Spatial pattern of urban heat island and multivariate modeling of impact factors in the Guangdong-Hong Kong-Macao Greater Bay area
YANGZhiwei1,2,, CHENYingbiao1,2,, WUZhifeng1,2, ZHENGZihao1, LIJuanjuan3 1. School of Geographical Sciences, Guangzhou University, Guangzhou 510006, China2.Guangdong Provincical Engineering Technology Research Centre for Geographical Conditions Monitoring and Comprehensive Analysis, Guangzhou 510006, China3. Institute of Remote Sensing and Digital Earth, CAS, Beijing 100101, China 通讯作者:通讯作者:陈颖彪,男,吉林长春人,博士,教授,研究方向为遥感和地理信息系统应用。E-mail: gzhuchenyb@126.com 收稿日期:2018-04-27 修回日期:2018-12-24 网络出版日期:2019-06-25 版权声明:2019《资源科学》编辑部《资源科学》编辑部 基金资助:广东省自然科学基金项目(2016A030313551)国家自然科学基金项目(41671430,41771127) 作者简介: -->作者简介:杨智威,男,福建三明人,硕士生,研究方向为城市生态与遥感应用。E-mail: yangzw9615@163.com
关键词:城市热岛;影响因子;空间格局;地理探测器;粤港澳大湾区 Abstract To explore the influence of various factors on the spatial differentiation of urban heat island intensity, and to reveal the impact mechanism of the factors, spatial expression, spatial overlay, and geographical detector methods were used in this study. The impact of five influencing factors on the spatial differentiation of urban heat island intensity in the study area was examined, and a multivariate relationship model was constructed. The results show that the intensity of urban heat island in the Guangdong-Hong Kong-Macao Greater Bay area is high in the central part and low in the surroundings, which has formed a semicircular urban heat island belt on both sides of the estuary of the Pearl River. According to the results of the geographical detector analysis, the five selected factors have a high explanatory power on the spatial differentiation of the urban heat island intensity at the 1 km×1 km grid scale, in the order of population density (0.668) > proportion of construction land area (0.577) > length of roads (0.573) > proportion of vegetation cover (0.538) > proportion of surface water area (0.428). The constructed multivariate relationship model can accurately reflect the distribution of land surface temperature in urban heat island area, and the error between the modeling result and the observed average land surface temperature is 0.34℃.
Keywords:urban heat island;influencing factors;spatial pattern;geographical detector;Guangdong-Hong Kong-Macao Greater Bay area -->0 PDF (22916KB)元数据多维度评价相关文章收藏文章 本文引用格式导出EndNoteRisBibtex收藏本文--> 杨智威, 陈颖彪, 吴志峰, 郑子豪, 李娟娟. 粤港澳大湾区城市热岛空间格局及影响因子多元建模[J]. 资源科学, 2019, 41(6): 1154-1166 https://doi.org/10.18402/resci.2019.06.14 YANGZhiwei, CHENYingbiao, WUZhifeng, ZHENGZihao, LIJuanjuan. Spatial pattern of urban heat island and multivariate modeling of impact factors in the Guangdong-Hong Kong-Macao Greater Bay area[J]. RESOURCES SCIENCE, 2019, 41(6): 1154-1166 https://doi.org/10.18402/resci.2019.06.14
由粤港澳大湾区及各城市的城市热岛强度等级分布格局(图5)可知,大湾区的主要城市均出现显著的热岛效应。城市热岛强度等级呈现中间高四周低的分布格局,并在珠江入海口两岸形成半环状城市热岛带。城市热岛区域连片集聚,形成广州—佛山热岛带、香港—深圳—东莞热岛带,以及中山—珠海热岛带。其中,广州—佛山、香港—深圳—东莞2个热岛带,无论是热岛范围还是热岛强度等级都最为显著。而肇庆、惠州、江门等大湾区外围城市,城市热岛效应不显著,未出现连片热岛带。 显示原图|下载原图ZIP|生成PPT 图5城市热岛强度等级空间分布格局 -->Figure 5Spatial distribution of urban heat island intensity classes -->
此外,为定量比较大湾区各城市的热岛状况,本文统计各城市不同热岛强度等级面积占比(表2)。由表2可知,在大湾区11个城市中,有8个城市热岛面积占比超过50%,大多数城市的热岛现象较为严重。其中广州、佛山两市,以及深圳、东莞两市在空间位置上相邻,但广州、深圳两个超大城市的城市热岛面积占比,分别小于佛山、东莞。澳门由于城市面积小,人口集中,且以建设用地为主,因此热岛强度等级整体较高。珠海、中山两市总体城市热岛面积占比高,同样属于热岛效应较为严重区域。而位于大湾区东北、西北和西南的肇庆、惠州、江门三市,城市热岛面积占比不大,均低于大湾区的平均城市热岛面积占比,而热岛强度低等级区域的占比则远超大湾区的平均水平。 Table 2 表2 表2各区域城市热岛强度等级结果统计 Table 2Statistics of urban heat island intensity classes in various regions
4.2.1 格网化结果 经过数据格网化处理后,格网与交通路网、建设用地面积占比、植被覆盖面积占比、水体面积占比等4类因子建立属性关联。各格网包含单元路网密度、建设用地面积占比、植被覆盖面积占比、以及水体面积占比数据,如图6所示。 显示原图|下载原图ZIP|生成PPT 图6格网化后的4项影响因子分布图 -->Figure 6Spatial distribution of the values of four influencing factors at the 1 km x 1 km grid level length of roads, proportion of construction land area, proportion of vegetation cover, and proportion of surface water area . -->
单元路网密度高值格网集中分布在大湾区中心区域,形成广州—佛山、香港—深圳2个高密集区域,其余区域格网的单元路网密度则较低。珠江两岸的格网单元,建设用地面积占比高,形成以中山—佛山—广州—东莞—深圳—香港为条带、大范围分布的建设用地面积占比高值格网集聚区。而大湾区北部与西部的格网,建设用地面积占比相对较低。在大湾区范围内,未出现植被覆盖面积占比高值格网大范围连片分布区域,中心区域分布大量植被覆盖面积占比低值格网,而肇庆、江门、惠州3市则存在数量较多的小范围高值格网。此外,由于大湾区地处亚热带季风区,区域整体降雨量丰富,因此除珠江干流及其主要支流流经的格网拥有较高的水体面积占比外,其余格网的水体面积占比较为平均。 4.2.2 人口空间化结果 本文利用人口统计数据、夜间灯光数据、土地利用数据等多源数据,通过构建人口空间回归模型,对人口数据进行空间化处理,得到大湾区各格网的人口数量,获取单元人口密度分布情况(图7)。 显示原图|下载原图ZIP|生成PPT 图7粤港澳大湾区人口密度分布图 -->Figure 7Population density distribution in the Guangdong-Hong Kong-Macao Greater Bay area -->
本文探究5项影响因子对城市热岛空间格局的影响。研究结果表明,单元人口密度、建设用地面积占比以及单元路网密度与城市热岛区域地表温度呈正相关关系,而植被及水体面积占比则与城市热岛区域地表温度呈现负相关关系,这与前人的研究结果相一致。此外,本文在此基础上,进一步量化各类因子对城市热岛空间格局的影响程度。结果表明,与城市热岛区域地表温度呈正相关的3项影响因子,对城市热岛区域空间格局的影响程度有所差异(单元人口密度>建设用地面积占比>单元路网密度),但对城市热岛区域空间格局的平均解释力均大于与城市热岛区域地表温度呈负相关关系的植被覆盖面积占比及水体面积占比。 但本文还存在一些有待解决的问题,即:实际影响城市热岛空间格局的因子远超过本文讨论的这5项;同时受数据获取所限,本文未对研究区域开展多时相研究,无法分析时相的改变,是否会导致各影响因子解释力的变化。因此,进一步考虑影响因子类型,以及开展多时相的分析,是今后深入研究的方向。 The authors have declared that no competing interests exist.
[YuC, Hu DY, Cao SS, et al.Spatio-temporal pattern of heat island and multivariate modeling of impact factors of Beijing downtown from 2005 to 2016 [J]. , 2017, 19(11): 1485-1494.] [本文引用: 1]
[Chen SL, Wang TX.Comparison analyses of equal interval method and mean-standard deviation method used to delimitate urban heat island [J]. , 2009, 11(2): 145-150.] [本文引用: 1]
[HuangA, Xu YQ, Sun PL, et al.Spatial distribution of population specialization based on multi-source data: A case study of Zhangjiakou City [J]. , 2017, 39(11): 2186-2196.] [本文引用: 1]
[23]
Khomarudin MR, StrunzG, LudwigR, et al.Hazard analysis and estimation of people exposure as contribution to tsunami risk assessment in the West Coast of Sumatra, the South Coast of Java and Bali [J]. , 2010, 37(3): 337-356. [本文引用: 1]
[GaoY, WangH, Wang PT, et al.Population spatial processing for Chinese coastal zones based on census and multiple night light data [J]. , 2013, 35(12): 2517-2523.] [本文引用: 1]
[Zhou YK, Gao XZ, Ni XL.Analyzing regional inequality of socioeconomic development in China with nighttime light [J]. , 2017, 32(6): 1107-1113.] [本文引用: 1]
[Zhao JC, Zhong ZQ, Lu HL, et al.Urban residential CO2 emissions and its determinants: A case study of Central Plains Economic Region [J]. , 2017, 32(12): 2100-2114.] [本文引用: 1]
[LiX, Chen ZJ, Wu JX, et al.Gridding methods of city permanent population based on night light data and spatial regression models [J]. , 2017, 19(10): 1298-1305.] [本文引用: 1]
FanH, Sailor DJ.Modeling the impacts of anthropogenic heating on the urban climate of Philadelphia: A comparison of implementations in two PBL schemes [J]. , 2005, 39(1): 73-84. [本文引用: 1]
[Yang ZW, Chen YB, Qian QL, et al.Evaluation of the matching degree of the public medical service level based on population spatialization: A case study of Guangzhou [J]. , 2019, 35(2): 74-82.] [本文引用: 1]
[30]
Wang JF, Li XH, ChristakosG, et al.Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China [J]. , 2010, 24(1): 107-127. [本文引用: 1]
[3]
Oke TR.The energetic basis of the urban heat island [J]. , 1982, 108(455): 1-24. [本文引用: 1]
[4]
Grimm NB, Faeth SH, Golubiewski NE, et al.Global change and the ecology of cities [J]. , 2008, 319(5864): 756-760. [本文引用: 1]
[Fang YB, Wang LM, Mou CF, et al.Determinants of spatial disparities of petroleum terminal utilization carbon emissions in China [J]. , 2017, 39(12): 2233-2246.] [本文引用: 1]
[5]
KandaM.Progress in urban meteorology: A review [J]. 2007, 85: 363-383. [本文引用: 1]
[6]
UngerJ.Intra-urban relationship between surface geometry and urban heat island: Review and new approach [J]. , 2004, 27(3): 253-264. [本文引用: 1]
[Yang FS, Yang XM, Wang ZH, et al.Geographic detection of impact factors of economic differences among typical counties in Jiangxi Province [J]. , 2018, 20(1): 79-88.] [本文引用: 2]
[CaoZ, Lian LS, Gu ZW, et al.Selection of WRF land use/cover data and usage n urban heat island simulations [J]. , 2015, 37(9): 1785-1796.] [本文引用: 2]
[10]
BonafoniS, BaldinelliG, VerducciP.Sustainable strategies for smart cities: Analysis of the town development effect on surface urban heat island through remote sensing methodologies [J]. , 2017, 29: 211-218. [本文引用: 1]
[11]
GuattariC, EvangelistiL, Balaras CA.On the assessment of urban heat island phenomenon and its effects on building energy performance: A case study of Rome (Italy) [J]. , 2017, 158: 605-615. [本文引用: 2]
[He LQ, YangP, JingX, et al.Analysis of temporal-spatial variation of heat island effect in Pearl River Delta using MODIS images and impermeable surface area [J]. , 2017, 29(4): 140-146.] [本文引用: 1]
[ZhangS, Liu YH, Huang HT.Research on quantitative evaluations and spatial and temporal distribution of heat islands for the Pearl River Delta agglomeration [J]. , 2017, 26(7):1157-1166.] [本文引用: 2]
[Mou XJ, Zhao XY.Study on the relationship between surface temperature and land use in Pearl River Delta [J]. , 2012, 31(9): 1589-1597.] [本文引用: 1]
[15]
WanZ.New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product [J]. , 2014, 140:36-45. [本文引用: 1]
[16]
Van Hove LW A, Jacobs C MJ, Heusinkveld BG, et al. Temporal and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration [J]. , 2015, 83: 91-103. [本文引用: 1]
[Yang ZW, Chen YB, Wu ZF, et al.The coupling between construction land expansion and urban heat island expansion in Guangdong-Hong Kong-Macao Greater Bay [J]. , 2018, 20(11): 1592-1603.] [本文引用: 1]
[Li LG, Wang HB, Jia QY, et al.Urban heat island intensity and its grading in Liaoning Province of Northeast China [J]. , 2012, 23(5):1345-1350.] [本文引用: 1]
[ZhangY, YuT, Gu XF, et al.Land surface temperature retrieval from CBERS-02 IRMSS thermal infrared data and its applications in quantitative analysis of urban heat island effect [J]. , 2006, 10(5): 789-797.] [本文引用: 1]