Impacts of reclaimed water recharge to a river channel on ambient water bodies: A case study of the Chaobai River in Beijing
JIANG Ruixue,1,2, HAN Dongmei,1,2, SONG Xianfang1,2, YANG Lihu1, LI Binghua3通讯作者:
收稿日期:2019-12-31修回日期:2020-05-26网络出版日期:2020-12-25
基金资助: |
Received:2019-12-31Revised:2020-05-26Online:2020-12-25
作者简介 About authors
姜瑞雪,女,安徽天长人,硕士生,研究方向为再生水利用与地下水补给过程。E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (12205KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
姜瑞雪, 韩冬梅, 宋献方, 杨丽虎, 李炳华. 再生水补给河道周边水体特征——以北京潮白河顺义段为例. 资源科学[J], 2020, 42(12): 2419-2433 doi:10.18402/resci.2020.12.13
JIANG Ruixue, HAN Dongmei, SONG Xianfang, YANG Lihu, LI Binghua.
1 引言
随着人口增长和社会经济的发展,水资源需求不断增长,全世界都面临着供水的挑战,尤其是干旱半干旱地区。再生水作为一种非常规水资源潜力巨大,已被广泛用于灌溉、工业和城市用水[1,2]。北京是世界上缺水最为严重的特大城市之一,2004年雨水和再生水共供水2.6亿m3,占总供水量的6%[3];2019年再生水年利用量已达11.5亿m3,占总供水量的27.6%[4],其中93%被作为生态用水,即用于河湖补水和环卫绿化[5]。但由于再生水是经过一定处理的污水,污染物本底值较高,长期使用再生水补给河道,可能会对地表水及周边地下水环境产生一定的影响,如地表水富营养化、地下水化学组分改变等[6,7,8]。研究再生水补给河道周边水体的特征,对提高再生水利用率和管理再生水补给的河道尤为重要。目前相关研究多关注再生水补给河道的地表水水质变化及其影响因素,尤其是水体富营养化方面。研究表明,溶解氧和pH值与藻类的生长密切相关,可用于简便指示水华的爆发[9];氮、磷含量高是水体富营养化和水华爆发的根本原因,应从源头上降低氮磷浓度以改善水质[10,11];氮、磷含量变化受藻类生长影响,河道中发生反硝化作用和藻类光合作用促使地表水pH值沿河流流向升高[12]。再生水补给河道对周围地下水影响的研究集中在对渗滤过程和水质变化的分析上。有****研究了再生水入渗过程中的水文地球化学作用和再生水补给对地下水水质的影响[13];潮白河流域北部的地下水循环受到了人工开发利用的较大影响,现代河道附近埋深小于30 m的浅层地下水受到地面污染影响[14];在接受再生水补给的潮白河怀柔段,所有埋深小于80 m的地下水都受到了再生水入渗的影响,再生水入渗过程中发生了阳离子交换吸附作用、硝化和反硝化反应[15,16];室内土柱实验和监测数据验证了潮白河顺义段再生水入渗过程中发生了阳离子交换吸附作用,部分硝酸盐氮和亚硝酸盐氮被去除;地下水盐度升高,总硬度降低[17]。然而较少有周边水体水质对长期受水的响应及其变化原因的研究。
本文研究目的是在分析再生水、地表水和地下水的水动力和水质时空变化的基础上,讨论再生水补给潮白河与周边水体发生水力联系、造成水质变化的原因,提出再生水补给河道周边不同水体之间相互作用的概念模型,综合分析再生水补给河道对周边水体的环境影响,为后续的地表水-地下水耦合数值模拟提供基础。结果将有助于提升再生水利用地区地表水、地下水的保护和管理,丰富对再生水利用带来的水环境问题的科学认识,为类似的再生水使用和水资源可持续利用提供科学参考。
2 材料与方法
2.1 研究区概况
潮白河是流经北京的两大河流之一,其水资源的开发利用对本地区的经济发展举足轻重[18]。为缓解潮白河供水短缺问题,恢复潮白河向阳闸以下河段生态环境,北京市“引温济潮”水资源利用工程于2007年底建成通水[3]。该工程使用膜生物反应器(MBR)工艺处理温榆河水,将水经暗涵调入减河,最终流入潮白河。再生水处理量在高温季节约为6万m3/天,低温季节约2万m3/天[19]。自工程实施至2017年,累计引水量2.3亿m3;其中,2015年引水2725万m3,2016年引水2374万m3,2017年引水2894万m3[20]。2007—2011年底,工程一期的常年受水河道为减河和潮白河的土坝至河南村橡胶坝河段,向阳闸至土坝段每年5月和10月间歇受水;2012年工程二期实施,常年受水河道增加了从河南村橡胶坝到苏庄橡胶坝的河段。研究区(图1a)位于北京市东北部的顺义区,属于暖温带半湿润季风气候,年平均气温11.5℃,年均降雨量610 mm,降水主要集中在6—9月。城北减河为人工型河道,河底为自然淤泥,两侧为砖砌边坡,河长约4 km,宽约50~90 m,平均水深1.33 m,平均流速0.057 m/s,平均流量4.5 m3/s,蓄水量51万m3。研究区内的潮白河为自然河道,长15 km,宽度大部分在200~400 m之间,平均水深1.79 m,平均流速0.051 m/s,平均流量16.8 m3/s,蓄水量891万m3[20]。
图1
新窗口打开|下载原图ZIP|生成PPT图1研究区位置、采样点分布图(a)及地质剖面图(b)
注:地质剖面图根据北京市水科学技术研究院顺义钻孔地质柱状图资料绘制。
Figure 1Location of the study area, sampling sites (a) and geologic cross-sections (b)
研究区处于潮白河冲洪积扇的中下段,由钻孔资料可知(图1b),潮白河北段附近地层以卵砾石为主,夹有粉质粘土、细砂;中段为砂层、卵砾石和粉质粘土交互;南段以粉质粘土为主,夹有砂层和卵砾石;自北向南含水层厚度减小,层数变多,透水性逐渐变差。本文所述浅层含水层指30 m深度范围内的含水层,以细砂和卵砾石为主,自北向南粉质粘土层逐渐变厚。浅层地下水自西南向东北方向流动,垂向上自上而下渗流。2017年浅层地下水(<30 m埋深)水质受再生水影响的范围见图1a[20]。
2.2 数据来源
为调查研究区内不同水体的水位水质特征和成因,2015—2017年监测了研究区内再生水、地表水和浅层地下水(<30 m埋深)的水质和水位动态数据。降水量数据来自中国气象数据网中国地面气候资料月值数据集,使用距研究区最近的北京密云站(距离约30 km)降水量地面监测值[21]。采样点包括再生水深度处理工程出水监测点(RW)、地表水监测点9个(S01~S09)、浅层地下水监测点14个(G01~G14)(图1a)。水质每季度监测一次,监测指标包括钾离子(K+)、钠离子(Na+)、钙离子(Ca2+)、镁离子(Mg2+)、硫酸根离子(SO42-)、碳酸根离子(CO32-)、重碳酸根离子(HCO3-)、氯离子(Cl-)、硝酸盐氮(NO3-N)、亚硝酸盐氮(NO2-N)、氨氮(NH4-N)、pH、溶解性总固体(TDS)、总硬度(TH)、总氮(TN)、总磷(TP)、高锰酸钾指数(CODMn)、溶解氧(DO)和五日生化需氧量(BOD5)。地下水监测点同时监测水位,每月监测一次。由于水井堵塞等原因,部分月份的水位数据缺失。
pH和DO使用WTW多参数便携式水质分析仪测定,其他指标按《水和废水监测分析方法》[22]中的分析方法进行测试。所有测试均在北京市理化分析测试中心进行。经阴阳离子平衡的检查,删除了相对误差(E)超过±15%的水样,选择使用的12个再生水水样、103个地表水水样和140个浅层地下水水样E<±15%,其中59.2%的水样E<±5%。
2.3 分析方法
运用数理统计方法和Piper三线图分析研究区不同水体的水化学组成与类型特征。使用单因子指数法评价不同水体的水质,即用水样的监测数据与水质标准对比,对水样的水质参数进行分类,取水质指标最差的结果为评价结果。3 结果与分析
3.1 地下水水位分布特征
研究区浅层地下水自西南向东北方向流动,南部监测井水位明显高于北部(图2),落差最大达到25.6 m,水力梯度最大达5‰。北部A-A’断面地层层位少,砾石层厚,易于接受入渗补给。G01、G02、G03水位相近,远低于其他监测井水位,存在明显季节变化,平均水位3.7 m,年变幅0.7~3.1 m(图2a)。图2
新窗口打开|下载原图ZIP|生成PPT图22015—2017年浅层地下水水位变化
Figure 2Water levels of shallow groundwater, 2015-2017
自北向南地层层位变多,粘土层增加,渗透性变差。B-B’断面G04、G05、G06水位高低交替,有一定的季节变化,年变幅0.4~2.2 m(图2b)。河道东侧G07自2015年6月后水位下降,明显低于河道西侧,水位年变幅1.4~4.0 m。减河G08水位存在季节变化,年变幅不超过0.7 m。
C-C’断面粘土层厚且更为连续,含水层间垂向上的水力联系不密切,监测井距离河道越近水位越高(图2c)。G09和G10的水位年变幅不超过0.5 m,水位基本稳定;G11水位有逐年下降的趋势,年变幅在0.5~1.4 m内;G12水位有逐渐上升的趋势,年变幅0.4~0.8 m;G13水位显著高于G14,两井间水位落差最大达2.3 m;年变幅0.5~1.5 m,存在季节变化。
3.2 不同水体水化学特征
3.2.1 水化学组成再生水、地表水和浅层地下水pH值介于7.1~9.5之间(表1),整体呈弱碱性,变异系数小。浅层地下水TDS平均值略低于再生水和地表水,但变异系数较大。按TH值分类,再生水属于微硬水(150~300 mg/L);地表水介于软水(75~150 mg/L)和微硬水之间;浅层地下水介于软水和极硬水(>450 mg/L)之间。浅层地下水TH平均值高于再生水和地表水,变异系数较大。
Table 1
表1
表1再生水、地表水和浅层地下水水样的水化学参数统计
Table 1
pH | TDS /(mg/L) | TH /(mg/L) | K+ /(mg/L) | Na+ /(mg/L) | Ca2+ /(mg/L) | Mg2+ /(mg/L) | Cl- /(mg/L) | SO42- /(mg/L) | HCO3- /(mg/L) | |
---|---|---|---|---|---|---|---|---|---|---|
再生水 | ||||||||||
极小值 | 7.4 | 407.0 | 207.0 | 2.4 | 54.4 | 45.2 | 18.4 | 69.5 | 12.2 | 164.0 |
极大值 | 8.4 | 624.0 | 306.0 | 20.3 | 118.0 | 87.4 | 24.6 | 122.0 | 150.0 | 299.0 |
均值 | 8.0 | 566.2 | 242.8 | 13.5 | 87.6 | 60.7 | 22.0 | 91.7 | 96.9 | 225.0 |
标准差 | 0.2 | 61.0 | 24.3 | 4.2 | 15.5 | 10.5 | 2.0 | 14.4 | 36.8 | 39.1 |
变异系数/% | 3.1 | 10.8 | 10.0 | 30.9 | 17.7 | 17.3 | 9.1 | 15.7 | 37.9 | 17.4 |
地表水 | ||||||||||
极小值 | 7.5 | 235.0 | 95.8 | 1.8 | 22.9 | 14.7 | 10.8 | 27.0 | 45.7 | 73.2 |
极大值 | 9.5 | 639.0 | 287.0 | 20.3 | 125.0 | 84.2 | 29.5 | 113.0 | 171.0 | 336.0 |
均值 | 8.2 | 485.5 | 189.0 | 13.0 | 80.0 | 41.3 | 20.0 | 83.0 | 98.8 | 193.9 |
标准差 | 0.3 | 94.0 | 48.9 | 3.8 | 18.8 | 16.8 | 3.6 | 15.4 | 22.3 | 53.4 |
变异系数/% | 4.0 | 19.4 | 25.9 | 29.6 | 23.5 | 40.5 | 18.0 | 18.5 | 22.5 | 27.6 |
浅层地下水 | ||||||||||
极小值 | 7.1 | 210.0 | 50.9 | 0.8 | 35.1 | 8.5 | 7.9 | 50.2 | 0.1 | 36.8 |
极大值 | 8.8 | 1020.0 | 683.0 | 19.2 | 120.0 | 184.0 | 52.4 | 130.0 | 186.0 | 554.0 |
均值 | 7.9 | 455.2 | 231.5 | 3.7 | 65.2 | 56.0 | 21.7 | 84.5 | 53.7 | 269.7 |
标准差 | 0.4 | 131.3 | 105.6 | 3.4 | 16.9 | 29.5 | 8.8 | 16.0 | 38.3 | 104.4 |
变异系数/% | 4.7 | 28.8 | 45.6 | 92.8 | 25.9 | 52.7 | 40.6 | 19.0 | 71.3 | 38.7 |
新窗口打开|下载CSV
再生水、地表水和浅层地下水阳离子浓度关系均为Na+>Ca2+>Mg2+>K+,Na+和Ca2+共同构成了50%以上的阳离子;阴离子浓度关系存在差异,再生水和地表水中HCO3->SO42->Cl-,浅层地下水中HCO3->Cl->SO42-,HCO3-优势明显,占阴离子的40%~50%。再生水和地表水阴阳离子变异系数小,浅层地下水阴阳离子变异系数较大。
3.2.2 水化学类型
Piper三线图可以展示水中的离子组成,反映水体的水化学特征[23](图3)。再生水的水化学特征长期稳定,兼有HCO3·Cl-Na·Ca型和HCO3·SO4·Cl-Na·Ca型。阳离子中Na++K+含量较高,各阴离子含量相对平均。
图3
新窗口打开|下载原图ZIP|生成PPT图3再生水、地表水和浅层地下水的水化学三线图
注:浓度单位为每升水的毫克当量百分数。
Figure 3Piper diagram of reclaimed water, surface water and shallow groundwater
研究区内地表水化学类型分布相对集中,存在10种类型,主要为HCO3·SO4·Cl-Na·Ca型、HCO3·Cl-Na·Ca型、HCO3·SO4·Cl-Na型和HCO3·SO4·Cl-Na·Mg型,分别占33.0%、20.4%、18.4%、11.7%。空间上,减河段水化学类型以HCO3·Cl-Na·Ca型和HCO3·SO4·Cl-Na·Ca型为主,与再生水化学类型相似。在进入潮白河以后,水化学类型转变为以HCO3·SO4·Cl-Na·Ca型和HCO3·SO4·Cl-Na型为主。
地下水化学类型主要包括HCO3·Cl-Na·Ca型、HCO3-Na·Ca·Mg型、HCO3·Cl-Na型、HCO3-Na·Ca型和HCO3-Ca·Mg型,分别占36.4%、12.9%、12.9%、12.1%、11.4%。从空间上看,不同断面的地下水化学类型分散,但阴离子的构成在间歇受水区G01、G02、G03表现为HCO3-占主导,而常年受水区为HCO3-和Cl-共同主导。
3.3 不同水体水质的时空变化特征
3.3.1 再生水水质特征“引温济潮”工程要求将劣于V类水质的温榆河水净化达到地表水Ⅲ类水质标准,再调至潮白河[3]。实际工程设计的出水标准除TN外均符合地表水Ⅲ类水质标准,对TN的要求低于Ⅳ类水(表2)。本文中12个再生水水样有8个未达到设计出水水质要求,超标率66.7%。其中约50%的水样TN、TP、 NO3-N超标,DO和NH4-N分别出现一次超标,pH、CODMn和BOD5均符合出水标准(图4)。
Table 2
表2
表2再生水、地表水和地下水的部分水质标准
Table 2
指标 | 单位 | 工程设计出水水质 | 地表水环境质量标准(GB 3838—2002) | 地下水质量标准(GB/T 14848—2017) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Ⅲ类 | Ⅳ类 | Ⅰ类 | Ⅱ类 | Ⅲ类 | Ⅳ类 | Ⅴ类 | ||||
pH | 无量纲 | 6~9 | 6~9 | 6~9 | 6.5~8.5 | 5.5~6.5,8.5~9 | <5.5,>9 | |||
DO | mg/L | ≥5 | ≥5 | ≥3 | — | — | — | — | — | |
CODMn | mg/L | ≤6 | ≤6 | ≤10 | ≤1 | ≤2 | ≤3 | ≤10 | ≤10 | |
BOD5 | mg/L | ≤4 | ≤4 | ≤6 | — | — | — | — | — | |
TP | mg/L | ≤0.2 | ≤0.2 | ≤0.3 | — | — | — | — | — | |
TN | mg/L | ≤15 | ≤1 | ≤1.5 | — | — | — | — | — | |
TH | mg/L | — | — | — | ≤150 | ≤300 | ≤450 | ≤650 | >650 | |
TDS | mg/L | — | — | — | ≤300 | ≤500 | ≤1000 | ≤2000 | >2000 | |
NO3-N | mg/L | ≤10 | ≤10 | — | ≤2.0 | ≤5.0 | ≤20 | ≤30 | >30 | |
NO2-N | mg/L | — | — | — | ≤0.01 | ≤0.1 | ≤1 | ≤4.8 | >4.8 | |
NH4-N | mg/L | ≤1 | ≤1 | ≤1.5 | ≤0.02 | ≤0.1 | ≤0.5 | ≤1.5 | >1.5 | |
SO42- | mg/L | — | — | — | ≤50 | ≤150 | ≤250 | ≤350 | >350 | |
Cl- | mg/L | — | — | — | ≤50 | ≤150 | ≤250 | ≤350 | >350 | |
Na+ | mg/L | — | — | — | ≤100 | ≤150 | ≤200 | ≤400 | >400 |
新窗口打开|下载CSV
图4
新窗口打开|下载原图ZIP|生成PPT图42015—2017年再生水水质时间变化
Figure 4Temporal variations of reclaimed water quality, 2015-2017
3.3.2 地表水水质及时空变化特征
根据北京市水体功能区划要求,潮白河下段(向阳闸到牛牧屯)属于人体非直接接触的娱乐用水区,应达到GB 3838—2002《地表水环境质量标准》中Ⅳ类水质要求[24]。对103个地表水水样进行水质评价,TN超标99次,TP超标15次,CODMn和BOD5均超标13次,NH4-N超标10次,DO超标3次,pH超标2次。TN是最主要的影响地表水水质的指标,所有监测点均长期存在TN超标,平均高出水质标准4.2倍,最严重时超出16倍。
2015—2017年地表水水质的时间变化如图5。除BOD5外,各项指标值均逐渐趋于稳定,超标项也有接近Ⅳ类水质标准要求的趋势。pH值随时间变化小,夏季(6—8月)偏高,仅两次超标出现在2017年6月的S06和S09。TP含量在2016年前变幅大,多有超标,低值多出现在夏季。TN含量的变幅和超标程度均随时间减小,夏(6—8月)秋(9—11月)季低于冬(12月—次年2月)春(3—5月)季。NH4-N含量整体在2015年6月后稳定在水质标准限值以下,变化很小。NO3-N含量随时间变化大,冬季高。DO值夏季低,最低值出现在2015年6月的S09。CODMn和BOD5表现为夏秋季高、冬春季低。
图5
新窗口打开|下载原图ZIP|生成PPT图52015—2017年地表水水质时间变化
Figure 5Temporal variations of surface water quality, 2015-2017
地表水水质沿河流流向的变化如图6所示。pH值沿程有增加趋势。DO值沿程趋于平稳,S04到S06有下降趋势。CODMn从RW到S08沿程升高,变幅增大,在S09处下降。BOD5从RW到S08沿程小幅增大,至S09略有下降。TN、TP、NO3-N含量沿程下降趋势明显且变化范围减小。NH4-N从RW到S03明显升高,S03至S07逐渐下降,到S09处趋于平缓。S01的DO、TP、NH4-N、BOD5含量与潮减河口S04处相近;TP和NO3-N低于S04;CODMn高于S04,但变幅很大。
图6
新窗口打开|下载原图ZIP|生成PPT图6地表水水质沿程变化
注:箱线图中箱体的上、下线为数据的上下四分位数,中间的横线为中位数;箱体外的上下触须代表数据的正常范围;实心圆点为平均值;空心方块表示异常值。X轴下方箭头表示河流流向。
Figure 6Variations of surface water quality along the river
3.3.3 周边浅层地下水水质及时空变化特征
研究区的地下水一般用作饮用水源和灌溉,为评估研究区地下水的水质情况,以《地下水质量标准》(GB/T 14848—2017)为参考(表2),用单因子指标评价法对研究区地下水水质进行分类。结果显示140个地下水水样中14个属于Ⅱ类,64个属于Ⅲ类,42个属于Ⅳ类,20个属于V类。总体上研究区浅层地下水可作为农业和部分工业用水,或处理后作为生活饮用水。研究区北部水质好于南部,沿地下水流向水质有变好的趋势(图7)。
图7
新窗口打开|下载原图ZIP|生成PPT图7浅层地下水水质空间变化
Figure 7Spatial variations of shallow groundwater quality
20个V类地下水水样的超标项为NH4-N(19个),最高超标1.2倍;TH(1个)。42个Ⅳ类地下水样品中,高于Ⅲ类标准的指标包括NH4-N(36个),最高值高于标准2倍;CODMn(11个),最高值高于标准1.1倍;pH(4个);TH(2个)。NH4-N是最主要的影响研究区浅层地下水水质的指标。
从空间分布上看,NH4-N浓度下游高于上游(图8a),在潮白河下游沿地下水流向浓度降低;NO3-N在减河G08和向阳闸附近G01、G02、G03地下水中含量高(图8b);NO2-N浓度很低,没有明显的空间变化特征(图8c)。地下水中三氮的含量随时间没有明显的变化规律。
图 8
新窗口打开|下载原图ZIP|生成PPT图 8浅层地下水中三氮含量变化
注:箱线图中箱体的上、下线为数据的上下四分位数,中间的横线为中位数;箱体外的上下触须代表数据的正常范围;实心圆点为平均值;空心方块表示异常值。
Figure 8Variations of nitrogen concentration in shallow groundwater
4 讨论
4.1 地表水水质时空变化原因
再生水中营养物质丰富,水流从减河进入潮白河后水面开阔,流速减慢,为藻类生长提供了有利条件。藻类的光合作用吸收水中的CO2,导致pH升高[25];消耗地表水中的氮、磷,释放O2。夏季藻类生长强于冬季,故地表水TN、TP含量降低、pH值升高的现象在夏季更明显。河道沿程右岸有生活污水排放,生活污水中含有较多的有机物(如淀粉、糖、蛋白质等)和氮、磷等无机物,有机污染物在被微生物分解的过程中消耗水中的O2,且潮白河流速慢,水动力条件差,导致河道沿程BOD5、CODMn升高,DO降低。夏季降雨较多,有一定的稀释作用。
水中氧气的减少促进了反硝化作用,使得地表水水质发生变化[26]。反硝化作用如下[27]:
NO3-和H+在反硝化过程中被消耗,浮游植物也同化吸收了一部分NO3-N,而NO3-N是最主要的无机氮存在形式[26],故地表水中NO3-N和TN含量降低,pH值升高。河流流速的减慢及温度的上升都会使得反硝化作用增强[28],因此在潮白河段以及夏季时地表水中反硝化作用更为强烈,对水质的影响更大。
综上,河道的水动力条件、藻类的光合作用、地表水的反硝化作用、周边生活污水的排放共同影响了地表水的水质时空变化。在前人的研究中也得到了类似的结论[12,29]。
4.2 周边浅层地下水潜在的污染因子分析
地下水的化学成分是在与岩石发生化学反应,与其他圈层交换水量和化学成分的过程中形成的,并受到人类活动影响。再生水补给河道后周边地下水的水化学类型发生了转变[30],虽然仍与再生水、地表水存在差异,但都以HCO3·Cl-Na·Ca型为主。河水入渗过程中发生了阳离子交换吸附作用,尤其是K+和Ca2+之间的置换[17],使得浅层地下水中K+和Na+浓度高于再生水和地表水,而Ca2+和Mg2+较低。但到补水后期此作用逐渐减弱,混合作用成为影响该地区地下水化学特征的主导因素[30]。再生水的Cl-浓度高于周边浅层地下水中的初始浓度(2007—2008年监测值),且Cl-在地下水中保守、易于迁移,可以作为标识周边地下水是否受到再生水影响的指标。受水后浅层地下水中的Cl-浓度明显升高(表3);除G12监测井外,其他监测井均受到了再生水的影响。其中G04与河道中心垂直距离最远,约425 m。
Table 3
表3
表3浅层地下水中氯离子初始浓度与2015—2017年监测值
Table 3
G01 | G02 | G03 | G04 | G05 | G06 | G07 | G09 | G10 | G11 | G12 | G13 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2015—2017年监测值/(mg/L) | 极大值 | 73.8 | 79.0 | 100.0 | 130.0 | 120.0 | 114.0 | 94.2 | 108.0 | 108.0 | 86.9 | 110.0 | 94.8 |
极小值 | 50.2 | 63.8 | 59.0 | 73.6 | 94.7 | 76.4 | 76.8 | 85.4 | 84.6 | 72.3 | 67.6 | 74.0 | |
平均值 | 61.8 | 70.2 | 71.0 | 106.6 | 104.5 | 86.4 | 88.2 | 97.6 | 94.4 | 80.7 | 88.5 | 86.6 | |
初始浓度[20]/(mg/L) | 27.9 | 28.7 | 40.6 | 75.7 | 66.6 | 46.3 | 68.9 | 31.4 | 28.5 | 23.9 | 140.8 | 23.5 |
新窗口打开|下载CSV
受水后浅层地下水中NO3-N和NH4-N含量降低(表4),说明再生水的补给起到了一定的净化水质作用。浅层地下水中NO3-N含量远低于附近地表水,这是因为氮在河流-含水层界面可以通过反硝化作用被有效的吸收转化去除,尤其是NO3-N[31,32,33]。研究区北部地层以砂砾石为主、层数少、水位低,相比地层层数多、粘土层厚、水位高的南部,对污染物的净化能力较差,易于保持氧化环境,有利于硝化反应的发生(方程(2)-(3)),故减河G08和向阳闸附近G01、G02、G03浅层地下水中NO3-N含量偏高。
Table 4
表4
表4部分地表水和浅层地下水的三氮含量
Table 4
NO3-N/ (mg/L) | NO2-N/ (mg/L) | NH4-N/ (mg/L) | ||
---|---|---|---|---|
受水前[17] | G06 | 0.50 | 0.013 | 0.80 |
受水后 | S01 | 2.69 | 0.05 | 0.38 |
G04 | 0.03 | 0.003 | 0.07 | |
G05 | 0.03 | 0.004 | 0.17 | |
G06 | 0.34 | 0.02 | 0.23 | |
G07 | 0.05 | 0.005 | 0.35 | |
RW | 11.09 | 0.05 | 0.73 | |
G08 | 3.49 | 0.06 | 0.24 | |
S06 | 1.98 | 0.10 | 0.42 | |
G09 | 0.03 | 0.02 | 2.21 | |
G10 | 0.03 | 0.003 | 1.14 | |
G11 | 0.06 | 0.05 | 1.32 | |
G12 | 0.26 | 0.03 | 0.71 | |
S07 | 1.97 | 0.07 | 0.53 | |
G13 | 0.03 | 0.01 | 1.82 | |
G14 | 0.18 | 0.10 | 0.44 |
新窗口打开|下载CSV
浅层地下水中的NH4-N含量在部分监测点高于附近地表水,可能与受水前地下水中NH4-N含量高有关(表4),也可能来自土壤中NH4-N的解吸附。潮白河下游附近地下水中的NH4-N含量高于上游,可能是由于南部地层的还原环境使得硝酸盐异化还原为铵盐,增加了NH4-N的含量[34]。NO2-N作为硝化反应与反硝化反应的中间产物,受水前后均很低,没有显著变化的特征。研究区附近以林地和耕地为主,土壤氮素和灌溉施肥输入也可能是地下水中氮的来源[20]。
4.3 潮白河顺义段再生水补给河道的概念模型及存在问题分析
潮白河顺义段再生水补给河道的概念模型如图9所示。研究区的河道在引水工程实施前处于干涸状态,工程实施后再生水补给至河道,成为地表水最主要的补给来源,此外地表水还受大气降水补给。地表水的主要排泄方式为河流渗漏。根据区域水均衡计算,自工程实施至2017年,河流累积渗漏量17063万m3;其中2015年渗漏量2477万m3,2016年渗漏量2121万m3,2017年渗漏量2661万m3[20]。由于河道渗滤系统的堵塞,河道渗透性逐渐变差[35]。地下水的主要补给来源有大气降水入渗、山前侧渗、河水入渗和灌溉入渗等;排泄方式主要是人为开采,由于长期超采地下水,向阳闸以北的地下水水位下降,形成地下水漏斗[36]。2014年后,周边地下水基本达到采补平衡,地下水水位仅存在丰枯季节变化[20]。图9
新窗口打开|下载原图ZIP|生成PPT图9再生水补给潮白河河道概念模型
Figure 9Conceptual model of reclaimed water recharge to the Chaobai River
受污水处理工艺限制,再生水相比自然水体通常含有较高的盐、氮、磷、重金属和有机污染物等。利用再生水补给河道,缓解了水资源缺乏问题的同时,也对地表水和周边地下水水质产生了一定影响。
再生水补给河道的地表水氮、磷超标,藻类大量繁殖,水体富营养化,极易出现水华[11,37],高温季节水质总体优于低温季节[12,38]。pH值升高可能对水域中的生物活性产生影响[39,40]。同时,再生水补给导致了地表水中内分泌干扰物(EDCs)增加[41]、磺胺和磺胺抗性基因的传播和富集[42],这类有机污染物即使在极低浓度下也会对人体健康和生态系统产生危害[43,44]。
周边地下水受再生水河道渗漏补给的影响,盐度增加、总硬度降低、NO3-N含量较低[17],氨氮超标是影响浅层地下水水质的主要原因。地表水入渗过程中发生了碳酸盐、硫酸盐和硅酸盐的溶解作用以及阳离子交换吸附作用[45],地下水与渗漏水体混合,水化学类型逐渐转变为与再生水、地表水相似[30]。据估算,2017年再生水补给河道对浅层地下水水质的影响范围约29 km2[20](图1a)。有机污染物也随着河水入渗进入了地下水。研究区的潜水层和承压含水层中均检测到了EDCs和两种典型的磺胺类抗生素[46,47]。在潮白河周围360 m范围内,EDCs已经污染到了80 m深的含水层[47],影响了微生物的多样性。随着地层深度及与河道距离的增加,EDCs监测到的频率和浓度降低;冬季和没有再生水补给时两种污染物的污染风险均减小[47,48]。
5 结论
本文对潮白河顺义段的再生水、地表水和周边浅层地下水的特征进行了分析,讨论了再生水补给河道的地表水水质特征、时空变化和存在问题,评价了浅层地下水水质并对污染来源进行探讨,提出了再生水补给河道的概念模型,得到主要结论如下:(1)再生水补给潮白河后,地表水存在富营养化问题。TN在所有监测点长期超标,最严重时超出地表水Ⅳ类水质标准16倍。河流沿程TN、NO3-N、TP含量降低、pH值升高,同一监测点在夏季TN、TP含量更低,pH更高,与藻类的光合作用和地表水中的反硝化作用等因素有关。
(2)周边地下水受到河道渗漏补给,2015—2017年年均河水入渗量2420万m3。长期补给下,周边地下水水量稳定,已达到采补平衡,水位仅存在季节变化。浅层地下水中阳离子浓度Na+>Ca2+>Mg2+>K+,阴离子浓度HCO3–>Cl–>SO42–,与再生水和地表水存在一定差异,和入渗过程中发生了阳离子交换吸附作用及混合作用有关;水化学类型与再生水相似,主要为HCO3·Cl-Na·Ca型。地下水盐度升高,再生水河道渗漏已经影响到了距离河道中心425 m的浅层地下水水质。140个浅层地下水水样中120个符合地下水Ⅳ类及以上标准,可用于工农业用水;19个水样NH4-N超标,主要出现在河南村橡胶坝上下游附近,氮素可能来自周边林地和耕地的土壤氮素以及施肥灌溉过程中的输入。沿地下水流向水质有变好趋势。
(3)再生水补给河道的概念模型表明,再生水长期补给河道,地表水最显著的问题是富营养化和pH值沿程上升;周边地下水水量稳定,水质未受明显影响。再生水中的抗生素、EDCs等有机污染物使得研究区水体存在一定安全隐患。
再生水补给潮白河缓解了水资源短缺问题,也对地表水和周边地下水水质产生了不容忽视的影响。提升污水处理工艺、进行水生生物调控、增强水动力条件、限制污水排放入河等措施有助于改善地表水水质、减少污染物进入地下水、提高再生水利用率。未来还应进一步加强对周围地下水中氮素和有机污染物的监测,以保障周边地下水安全。
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
[J]. ,
DOI:10.3389/fenvs.2016.00012URLPMID:27642585 [本文引用: 1]
Estrogen receptors (ERalpha) are a critical target for drug design as well as a potential source of toxicity when activated unintentionally. Thus, evaluating potential ERalpha binding agents is critical in both drug discovery and chemical toxicity areas. Using computational tools, e.g., Quantitative Structure-Activity Relationship (QSAR) models, can predict potential ERalpha binding agents before chemical synthesis. The purpose of this project was to develop enhanced predictive models of ERalpha binding agents by utilizing advanced cheminformatics tools that can integrate publicly available bioassay data. The initial ERalpha binding agent data set, consisting of 446 binders and 8307 non-binders, was obtained from the Tox21 Challenge project organized by the NIH Chemical Genomics Center (NCGC). After removing the duplicates and inorganic compounds, this data set was used to create a training set (259 binders and 259 non-binders). This training set was used to develop QSAR models using chemical descriptors. The resulting models were then used to predict the binding activity of 264 external compounds, which were available to us after the models were developed. The cross-validation results of training set [Correct Classification Rate (CCR) = 0.72] were much higher than the external predictivity of the unknown compounds (CCR = 0.59). To improve the conventional QSAR models, all compounds in the training set were used to search PubChem and generate a profile of their biological responses across thousands of bioassays. The most important bioassays were prioritized to generate a similarity index that was used to calculate the biosimilarity score between each two compounds. The nearest neighbors for each compound within the set were then identified and its ERalpha binding potential was predicted by its nearest neighbors in the training set. The hybrid model performance (CCR = 0.94 for cross validation; CCR = 0.68 for external prediction) showed significant improvement over the original QSAR models, particularly for the activity cliffs that induce prediction errors. The results of this study indicate that the response profile of chemicals from public data provides useful information for modeling and evaluation purposes. The public big data resources should be considered along with chemical structure information when predicting new compounds, such as unknown ERalpha binding agents.
[J]. ,
[本文引用: 1]
[J].
[本文引用: 1]
[R]. ,
[本文引用: 3]
[R].
[本文引用: 3]
[R]. ,
[本文引用: 1]
[R].
[本文引用: 1]
[EB/OL]. (
URL [本文引用: 1]
[EB/OL]. (
URL [本文引用: 1]
[J]. ,
[本文引用: 1]
[J].
[本文引用: 1]
[J]. ,
DOI:10.1016/j.envpol.2019.113020URLPMID:31421574 [本文引用: 1]
Increasing interest of seeking substitutable water resources accrues from shortage of freshwater. One of the options considered is reclaimed water (also designated as recycled water) that has been widely used in daily life. Although reclaimed water can serve as a feasible reliever of water pressure, attention about its technologies and potential risks is growing in the meantime. Most established wastewater treatment plants (WWTPs) predate many new contaminants, which means treatment processes cannot ensure to dislodge certain contaminants completely from origin water. Furthermore, a wide range of factors, such as seasons and influent variations, affect occurrence and concentration of reclaimed water-borne contaminants, making research about quality of reclaimed water especially significant. Many reclaimed water-borne contaminants, including biological and chemical contaminants, are toxic to human health, and complex wastewater matrix may aggravate water quality of concern. The widespread use of reclaimed water continues to be a concern on agriculture, ecological environment and human health. This study aims to: 1) provide a critical review about occurrence and profiles of diverse contaminants in the treated reclaimed water, 2) discuss the possibility to avoid the secondary pollution in reuse of reclaimed water, and 3) reveal the prospective consequences of using reclaimed water on agriculture, ecological environment and human health.
[J]. ,
[本文引用: 1]
[J].
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J].
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J].
[本文引用: 1]
[J]. ,
[本文引用: 2]
[J].
[本文引用: 2]
[J]. ,
[本文引用: 3]
[J]. ,
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J].
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J]. ,
[本文引用: 4]
[J].
[本文引用: 4]
[J]. ,
[本文引用: 1]
[J].
[本文引用: 1]
[J]. ,
[本文引用: 1]
[R]. ,
[本文引用: 8]
[R].
[本文引用: 8]
[DB/OL]. (2019-04) [
URL [本文引用: 1]
[DB/OL]. (2019-04) [
URL [本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[J]. ,
[本文引用: 1]
[EB/OL]. (
URL [本文引用: 1]
[EB/OL]. (
URL [本文引用: 1]
[J]. ,
[本文引用: 1]
[J]. ,
[本文引用: 2]
[J].
[本文引用: 2]
[J]. ,
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J].
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J].
[本文引用: 1]
[J]. ,
[本文引用: 3]
[J]. ,
DOI:10.1016/j.watres.2017.11.058URLPMID:29223089 [本文引用: 1]
Nitrate contamination in ground- and surface water is a persistent problem in countries with intense agriculture. The transition zone between rivers and their riparian aquifers, where river water and groundwater interact, may play an important role in mediating nitrate exports, as it can facilitate intensive denitrification, which permanently removes nitrate from the aquatic system. However, the in-situ factors controlling riparian denitrification are not fully understood, as they are often strongly linked and their effects superimpose each other. In this study, we present the evaluation of hydrochemical and isotopic data from a 2-year sampling period of river water and groundwater in the riparian zone along a 3rd order river in Central Germany. Based on bi- and multivariate statistics (Spearman's rank correlation and partial least squares regression) we can show, that highest rates for oxygen consumption and denitrification in the riparian aquifer occur where the fraction of infiltrated river water and at the same time groundwater temperature, are high. River discharge and depth to groundwater are additional explanatory variables for those reaction rates, but of minor importance. Our data and analyses suggest that at locations in the riparian aquifer, which show significant river water infiltration, heterotrophic microbial reactions in the riparian zone may be fueled by bioavailable organic carbon derived from the river water. We conclude that interactions between rivers and riparian groundwater are likely to be a key control of nitrate removal and should be considered as a measure to mitigate high nitrate exports from agricultural catchments.
[J]. ,
DOI:10.1016/j.watres.2008.07.020URLPMID:18721996 [本文引用: 1]
Biogeochemical processes controlling nitrate attenuation in aquifers are critically reviewed. An understanding of the fate of nitrate in groundwater is vital for managing risks associated with nitrate pollution, and to safeguard groundwater supplies and groundwater-dependent surface waters. Denitrification is focused upon as the dominant nitrate attenuation process in groundwater. As denitrifying bacteria are essentially ubiquitous in the subsurface, the critical limiting factors are oxygen and electron donor concentration and availability. Variability in other environmental conditions such as nitrate concentration, nutrient availability, pH, temperature, presence of toxins and microbial acclimation appears to be less important, exerting only secondary influences on denitrification rates. Other nitrate depletion mechanisms such as dissimilatory nitrate reduction to ammonium and assimilation of nitrate into microbial biomass are unlikely to be important in most subsurface settings relative to denitrification. Further research is recommended to improve current understanding on the influence of organic carbon, sulphur and iron electron donors, physical restrictions on microbial activity in dual porosity aquifers, influences of environmental condition (e.g. pH in poorly buffered environments and salinity in coastal or salinized soil settings), co-contaminant influences (particularly the contrasting inhibitory and electron donor influences of pesticides) and improved quantification of denitrification rates in the laboratory and field.
[J]. ,
DOI:10.1007/s10533-019-00566-5URL [本文引用: 1]
[J]. ,
[本文引用: 1]
[D]. ,
[本文引用: 1]
[D]. ,
[本文引用: 1]
[D]. ,
[本文引用: 1]
[D]. ,
[本文引用: 1]
[D]. ,
[本文引用: 1]
[D]. ,
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J].
[本文引用: 1]
[J]. ,
DOI:10.1016/j.watres.2018.07.075URLPMID:30077913 [本文引用: 1]
Knowledge of the dynamic changes in molecular size of natural colloidal organic matter (COM) along the aquatic continuum is of vital importance for a better understanding of the environmental fate and ecological role of dissolved organic matter and associated contaminants in aquatic systems. We report here the pH- and cation-dependent size variations of COMs with different sources (river and lake) quantified using flow field-flow fractionation (FIFFF), fluorescence spectroscopy and parallel factor analysis (PARAFAC), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and zeta potential analysis. Increasing pH caused a decline in molecular sizes and an obvious size transformation from the >10kDa to 5-10kDa and further to 1-5kDa size fraction, whereas the opposite trend was observed for increasing cation (e.g., Ca(2+) and Cu(2+)) abundance. Compared with lakewater COM, the riverwater COM exhibited a greater pH-dependent dispersion but less extent in cation-induced aggregation, demonstrating that the dispersion and aggregation dynamics were highly dependent on COM source and solution chemistry (e.g., pH and cations). Based on ATR-FTIR analysis, the extensive dissolution of C=O and C-O functional groups resulted in a greater pH-dependent dispersion for river COM. Fluorescence titration revealed that, despite their similar cation-induced aggregation behavior, the binding constants of all the PARAFAC-derived components for Cu(2+) were 1-2 orders of magnitude higher than those for Ca(2+) (logKM: 4.54-5.45 vs. 3.35-3.70), indicating a heterogeneous nature in cation-DOM interactions. The greater extent of decline in zeta potential for lake COM suggested a Ca-induced charge neutralization and aggregation mechanism. However, for Cu-induced aggregation, chemical complexation was the predominant pathway for the river COM, with higher binding constants, while charge neutralization and chemical complexation co-induced the aggregation of lake COM. Thus, natural COMs may have different environmental behavior along the aquatic continuum and further affect the fate and transport of contaminants in aquatic environments.
[J]. ,
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J].
[本文引用: 1]
[J]. ,
[本文引用: 1]
[J]. ,
DOI:10.3390/toxics8040116URLPMID:33316920 [本文引用: 1]
Perfluoroalkyl acids (PFAS) are known endocrine disrupting chemicals, potentially affecting thyroid function. Smoking has been associated with PFAS levels as well as with thyroid function. The impact of smoking on the association between PFAS and thyroid function remains to be elucidated, so the objective was to assess the effect of PFAS exposure on thyroid function in the general population, stratified by smoking status, using the National Health and Nutrition Examination Survey (NHANES). NHANES adult participants who were part of the 2011-2012 laboratory subsample and had PFAS and thyroid function measured were included (n = 1325). Adjusted linear regression models and stratified analyses were performed. There was a significant positive association between perfluorooctanesulfonic acid (PFOS) (p = 0.003), perfluorononanoic acid (PFNA) (p = 0.014), total PFAS (p = 0.004) concentrations and free T4 (FT4). No significant associations were found between perfluorooctanoic acid (PFOA), PFOS, perfluorohexane sulfonate (PFHxS), PFNA, total PFAS and total T4 (TT4) or thyroid stimulating hormone (TSH). In non-smokers, a significant positive association was found between PFOS (p = 0.003), PFHxS (p = 0.034), PFNA (p = 0.012), total PFAS (p = 0.003) and FT4 while no significant associations were found in smokers. The present study showed that increased PFAS exposure was associated with increased FT4 in non-smokers, while no association was found in smokers. These results confirm that smoking modifies the association between PFAS exposure and thyroid function.
[J]. ,
DOI:10.1002/etc.2528URLPMID:24615795 [本文引用: 1]
Endocrine-disrupting chemicals are known to alter the fitness of individual organisms via changes in growth, behavior, and reproduction. It is largely unknown, however, whether these effects cascade through the food web and indirectly affect other, less sensitive organisms. The authors present results from a mesocosm experiment whereby the effects of the synthetic estrogen 17alpha-ethinylestradiol (EE2) were quantified in pelagic communities. Treatment with EE2 at a concentration of 28 ng/L had no large effects on the pelagic communities composed only of phytoplankton and zooplankton. In communities where planktivorous roach (Rutilus rutilus) were also present, however, EE2 caused a significant reduction in fish biomass. Moreover, zooplankton biomass was higher in the EE2 treatments, suggesting that zooplankton may have been released from fish predation. Hence, the direct effect of EE2 on roach may have cascaded down the food web to produce positive indirect effects on zooplankton. This result was supported in complementary foraging experiments with roach, showing reduced foraging performance after exposure to EE2. Despite the observed negative effect of EE2 on roach and the positive indirect effect on zooplankton, these effects did not cascade to phytoplankton, possibly because only copepods, but not cladocerans-the major grazers in these systems-were released from fish predation. The authors conclude that the known reproductive impairment in fish by EE2 in combination with the disturbed foraging performance observed in the present study may be a disadvantage to fish that may result in increasing abundance or biomass of prey such as zooplankton. Hence, EE2 may have consequences for both the structure and function of freshwater communities.
[D]. ,
[本文引用: 1]
[D]. ,
[本文引用: 1]
[D]. ,
[本文引用: 1]
[D]. ,
[本文引用: 1]
[J]. ,
[本文引用: 3]
[J]. ,
URLPMID:31212218 [本文引用: 1]