Progress of research on carbon emissions of urban household consumption
WANGYue1,2,, LIFeng3,, SUNXiao1,2 1. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, CAS, Beijing 100085, China2. University of Chinese Academy of Sciences, Beijing 100049, China3. School of Architecture, Tsinhua University, Beijing 100084, China 通讯作者:通讯作者:李锋,男,内蒙古人,博士,教授,研究方向为城市生态、生态系统服务、复合生态规划、修复与管理。E-mail: feng_li@tsinghua.edu.cn 收稿日期:2018-08-4 修回日期:2019-01-22 网络出版日期:2019-07-25 版权声明:2019《资源科学》编辑部《资源科学》编辑部 基金资助:国家自然科学基金重点项目(71533004;71734006)国家重点研发计划项目(2016YFC0502800) 作者简介: -->作者简介:王悦,女,安徽人,硕士生,研究方向为城市生态学。E-mail: yuewang_st@rcees.ac.cn
关键词:消费模式;碳排放;城市家庭;能源消耗;生态管理;文献计量 Abstract Carbon emissions from household daily consumption are an important part of global carbon emissions and have become a new growth point. The direct and indirect energy consumption and carbon emissions of Chinese households are gradually expanding, which poses a problem for the country to achieve emission reduction targets. This study used bibliometrics and comparative analysis to clarify the progress of research on carbon emissions of household consumption in order to determine the main contents and applicability of carbon emission coefficient method, input-output model, life cycle assessment, and consumer lifestyle approach. The advantages, disadvantages, and applicable situations of different carbon emission quantitative analysis methods were compared. The four main factors influencing the results of research in empirical analysis are validity of questionnaire data, difference of behavior patterns of household consumption, community impact, and rebound effect. Since 2009, the total amount of research on household carbon emissions has increased year by year, and the number of research based on macro-statistical data is significantly higher than that based on household surveys. Carbon emission coefficient method and input-output method are the two most common carbon emission accounting approaches, the choice of which depends on the purpose of the research and the availability of data. Full consideration of the factors affecting household carbon emissions and proper optimization of accounting methods are useful in improving the accuracy of the research results. Our research provides a reference for future research perspectives and accounting methods of carbon emissions of urban household consumption. It also provides a scientific basis for carbon emissions management of urban household.
为探究近10年的研究进展,分别选择中国知网(CNKI)及Web of Science核心数据库(WOS)进行文献检索。在中国知网中以“家庭消费碳排放”为主题检索出2009—2018年发表的67篇学术论文,其中与城市家庭消费碳排放主题相关并涉及到碳排放量化的期刊文献共有58篇,包括9篇综述。在Web of Science核心数据库中以“TS=(urban household consumption carbon emissions* OR urban household consumption CO2 emissions* OR carbon emissions from urban household consumption* OR CO2 emissions from urban household consumption*)为检索式检索到203篇文献,通过文献标题、关键词、摘要及全文浏览,筛选出同时段内符合主题要求的期刊文献117篇。2009—2018年城市家庭消费碳排放主题文献数量变化如图1所示。 显示原图|下载原图ZIP|生成PPT 图12009—2018年城市家庭消费碳排放主题文献数量 -->Figure 1Number of articles on carbon emissions from urban household consumption, 2009-2018 -->
日常生活中,绝大多数家庭消费行为都会导致CO2排放。Qu等[15]从人类生存角度将家庭CO2排放定义为个人或家庭为满足生存需求和在一定社会经济条件下的发展需求而产生的碳排放,包括直接碳排放和间接碳排放。2007年Wei等[10]基于Bin等[11]的消费者生活方式法原理和碳排放系数法,测算了中国城乡居民直接和间接能源消费产生的碳排放量之后,基于此原理涌现出许多相关研究案例[15,16,17]。 从图3中折线图部分可看出,每年有近一半研究是将直接碳排放和间接碳排放综合量化后,从多角度开展研究。近年来基于宏观统计数据的家庭消费碳排放研究发展迅速,2016年起年均发表20余篇相关文献。对检索结果筛选分类发现,目前城市与区域尺度的家庭消费碳排放研究较多,一般基于统计年鉴数据、能源平衡表等宏观统计数据进行研究,建立数学模型分析家庭碳排放在时间梯度上的变化、驱动因素与动态模拟。例如在国家层面上,刘晶茹等[13]对包括家装材料、食品、交通用具、信息技术产品、服装与家纺在内的9类81种消费产品进行家庭尺度的物质流分析,量化家庭消费的物质代谢结构与格局;在省际层面上,已有****测度了中原经济区30个省辖市居民衣食住行消费的间接碳排放量,通过空间自相关和空间面板模型分析了这些地区居民消费间接碳排量空间关联特征及影响因素[18]。 显示原图|下载原图ZIP|生成PPT 图32009—2018年不同碳排放研究数量变化 -->Figure 3Changes in the number of studies on different carbon emissions, 2009—2018 -->
注:根据文献[34]相关内容绘制。 新窗口打开 显示原图|下载原图ZIP|生成PPT 图43种不同投入产出能源分析法的数据处理流程 注:根据文献[34,35]相关内容绘制。 -->Figure 4Data analysis procedure of the three different input-output energy analysis methods -->
统计WOS核心数据库和CNKI中检索出的涉及家庭碳排放量化过程的166篇文献使用的量化方法次数如图5所示,碳排放系数法作为将能耗转化为碳排放的根本方法,在其余3种方法的有关步骤均有所体现,故认为每篇都涉及碳排放系数法。近3年投入产出法的使用频率占总量的24%以上,该方法适用范围广泛,应用较多。历年文献中,生命周期评价法和消费者生活方式法的使用次数不多,这可能和研究者的研究对象有关。 显示原图|下载原图ZIP|生成PPT 图52009—2018年不同碳排放研究方法使用比率 -->Figure 5Changes in the number of studies on different carbon emissions, 2009-2018 -->
上述4种方法均适用于宏观与微观不同层次自上而下或自下而上的研究体系,但不同消费行为产生的碳排量的最佳量化方法不尽相同,需研究者结合研究目的与实际情况后选择。4种方法的优点和缺点[12,27,35]如表4所示。简单易算的碳排放系数法对数据量要求较少,只需明确各项消费的碳排放系数及消耗量的数据便可据此求出碳排放量。该方法也因碳排放系数不能代表特定研究地点与研究时间的生产技术水平,使计算结果缺少真实性和可比性。 Table 4 表4 表4家庭消费碳排放研究方法的优缺点比较 Table 4Comparison of advantages and disadvantages of research methods for household consumption carbon emissions
DingY, LiF.Examining the effects of urbanization and industrialization on carbon dioxide emission: Evidence from China’s provincial regions [J]. , 2017, 125: 533-542. [本文引用: 1]
[2]
Grimm NB, Faeth SH, Golubiewski NE, et al.Global change and the ecology of cities [J]. , 2008, 319(5864): 756-560. [本文引用: 1]
[DuW.Analysis of characteristics of Chinese residents’ indirect carbon emissions in daily life based on LMDI decomposition model [J]. , 2016, 26(11): 5-9.] [本文引用: 2]
[4]
Li YM, ZhaoR, Liu TS, et al.Does urbanization lead to more direct and indirect household carbon dioxide emissions? Evidence from China during 1996-2012 [J]. , 2015, 102: 103-114. [本文引用: 4]
[5]
Jones CM, Kammen DM.Quantifying carbon footprint reduction opportunities for U.S. households and communities [J]. , 2011, 45(9): 4088-4095. [本文引用: 2]
[6]
Wang ZH, LiuW.Determinants of CO2 emissions from household daily travel in Beijing, China: Individual travel characteristic perspectives [J]. , 2015, 158: 292-299. [本文引用: 1]
[FengL, LinT, Zhao QJ.Analysis of the dynamic characteristics of urban household energy use and carbon emissions in China [J]. , 2011, 21(5): 93-100.] [本文引用: 2]
[10]
Wei YM, Liu LC, FanY, et al.The impact of lifestyle on energy use and CO2 emission: An empirical analysis of China’s residents [J]. , 2007, 35(1): 247-257. [本文引用: 3]
[11]
BinS, DowlatabadiH.Consumer lifestyle approach to US energy use and the related CO emissions [J]. , 2005, 33(2): 197-208. [本文引用: 4]
[12]
Zhang XL, WangY.How to reduce household carbon emissions: A review of experience and policy design considerations [J]. , 2017, 102: 116-124. [本文引用: 4]
[Liu JR, YanL, DingN, et al.Material flow analysis of Chinese urban household [J]. , 2017, 27(S1): 155-158.] [本文引用: 3]
[14]
Di DonatoM, Lomas PL, CarpinteroÓ.Metabolism and environmental impacts of household consumption: A review on the assessment, methodology, and drivers [J]. , 2015, 19(5): 904-916. [本文引用: 1]
[15]
Qu JS, Zeng JJ, LiY, et al.Household carbon dioxide emissions from peasants and herdsmen in northwestern arid-alpine regions, China [J]. , 2013, 57: 133-140. [本文引用: 3]
[16]
DingQ, Cai WJ, WangC.Impact of household consumption activities on energy consumption in China: Evidence from the lifestyle perspective and input-output analysis [J]. , 2017, 105: 3384-3390. [本文引用: 2]
[17]
Xu XK, Han LY, Lv XF.Household carbon inequality in urban China, its sources and determinants [J]. , 2016, 128: 77-86. [本文引用: 2]
[Shi QQ, Lu FX, ChenH, et al.Temporal-spatial patterns and factors affecting indirect carbon emissions from urban consumption in the Central Plains Economic Region [J]. , 2018, 40(6): 1297-1306.] [本文引用: 1]
[ZhangQ, Deng XZ, ZhouQ, et al.Research review of urban dwellers' behaviors and progress in building ecological communities [J]. , 2016, 36(10): 3013-3020.] [本文引用: 3]
[YeH, Pan LY, ChenF, et al.Direct carbon emission from urban residential energy consumption: A case study of Xiamen [J]. , 2010, 30(14): 3802-3811.] [本文引用: 3]
[21]
LinT, Yu YJ, Bai XM, et al.Greenhouse gas emissions accounting of urban residential consumption: A household survey based approach [J]. , 2013, 8(2): e55642. [本文引用: 2]
HiranoY, IharaT, YoshidaY.Estimating residential CO2 emissions based on daily activities and consideration of methods to reduce emissions [J]. , 2016, 103: 1-8. [本文引用: 1]
[24]
QinB, Han SS.Planning parameters and household carbon emission: Evidence from high- and low-carbon neighborhoods in Beijing [J]. , 2013, 37: 52-60. [本文引用: 1]
[25]
Liu WL, SpaargarenG, HeerinkN, et al.Energy consumption practices of rural households in north China: Basic characteristics and potential for low carbon development [J]. , 2013, 55: 128-138. [本文引用: 1]
[Zhu XM, Jiang HY, Xiao RB, et al.The pattern of residential area carbon emission and implications for the low-carbon community based on Guangzhou [J]. , 2014, 24(3): 19-23.] [本文引用: 4]
LeontiefW, StroutA.Multiregional Input-Output Analysis, in Structural Interdependence and Economic Development [M]. , 1963. [本文引用: 1]
[34]
KokR, BendersR M J, MollH C. Measuring the environmental load of household consumption using some methods based on input-output energy analysis: A comparison of methods and a discussion of results [J]. , 2006, 34(17): 2744-2761. [本文引用: 3]
[Zeng JJ, Zhang ZQ, Qu JS, et al.Analysis and evaluation of methods for household carbon emissions calculation [J]. , 2012, 31(10): 1341-1352.] [本文引用: 2]
[36]
DasA, Paul SK.CO2 emissions from household consumption in India between 1993-94 and 2006-07: A decomposition analysis [J]. , 2014, 41: 90-105. [本文引用: 1]
[37]
Reynolds CJ, PiantadosiJ, Buckley JD, et al.Evaluation of the environmental impact of weekly food consumption in different socio-economic households in Australia using environmentally extended input-output analysis [J]. , 2015, 111: 58-64. [本文引用: 1]
[38]
SuhS, LenzenM, Treloar GJ, et al.System boundary selection in life-cycle inventories using hybrid approaches [J]. , 2004, 38(3): 657-664. [本文引用: 1]
[39]
Liu HT, Guo JE, QianD, et al.Comprehensive evaluation of household indirect energy consumption and impacts of alternative energy policies in China by input-output analysis [J]. , 2009, 37(8): 3194-3204. [本文引用: 1]
[40]
JunnilaS, HorvathA, Guggemos AA.Life-cycle assessment of office buildings in Europe and the United States [J]. , 2006, 12(1): 10-17. [本文引用: 1]
[41]
HeinonenJ, JunnilaS.Implications of urban structure on carbon consumption in metropolitan areas [J]. , 2011, DOI: 10.1088/1748-9326/6/1/014018. [本文引用: 2]
[42]
Pairotti MB, Cerutti AK, MartiniF, et al.Energy consumption and GHG emission of the Mediterranean diet: A systemic assessment using a hybrid LCA-IO method [J]. , 2015, 103: 507-516. [本文引用: 1]
[43]
MieheR, ScheumannR, Jones CM, et al.Regional carbon footprints of households: A German case study [J]. , 2016, 18(2): 577-591. [本文引用: 1]
[44]
PothitouM, Hanna RF, Chalvatzis KJ.Environmental knowledge, pro-environmental behaviour and energy savings in households: An empirical study [J]. , 2016, 184: 1217-1229. [本文引用: 2]
[45]
Han LY, Xu XK, HanL.Applying quantile regression and Shapley decomposition to analyzing the determinants of household embedded carbon emissions: Evidence from urban China [J]. , 2015, 103: 219-230. [本文引用: 2]
[46]
YeH, RenQ, Hu XY, et al.Low-carbon behavior approaches for reducing direct carbon emissions: Household energy use in a coastal city [J]. , 2017, 141: 128-136. [本文引用: 3]
[Wang QH, Zhang ZQ, Qu JS.A review of the research on household carbon emission [J]. , 2013, 28(12): 1305-1312.] [本文引用: 6]
[48]
LiobikienėG, DagiliūtėR.The relationship between economic and carbon footprint changes in EU: The achievements of the EU sustainable consumption and production policy implementation [J]. , 2016, 61: 204-211. [本文引用: 1]
[YaoL, Liu JR, Wang RS, et al.Carbon footprint accounting of regional household consumption in China through multi-regional input-output model [J]. , 2013, 33(7): 2050-2058.] [本文引用: 1]
[YaoL, Liu JR, YuanY.Growth of carbon footprint of Chinese household consumption during the recent two decades and its future trends [J]. , 2017, 37(6): 2403-2408.] [本文引用: 1]
[51]
Jones RV, Lomas KJ.Determinants of high electrical energy demand in UK homes: Socio-economic and dwelling characteristics [J]. , 2015, 101: 24-34. [本文引用: 1]
[52]
AllinsonD, Irvine KN, Edmondson JL, et al.Measurement and analysis of household carbon: The case of a UK city [J]. , 2016, 164: 871-881. [本文引用: 1]
[Lv RS, Li MN, HongS.The effect mechanism of energy saving behavior of urban residents [J]. , 2016, 30(12): 53-58.] [本文引用: 1]
[54]
VassilevaI, DahlquistE, WallinF, et al.Energy consumption feedback devices’ impact evaluation on domestic energy use [J]. , 2013, 106: 314-320. [本文引用: 1]
[55]
Yohanis YG.Domestic energy use and householders’ energy behaviour [J]. , 2012, 41: 654-665. [本文引用: 1]
[56]
BuerkeA, StraatmannT, Lin-HiN, et al.Consumer awareness and sustainability-focused value orientation as motivating factors of responsible consumer behavior [J]. , 2017, 11(4): 959-991. [本文引用: 1]
[57]
StreimikieneD, VolochovicA.The impact of household behavioral changes on GHG emission reduction in Lithuania [J]. , 2011, 15(8): 4118-4124. [本文引用: 1]
[58]
AlberiniA, BiganoA, ŠčasnýM, et al.Preferences for energy efficiency vs. renewables: What is the willingness to pay to reduce CO2 emissions? [J]. , 2018, 144: 171-185. [本文引用: 1]
[59]
MaatK, TimmermansH J P. Influence of the residential and work environment on car use in dual-earner households [J]. , 2009, 43(7): 654-664. [本文引用: 1]
[60]
YangZ, FanY, Zheng SQ.Determinants of household carbon emissions: Pathway toward eco-community in Beijing [J]. , 2016, 57: 175-186. [本文引用: 1]
[61]
YeH, Qiu QY, Zhang GQ, et al.Effects of natural environment on urban household energy usage carbon emissions [J]. , 2013, 65: 113-118. [本文引用: 1]
[62]
Mcneil MA, FengW, StephaneD L R D C, et al. Energy efficiency outlook in China’s urban buildings sector through 2030 [J]. , 2016, 97: 532-539. [本文引用: 1]
[63]
GrabsJ.The rebound effects of switching to vegetarianism. A microeconomic analysis of Swedish consumption behavior [J]. , 2015, 116: 270-279. [本文引用: 1]
[64]
Yu BY, Zhang JY, FujiwaraA.Evaluating the direct and indirect rebound effects in household energy consumption behavior: A case study of Beijing [J]. , 2013, 57: 441-453. [本文引用: 1]
[Du YW, Huang TZ, Kang GD.A study of urban household carbon emission characteristic and it’s impact factors from the micro perspective: From the survey data of the urban household activities in Jiangsu Province [J]. , 2015, (2): 30-39.] [本文引用: 1]
[66]
GirodB, De HaanP.GHG reduction potential of changes in consumption patterns and higher quality levels: Evidence from Swiss household consumption survey [J]. , 2009, 37(12): 5650-5661. [本文引用: 1]