Precipitation observation network and its data application in the alpine region of Qilian Mountains
HAN Chuntan,1,2, WANG Lei3, CHEN Rensheng,1, LIU Zhangwen1, LIU Junfeng1, YANG Yong1, LV Hanqin41. Qilian Alpine Ecology and Hydrology Research Station, Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou 730000, China 2. University of Chinese Academy of Sciences, Beijing 100049, China 3. College of Geography and Environment, Shandong Normal University, Jinan 250358, China 4. Hohhot Natural Resources Comprehensive Survey Center, China Geological Survey, Hohhot 010010, China
Abstract Precipitation is the fundamental replenishment source of surface and groundwater resources, which directly affects the spatial and temporal distribution of water resources and the distribution and development of mountainous cryosphere. The alpine region of the Qilian Mountains is an area of large amounts of precipitation and runoff. The characteristics of precipitation are greatly affected by topography. However, the existing precipitation observation network cannot reasonably reflect the changes of precipitation on the vertical topographic gradient. To determine how the spatial and temporal change of precipitation affects the hydrological and ecological processes of the alpine mountains, it is necessary to observe the changes of precipitation pattern and type from the vertical gradient of the catchment. This article summarized the gridded, stepped, and automated precipitation observation network in the alpine region of the Qilian Mountains. The network is formed by the Geonor T-200BM3 weighing-type all weather precipitation gauges. A precipitation calibration system is also built in the Aug-one Glacier periglacial area, which is based on the Double Fenced Intercomparison Reference (DFIR) recommended by the World Meteorological Organization (WMO). In the Aug-one Glacier region, a preliminary analysis of precipitation datasets was conducted, and the applicability of GPM and TRMM precipitation datasets in the Qilian Mountains was evaluated using observational data. The development of this network is important for an in-depth understanding of the changes of rain, snow, and water vapor at different elevations, and minute division of the evaluation of precipitation resources in the alpine mountains. This network provides methods and data products for the comprehensive observation and evaluation of precipitation resources across China. Keywords:precipitation observation network;weighing-type gauge;Qilian Mountains;alpine mountains;Aug-one Glacier;TRMM;GPM;data application
PDF (11322KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 韩春坛, 王磊, 陈仁升, 刘章文, 刘俊峰, 阳勇, 吕汉秦. 祁连山高寒山区降水观测网络及其数据应用. 资源科学[J], 2020, 42(10): 1987-1997 doi:10.18402/resci.2020.10.15 HAN Chuntan, WANG Lei, CHEN Rensheng, LIU Zhangwen, LIU Junfeng, YANG Yong, LV Hanqin. Precipitation observation network and its data application in the alpine region of Qilian Mountains. RESOURCES SCIENCE[J], 2020, 42(10): 1987-1997 doi:10.18402/resci.2020.10.15
在过去几十年中,流域尺度的系统观测得到了长足发展。美国国家科学基金会资助了“地球关键带”观测计划;欧洲水文观测站网主要包括3个水文观测计划:德国TERENO陆地环境观测流域[28,29],丹麦HOBE水文观测网络[30],以及奥地利HOAL野外水文实验室[31];还有在寒区建立的一些流域观测系统,例如美国和俄罗斯联合建立的南森和阿蒙森盆地观测系统(NABOS-II)[32],加拿大的寒区变化环境观测网络(CCRN)[33]和邦迪角北极流域观测站(CBAWO)[34],以及中国的黑河流域生态-水文过程综合遥感观测联合试验(HiWATER)[35,36]。上述大多数综合流域观测系统都集中在高山和寒冷地区(High-Mountain and Cold Regions,HiMACs)。由于这些地区条件艰苦、观测稀疏,理解这些地区的降水和冰冻圈要素变化仍面临着重大挑战[23]。随着全球气候变暖,HiMACs的水文过程将继续发生巨大变化,已有研究表明,在垂直海拔梯度上,从雪到雨的转变正朝着海拔更高的山区发展。IPCC研究表明,山区降水过程复杂且具有海拔依赖性,这些变化可以改变坡面径流的时间[37],因此需要可靠而准确的降水观测[38]。而且,在降水的观测过程中仍然存在明显的偏差和误差[39, 40]。为了确定降水变化如何影响高寒山区的水文和生态过程,需要从流域垂直海拔梯度观测降水形态和降水量的变化。目前,地面观测是获取降水数据的最准确、最简单的方法,观测数据通常用于验证和校准从遥感反演和模型模拟获得的降水数据集。但是,降水的地面观测点通常位于低海拔地区,并且其站点分布仅能满足国家气象部门的实际要求,而不是满足特定的科学研究需求[41]。在高海拔、高纬度地区,观测的极大困难导致寒区观测数据匮乏,数据精度较差,成为了制约当前全球变化、水循环/水资源和气候模式(GCMs)等研究领域的主要瓶颈之一。
Figure 6Relationship between the National Weather Station observations (a) and T-200BM3 precipitation gauge observations (b) and monthly inversion precipitation by TRMM and GPM
TuoY, DuanZ, DisseM, et al. Evaluation of precipitation input for SWAT modeling in alpine catchment: A case study in the Adige River Basin (Italy) [J]. , 2016,573:66-82. DOI:10.1016/j.scitotenv.2016.08.034URL [本文引用: 1]
Chen RS, WangG, YangY, et al. Effects of cryospheric change on alpine hydrology: Combining a model with observations in the upper reaches of the Hei River, China [J]. , 2018,123(1):3414-3442. DOI:10.1002/jgrd.v123.7URL [本文引用: 2]
SchneiderU, ZieseM, Meyer-ChristofferA, et al. The new portfolio of global precipitation data products of the Global Precipitation Climatology Centre suitable to assess and quantify the global water cycle and resources [J]. , 2016,374:29-34. DOI:10.5194/piahs-374-29-2016URL [本文引用: 1]
SorooshianS, LawfordR, TryP, et al. Water and energy cycles: Investigating the links [J]. , 2005,54(2):58-64. [本文引用: 1]
[ WangL, Chen RS, Song YX. Study of statistical characteristics of wet season hourly rainfall at Hulu Watershed with Γ function in Qilian Mountains [J]. Advances in Earth Science, 2016,31(8):840-848.] [本文引用: 1]
Bhatt BC, NakamuraK. Characteristics of monsoon rainfall around the Himalayas revealed by TRMM precipitation radar [J]. , 2005,133(1):149-165. DOI:10.1175/MWR-2846.1URL [本文引用: 1]
YuanF, ZhangL, Win K WW, et al. Assessment of GPM and TRMM multi-satellite precipitation products in streamflow simulations in a data-sparse mountainous watershed in Myanmar [J]. , 2017,9(3):302-302. DOI:10.3390/rs9030302URL [本文引用: 1]
WangL, Chen RS, Han CT, et al. An improved spatial-temporal downscaling method for TRMM precipitation datasets in alpine regions: A case study in Northwestern China’s Qilian Mountains [J]. , 2019,11(7):870-870. DOI:10.3390/rs11070870URL [本文引用: 2]
[ Chen RS, Kang ES, Ding YJ. Some knowledge on and parameters of China’s alpine hydrology [J]. Advances in Water Science, 2014,25(3):307-317.] [本文引用: 1]
[ Tang QH, LanC, Su FG, et al. Streamflow change on the Qinghai-Tibet Plateau and its impacts [J]. Chinese Science Bulletin, 2019,64(27):2807-2821.] [本文引用: 1]
[ State Forestry and Grassland Administration. Master Plan of Qilian Mountain National Park (Draft for Comments) [EB/OL]. (2019-02-15) [2020-06-03]. http://www.forestry.gov.cn/main/198/20190215/091344699121299.html.] URL [本文引用: 1]
[ Cao GM, LinL, Zhang FW, et al. Long-term ecological research and experimental demonstration provide theoretical and technical support for adaptive management of alpine grassland [J]. Bulletin of Chinese Academy of Sciences, 2018,33(10):1115-1126.] [本文引用: 1]
[ LiX, Gou XH, Wang NL, et al. Tightening ecological management facilitates green development in the Qilian Mountains [J]. Chinese Science Bulletin, 2019,64(27):2928-2937.] [本文引用: 2]
[ Sun MP, Lin SY, Yao XJ, et al. Glacier changes in the Qilian Mountains in the past half century: Based on the revised first and second Chinese glacier inventory [J]. Acta Geographica Sinica, 2015,70(9):1402-1414.] [本文引用: 1]
OhumraA. Enhanced temperature variability in high-altitude climate change [J]. , 2012,110(4):499-508. [本文引用: 1]
YangK, WuH, QinJ, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review [J]. , 2014,112:79-91. DOI:10.1016/j.gloplacha.2013.12.001URL [本文引用: 1]
PepinN, Bradley RS, Diaz HF, et al. Elevation-dependent warming in mountain regions of the world [J]. , 2015,5:424-430. DOI:10.1038/nclimate2563URL [本文引用: 1]
EuskirchenE, TuretskyM, O’donnellJ, et al. Snow, permafrost, ice cover, and climate change [J]. , 2014, DOI: http://www.resci.cn/article/2020/1007-7588/10.1007/978-94-007-5784-4_110. URLPMID:28367001 [本文引用: 1] The rise in greenhouse gas emissions from air travel could be reduced by individuals voluntarily abstaining from, or reducing, flights for leisure and recreational purposes. In theory, we might expect that people with pro-environmental value orientations and concerns about the risks of climate change, and those who engage in more pro-environmental household behaviours, would also be more likely to abstain from such voluntary air travel, or at least to fly less far. Analysis of two large datasets from the United Kingdom, weighted to be representative of the whole population, tested these associations. Using zero-inflated Poisson regression models, we found that, after accounting for potential confounders, there was no association between individuals' environmental attitudes, concern over climate change, or their routine pro-environmental household behaviours, and either their propensity to take non-work related flights, or the distances flown by those who do so. These findings contrasted with those for pro-environmental household behaviours, where associations with environmental attitudes and concern were observed. Our results offer little encouragement for policies aiming to reduce discretionary air travel through pro-environmental advocacy, or through 'spill-over' from interventions to improve environmental impacts of household routines.
Fichot CG, KaiserK, Hooker SB, et al. Pan-Arctic distributions of continental runoff in the Arctic Ocean [J]. , 2013, (3):1053-1053. [本文引用: 1]
Qiu YB, MassimoM, LiX, et al. Observing and understanding high mountain and cold regions using big earth data [J]. , 2017,32(Z1):82-94. [本文引用: 2]
Guo DL, Wang HJ. CMIP5 permafrost degradation projection: A comparison among different regions [J]. , 2016,121(9):4499-4517. DOI:10.1002/jgrd.v121.9URL [本文引用: 1]
Huang XD, DengJ, WangW, et al. Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau [J]. , 2017,190:274-288. DOI:10.1016/j.rse.2016.12.028URL [本文引用: 1]
IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, Cambridge, 2013. [本文引用: 1]
Qin DH, Xiao CD. Global Climate Change and Cryospheric Evolution in China [C]. , 2008. [本文引用: 1]
ZachariasS, BogenaH, SamaniegoL, et al. A network of terrestrial environmental observatories in Germany [J]. , 2011,10(3):955-973. DOI:10.2136/vzj2010.0139URL [本文引用: 1]
Bogena HR, BolR, BorchardN, et al. A terrestrial observatory approach to the integrated investigation of the effects of deforestation on water, energy, and matter fluxes [J]. , 2015,58(1):61-75. DOI:10.1007/s11430-014-4911-7URL [本文引用: 1]
Bl?schlG, Blaschke AP, BroerM, et al. The Hydrological Open Air Laboratory (HOAL) in Petzenkirchen: A hypojournal-driven observatory [J]. , 2016,20(1):227-255. DOI:10.5194/hess-20-227-2016URL [本文引用: 1]
Ivanov VV, Timokhov LA. Atlantic water in the arctic circulation transpolar system [J]. , 2019,44(4):238-249. DOI:10.3103/S1068373919040034URL [本文引用: 1]
Debeer CM, Wheater HS, Quinton WL, et al. The changing cold regions network: Observation, diagnosis and prediction of environmental change in the Saskatchewan and Mackenzie River Basins, Canada [J]. , 2015,58(1):46-60. DOI:10.1007/s11430-014-5001-6URL [本文引用: 1]
Godsey SE, MarksD, Kormos PR, et al. Eleven years of mountain weather, snow, soil moisture and stream flow data from the rain-snow transition zone: The Johnston Draw Catchment, Reynolds Creek Experimental Watershed and Critical Zone Observatory, USA [J]. , 2017, DOI: http://www.resci.cn/article/2020/1007-7588/10.5194/essd-2017-112. [本文引用: 1]
Trenberth KE. Changes in precipitation with climate change [J]. , 2011,47(1):123-138. DOI:10.3354/cr00953URL [本文引用: 1]
ScaffL, Yang DQ, LiY, et al. Inconsistency in precipitation measurements across the Alaska-Yukon border [J]. , 2015,9(4):3709-3739. DOI:10.5194/tcd-9-3709-2015URL [本文引用: 1]
[ ZhengQ, Chen RS, Han CT, et al. Intercomparison study on precipitation observations of TRwS204 and Chinese standard precipitation gauge in the Qilian Mountains [J]. Plateau Meteorology, 2018,37(3):747-756.] [本文引用: 1]
[ Liu QH, HuangC. Spatiotemporal change of water balance components in the inland region of Northwest China, 1998-2017 [J]. Resources Science, 2020,42(6):1175-1187.] [本文引用: 1]
[ Jia WX. Temporal and spatial changes of precipitation in Qilian Mountains and Hexi Corridor during 1960-2009 [J]. Acta Geographica Sinica, 2012,67(5):631-644.] [本文引用: 1]
[ HanG, WangY, FangS. Climate change over the Qinghai-Tibet Plateau and its impacts on local agriculture and animal husbandry in the last 50 years [J]. Resources Science, 2011,33:1969-1975.] [本文引用: 1]
XuR, Tian FQ, YangL, et al. Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network [J]. , 2017,122(2):910-924. DOI:10.1002/2016JD025418URL [本文引用: 1]
Su JB, Lü HS, Zhu YH, et al. Evaluating the hydrological utility of latest IMERG products over the upper Huaihe River Basin, China [J]. , 2019,225:17-29. DOI:10.1016/j.atmosres.2019.03.025URL [本文引用: 2]
Wang XN, Ding YJ, Zhao CC, et al. Similarities and improvements of GPM IMERG upon TRMM 3B42 precipitation product under complex topographic and climatic conditions over Hexi Region, northeastern Tibetan Plateau [J]. , 2019,218:347-363. DOI:10.1016/j.atmosres.2018.12.011URL [本文引用: 2]
Lu XY, WeiM, Tang GQ, et al. Evaluation and correction of the TRMM 3B43V7 and GPM 3IMERGM satellite precipitation products by use of ground-based data over Xinjiang, China [J]. , 2018,77(5):209-209. DOI:10.1007/s12665-018-7378-6URL [本文引用: 1]
SpeirsP, GabellaM, BerneA. A comparison between the GPM dual-frequency precipitation radar and ground: Based radar precipitation rate estimates in the Swiss Alps and Plateau [J]. , 2017,18(5):1247-1269. DOI:10.1175/JHM-D-16-0085.1URL [本文引用: 1]
ManzB, BuytaertW, ZulkafliZ, et al. TRMM-and GPM-Based Precipitation Analysis and Modelling in the Tropical Andes [C]. , 2016. [本文引用: 1]
Palomino-ángelS, Anaya-Acevedo JA, Botero BA. Evaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South America [J]. , 2019,217:37-48. DOI:10.1016/j.atmosres.2018.10.012URL [本文引用: 1]
Sun RC, Yuan HL, Liu XL, et al. Evaluation of the latest satellite-gauge precipitation products and their hydrologic applications over the Huaihe River Basin [J]. , 2016,536:302-319. DOI:10.1016/j.jhydrol.2016.02.054URL [本文引用: 1]
WangL, Chen RS, Song YX, et al. Precipitation-altitude relationships on different timescales and at different precipitation magnitudes in the Qilian Mountains [J]. , 2018,134(3-4):875-884. DOI:10.1007/s00704-017-2316-1URL [本文引用: 1]
Tang GQ, WenY, GaoJ, et al. Similarities and differences between three coexisting spaceborne radars in global rainfall and snowfall estimation [J]. , 2017,53(5):3835-3853. DOI:10.1002/2016WR019961URL [本文引用: 1]