环节企业的整体耦合,提升了系统的稳健性。
图5
新窗口打开|下载原图ZIP|生成PPT图5钢铁企业主体的资源-经济-环境间耦合评价指标
Figure 5Resource-economic-environment system coupling evaluation indicators of steel enterprises
相较于前两个层面,行业主体的系统耦合及耦合主导因素均有较大差异。结合图3及图6可以发现,上游行业(如矿石精炼)主要受资源-经济关系影响,中游的粗钢制造主要受环境-经济关系影响,下游行业更易受到资源-环境间关系主导。主导因素的不同反映了当前中国钢铁行业中各环节的发展重心有所差异。
图6
新窗口打开|下载原图ZIP|生成PPT图6钢铁行业主体的资源-经济-环境间耦合评价指标
Figure 6Resource-economic-environment system coupling evaluation indicators of the steel industry
3.2 废钢回收下中国钢铁产业链主体动态耦合的关键驱动政策识别
不同政策情景下主体随废钢回收率提高的耦合协调度变化如图7所示。产品主体而言,随废钢回收率的增加,图7d的实线变化最显著。上游产品(如球团铁)的耦合协调度首先从0.13处开始增加,但增长速率逐渐变缓,之后当到达0.41左右时开始小幅下降。下游产品(线材等)则始终保持增长态势,并在90%处陡增。由此可见,“去产能”政策对钢铁产品主体的资源-经济-环境耦合具有显著影响。尤其是当废钢回收率达到70%时,各产品的耦合协调度普遍具有明显提高。因此,对于产品主体而言,“去产能”政策有助于提高资源-经济-环境间耦合。图7
新窗口打开|下载原图ZIP|生成PPT图7不同政策情景下钢铁产业链主体的耦合协调度变化
Figure 7Change of coupling coordination degree of the steel industrial chain subjects under different policy scenarios
企业主体而言,图7短虚线表明“技术进步”政策对钢企的耦合协调度影响最显著。图7a中铁矿和钢企的耦合协调度随废钢回收率增加呈下降趋势,下游应用环节的耦合协调度则呈上升趋势。造成这一结果的原因主要与集中度有关。由于下游钢企集中度较低,当一些中小企业合并重组后,有助提高土地资源利用率,进而提升整体耦合协调度。尤其是当废钢回收率为60%时,该政策下企业主体的耦合协调度变化最明显。由此体现出“技术进步”政策对中国钢铁企业主体的显著驱动作用。
行业主体的耦合协调度变化如图7(长虚线)所示。结果表明,“突发事件”“去产能”和“提高资源利用率”对行业主体的耦合影响均在上下游呈现明显差异。其中,“提高资源利用率”政策下各行业主体的耦合变化最为显著,上下游行业的耦合协调度均随废钢回收率增加而增加,且下游的增长速度普遍优于上游(图7e)。当废钢回收率为90%时,行业主体的耦合协调度普遍达到最优,这一结果反映了该政策对行业主体的关键驱动作用,也体现了提高资源利用率对改善钢铁产业链整体耦合的重要性。今后在推动各行业发展时要着重考虑资源的整合利用。
4 结论与政策建议
4.1 结论
本文借助能值核算和生命周期评估方法构建了耦合评价模型,基于国内现状模拟了5种政策情景,讨论了废钢回收率下相关政策对中国钢铁产业链3类主体的动态耦合影响,以识别关键驱动政策。得到的结论如下:(1)整体而言,钢铁产业链的资源-经济-环境耦合较弱,下游环节普遍优于上游环节。为提高主体耦合,应首要改善资源-经济间关系,同时着力提高废钢回收率。
(2)钢铁产品中,烧结铁等上游主体耦合较差,主要原因与系统中经济-环境间发展水平有关。为改善当前现状,推行“去产能”政策并尽量提高废钢回收率至70%,最有助于强化钢铁产品耦合关系。
(3)企业主体中,铁矿企业和下游家电企业具有较弱的耦合关系,尤其是在资源-经济维度。为优化该层面主体耦合,可考虑推行“技术进步”政策并将废钢回收率提高到60%。
(4)行业主体的上游生产、下游家电和造船用钢行业耦合较差,回收行业的系统耦合最好。从子系统角度来看,资源-经济间关系是影响系统耦合的主导因素。最后,“提高资源利用率”的同时提高废钢回收率至90%,最有利于各行业“资源-经济-环境”间协调发展。
4.2 政策建议
为推动中国钢铁全产业链的可持续发展,基于上述研究结论,本文分别从产品、企业和行业3类主体视角提出政策建议:(1)对产品主体而言,为提高上游产品耦合,应着重关注对其影响最显著的经济-环境间关系。第一,为提高环境绩效,可考虑更新工艺残留物(覆盖层、尾矿、炉渣和废料)的回收及处置设备。第二,为增加经济收益,可通过推进高性能钢材的生产应用配套核心技术,提升和改进产品质量管控,尤其是矿石开采和精炼。
(2)对企业主体而言,钢企的合并重组,集中使用大型生产设施来替代分散的小型设施,可有助于增加土地资源利用率,进而提高资源-经济-环境间耦合。此外,提高产品收益也可改善资源-经济间关系。企业可考虑通过完善不同品种产品线,扩大国内外贸易等方法来挖掘潜在客户群。最后,基于识别出的关键驱动政策,相关企业可继续提高产品的生产技术,例如,碎石时尽量使用爆破法来替代高耗能的破碎法,推广高级工艺控制和优化系统等数字化工具来提升效率。
(3)对行业主体而言,上游相关行业可从降低从业人数,提高行业收益等角度来推动可持续发展。下游应用行业可考虑通过提高生产效率来降低资源的使用及消耗,进而降低从业人员在生产过程中的环境影响。最后,考虑到各行业耦合度在 “提高资源利用率”情景中均有显著提高,中国应尽快调整钢铁产业结构,提高废钢再利用率。例如,通过加大投资来帮助相关行业提高报废家电及报废轮船的拆解技术,进而提高优质废钢的产量,以实现废钢回收率的提高。
本文还存在着一定的局限性,例如有些生产过程的文献无法做到时间上的一致,这可能会造成部分产品或行业层面的输入数据不够准确。因此在未来的研究中,会考虑采用调研等方式解决这些不足。
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
[J]. ,
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J].
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J].
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J].
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J].
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J]. ,
URLPMID:33078048 [本文引用: 1]
[J]. ,
[本文引用: 1]
[J]. ,
URLPMID:33078048 [本文引用: 1]
[J]. ,
[本文引用: 1]
[J].
[本文引用: 1]
[D]. 镇江: 江苏大学,
[本文引用: 1]
[D]. Zhenjiang: Jiangsu University,
[本文引用: 1]
[D]. 蚌埠: 安徽财经大学,
[本文引用: 1]
[D]. Bengbu: Anhui University of Finance and Economics,
[本文引用: 1]
[D]. 哈尔滨: 哈尔滨商业大学,
[本文引用: 1]
[D]. Haerbin: Harbin University of Commerce,
[本文引用: 1]
[D]. 广州: 广东工业大学,
[本文引用: 1]
[D]. Guangzhou: Guangdong University of Technology,
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J].
[本文引用: 1]
[D]. 武汉: 华中师范大学,
[本文引用: 1]
[D]. Wuhan: Central China Normal University,
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J].
[本文引用: 1]
[J]. ,
URLPMID:33767524 [本文引用: 1]
[J]. ,
URLPMID:27330236 [本文引用: 1]
[J]. ,
[本文引用: 1]
[J].
[本文引用: 1]
[D]. 武汉: 中国地质大学,
[本文引用: 1]
[D]. Wuhan: China University of Geosciences,
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J]. ,
[本文引用: 1]
[D]. 北京: 中国地质大学,
[本文引用: 1]
[D]. Beijing: China University of Geosciences,
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J]. ,
DOI:10.1016/j.ecolecon.2017.01.014URLPMID:28674463 [本文引用: 1]
Degrowth has evolved within a decade from an activist movement into a multi-disciplinary academic paradigm. However, an overview taking stock of the peer-refereed degrowth literature is yet missing. Here, we review 91 articles that were published between 2006 and 2015. We find that the academic degrowth discourse occupies a small but expanding niche at the intersection of social and applied environmental sciences. The discourse is shaped by authors from high-income, mainly Mediterranean, countries. Until 2012, articles largely constitute conceptual essays endorsed by normative claims. More recently, degrowth has branched out into modelling, empirical assessments, and the study of concrete implementations. Authors tend to agree in that economic growth cannot be sustained ad infinitum on a resource constraint planet and that degrowth requires far reaching societal change. Whether degrowth should be considered as a collectively consented choice or an environmentally-imposed inevitability constitutes a major debate among degrowth thinkers. We argue that the academic discourse could benefit from rigid hypotheses testing through input-output modelling, material flow analysis, life-cycle assessments, or social surveys. By analyzing the potentials for non-market value creation and identifying concrete well-being benefits, the degrowth discourse could receive wider public support and contribute to a paradigmatic change in the social sciences.
[J]. ,
URLPMID:32952265 [本文引用: 1]
[J]. ,
DOI:10.1016/j.atmosenv.2020.117919URLPMID:33192157 [本文引用: 1]
This study examined spatial variations of precipitation accumulation and chemistry for six sites located on the West and East Coasts of the U.S., and one site each on the islands of Hawaii, Bermuda, and Luzon of the Philippines (specifically Manila). The nine coastal sites ranged widely in both mean annual precipitation accumulation, ranging from 40 cm (Mauna Loa, Hawaii) to 275 cm (Washington), and in terms of monthly profiles. The three island sites represented the extremes of differences in terms of chemical profiles, with Bermuda having the highest overall ion concentrations driven mainly by sea salt, Hawaii having the highest SO 4 2 - mass fractions due to the nearby influence of volcanic SO2 emissions and mid-tropospheric transport of anthropogenic pollution, and Manila exhibiting the highest concentration of non-marine ions ( NH 4 + non-sea salt [nss] SO 4 2 - , nss Ca(2+), NO 3 - , nss K(+), nss Na(+), nss Mg(2+)) linked to anthropogenic, biomass burning, and crustal emissions. The Manila site exhibited the most variability in composition throughout the year due to shifting wind directions and having diverse regional and local pollutant sources. In contrast to the three island sites, the North American continental sites exhibited less variability in precipitation composition with sea salt being the most abundant constituent followed by some combination of SO 4 2 - , NO 3 - , and NH 4 + . The mean-annual pH values ranged from 4.88 (South Carolina) to 5.40 (central California) with NH 4 + exhibiting the highest neutralization factors for all sites except Bermuda where dust tracer species (nss Ca(2+)) exhibited enhanced values. The results of this study highlight the sensitivity of wet deposition chemistry to regional considerations, elevation, time of year, and atmospheric circulations.
[J]. ,
[本文引用: 1]
[D]. 烟台: 山东工商学院,
[本文引用: 1]
[D]. Yantai: Shandong Institute of Business and Technology,
[本文引用: 1]
[J]. ,
URLPMID:33767524 [本文引用: 1]
[J]. ,
URLPMID:33078048 [本文引用: 1]
[J]. ,
DOI:10.1016/j.scitotenv.2017.09.184URL [本文引用: 1]
[J]. ,
URLPMID:29350217 [本文引用: 1]
[J]. ,
URLPMID:33078048 [本文引用: 1]
[J]. ,
URLPMID:11540423 [本文引用: 1]
[J]. ,
[本文引用: 1]
[J].
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J]. ,
DOI:10.1016/j.jclepro.2020.124658URLPMID:33078048 [本文引用: 1]
This paper examines the role of entrepreneurs in advancing sustainable lifestyles (SLs) to address climate change and social inequity. It is based on empirical study of eight U.S.-based sustainable entrepreneurs, focused on reducing material consumption. While business has a key role to play, many large companies are unwilling to promote SLs as this is contrary to their current business models which are focused on growing consumption and sales. This presents an opportunity for entrepreneurial companies with innovative business models who are passionate about sustainability and social impact, and better positioned to take risks and innovate. The research examined emerging business models for advancing SLs, key success factors and challenges reported by the entrepreneurs, the social and environmental impacts of their actions, and the future opportunities for scaling up such practices. The study found that entrepreneurs are well positioned to address simultaneously environmental and social issues, however, they lack resources to effectively measure these impacts to demonstrate an overall positive benefit and strengthen their value proposition. Promoting green attributes alone is not enough to change the behavior of most consumers. It is critically important to emphasize other benefits such as a product/service quality, time or cost savings, or social impact. Social media, formal and informal sustainability networks, IT, sustainability policies, and consumer awareness are key to developing viable business models and competitive strategies that are difficult to replicate. The study found that sustainable entrepreneurs often face
[J]. ,
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J].
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J]. ,
DOI:10.1016/j.ecolmodel.2016.03.017URL [本文引用: 2]
[J]. ,
[本文引用: 1]
[J]. ,
URLPMID:30629415 [本文引用: 1]
[J]. ,
URLPMID:30844258 [本文引用: 1]
[J]. ,
DOI:10.3390/su11082259URL [本文引用: 2]
[J]. ,
URLPMID:31775507 [本文引用: 1]
[J]. ,
[本文引用: 1]
[J]. ,
[本文引用: 1]
[D]. 杭州: 浙江大学,
[本文引用: 1]
[D]. Hangzhou: Zhejiang University,
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J].
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J].
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J].
[本文引用: 1]
[EB/OL]. (
URL [本文引用: 1]
[EB/OL]. (
URL [本文引用: 1]
[J]. ,
[本文引用: 1]
[EB/OL]. (
URL [本文引用: 1]
[EB/OL]. (
URL [本文引用: 1]
[EB/OL]. (
URL [本文引用: 1]
[EB/OL]. (
URL [本文引用: 1]
[EB/OL]. (
URL [本文引用: 1]
[EB/OL]. (
URL [本文引用: 1]
[J]. ,
[本文引用: 4]
[J]. ,
DOI:10.1016/j.jenvman.2014.11.032URLPMID:25555136 [本文引用: 2]
Bottom ash, the main solid output from municipal solid waste incineration (MSWI), has significant potential for the recovery of resources such as scrap metals and aggregates. The utilisation of these resources ideally enables natural resources to be saved. However, the quality of the recovered scrap metals may limit recycling potential, and the utilisation of aggregates may cause the release of toxic substances into the natural environment through leaching. A life cycle assessment (LCA) was applied to a full-scale MSWI bottom ash management and recovery system to identify environmental breakeven points beyond which the burdens of the recovery processes outweigh the environmental benefits from valorising metals and mineral aggregates. Experimental data for the quantity and quality of individual material fractions were used as a basis for LCA modelling. For the aggregates, three disposal routes were compared: landfilling, road sub-base and aggregate in concrete, while specific leaching data were used as the basis for evaluating toxic impacts. The recovery and recycling of aluminium, ferrous, stainless steel and copper scrap were considered, and the importance of aluminium scrap quality, choice of marginal energy technologies and substitution rates between primary and secondary aluminium, stainless steel and ferrous products, were assessed and discussed. The modelling resulted in burdens to toxic impacts associated with metal recycling and leaching from aggregates during utilisation, while large savings were obtained in terms of non-toxic impacts. However, by varying the substitution rate for aluminium recycling between 0.35 and 0.05 (on the basis of aluminium scrap and secondary aluminium alloy market value), it was found that the current recovery system might reach a breakeven point between the benefits of recycling and energy expended on sorting and upgrading the scrap.
[J]. ,
[本文引用: 2]
[J]. ,
[本文引用: 2]
[J]. ,
[本文引用: 1]
[J]. ,
[本文引用: 2]
[J]. ,
[本文引用: 2]
[J]. ,
DOI:10.1016/j.atmosenv.2020.117919URLPMID:33192157 [本文引用: 1]
This study examined spatial variations of precipitation accumulation and chemistry for six sites located on the West and East Coasts of the U.S., and one site each on the islands of Hawaii, Bermuda, and Luzon of the Philippines (specifically Manila). The nine coastal sites ranged widely in both mean annual precipitation accumulation, ranging from 40 cm (Mauna Loa, Hawaii) to 275 cm (Washington), and in terms of monthly profiles. The three island sites represented the extremes of differences in terms of chemical profiles, with Bermuda having the highest overall ion concentrations driven mainly by sea salt, Hawaii having the highest SO 4 2 - mass fractions due to the nearby influence of volcanic SO2 emissions and mid-tropospheric transport of anthropogenic pollution, and Manila exhibiting the highest concentration of non-marine ions ( NH 4 + non-sea salt [nss] SO 4 2 - , nss Ca(2+), NO 3 - , nss K(+), nss Na(+), nss Mg(2+)) linked to anthropogenic, biomass burning, and crustal emissions. The Manila site exhibited the most variability in composition throughout the year due to shifting wind directions and having diverse regional and local pollutant sources. In contrast to the three island sites, the North American continental sites exhibited less variability in precipitation composition with sea salt being the most abundant constituent followed by some combination of SO 4 2 - , NO 3 - , and NH 4 + . The mean-annual pH values ranged from 4.88 (South Carolina) to 5.40 (central California) with NH 4 + exhibiting the highest neutralization factors for all sites except Bermuda where dust tracer species (nss Ca(2+)) exhibited enhanced values. The results of this study highlight the sensitivity of wet deposition chemistry to regional considerations, elevation, time of year, and atmospheric circulations.
[J]. ,
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J].
[本文引用: 1]