Aerosol effects on global surface solar radiation based on Fu-Liou modeling and satellite observations
SHAOSiya1,2,, ZHANGJing1,2,, ZHOULihua1,2, XUEWenhao1,2 1. College of Global Change and Earth System Science,Beijing Normal University,Beijing 100875,China2. Joint Center for Global Change Studies,Beijing 100875,China 通讯作者:通讯作者:张晶,E-mail:jingzhang@bnu.edu.cn 收稿日期:2016-09-30 修回日期:2017-02-14 网络出版日期:2017-03-20 版权声明:2017《资源科学》编辑部《资源科学》编辑部 基金资助:国家自然科学基金项目(41575144) 作者简介: -->作者简介:邵思雅,男,安徽淮北市人,博士生,主要研究领域为陆面过程与生物地球化学循环。E-mail:siyashao1310@gmail.com
关键词:气溶胶;气溶胶光学厚度;大气辐射传输;直接辐射效应;散射 Abstract Aerosols can absorb and scatter solar radiation and cause the total solar radiation reaching the surface to drop and the fraction of diffuse radiation to increase, influencing the surface radiation budget. Here, MODIS Aerosol Optical Depth (AOD) was compared with AERONET AOD observations for 2007 and good agreement was found, except when AOD is larger than 0.7 the uncertainty of MODIS AOD increases. Then global surface radiation with and without consideration of aerosols was calculated by the Fu-Liou atmospheric radiative transfer model based on MODIS aerosol products, CERES cloud products and other remote sensing data. The model calculated surface solar radiation with consideration of aerosols was compared to observations made at Baseline Surface Radiation Network (BSRN) sites. Good correlations exist between the calculated and measured total radiation with an R of 0.92, and between the calculated and measured diffuse radiation with an R of 0.84. The aerosol direct radiative effect was calculated based on the two scenarios of aerosols. Our calculations showed that in 2007, aerosols decreased global total radiation by 9.16 W/m2 on average. Large decreases generally occurred in places with high AOD. For diffuse radiation, aerosol-induced changes were either positive or negative. Large increases generally occurred in places with high surface albedo, while large decreases generally occurred in places with high cloud fraction. The global aerosol-induced diffuse radiation change averaged 8.17 W/m2 in 2007. Aerosol direct radiative effects cause photosynthetic active radiation to increase, which may influence the global carbon cycle of terrestrial ecosystems and result in an increase in the carbon sink function of terrestrial ecosystems.
Keywords:aerosol;aerosol optical depth (AOD);atmospheric radiative transfer;direct radiative effect;scattering -->0 PDF (1081KB)元数据多维度评价相关文章收藏文章 本文引用格式导出EndNoteRisBibtex收藏本文--> 邵思雅, 张晶, 周丽花, 薛文晧. 基于Fu-Liou辐射传输模式和卫星观测资料的气溶胶对全球地表太阳辐射影响的研究[J]. , 2017, 39(3): 513-521 https://doi.org/10.18402/resci.2017.03.13 SHAOSiya, ZHANGJing, ZHOULihua, XUEWenhao. Aerosol effects on global surface solar radiation based on Fu-Liou modeling and satellite observations[J]. 资源科学, 2017, 39(3): 513-521 https://doi.org/10.18402/resci.2017.03.13
图1所示为2007年全球MODIS数据产品平均气溶胶光学厚度分布。可以看出,中国东部地区的气溶胶光学厚度要远远高于全球平均水平,说明了中国气溶胶污染情况的严重性;而其他部分地区如中西亚、非洲中部和南美洲中部的气溶胶光学厚度也比较高。 显示原图|下载原图ZIP|生成PPT 图12007年全球平均气溶胶光学厚度分布 -->Figure 1Global distribution of annual mean aerosol optical depth (AOD)in 2007 -->
全球自动观测网AERONET(AErosol RObotic NETwork)站点通过地基监测的方法,对气溶胶的性质进行观测。本研究选取中国北京、太湖,Lannion,Cabauw,Canberra,Chapais和Harvard Forest共7个站点的经过云过滤处理和质量验证的二级每日AOD数据,与MODIS AOD数据进行对比验证。这7个站点分布于全球各大洲,并对气溶胶光学厚度进行了长期连续观测。结果如图2所示。 显示原图|下载原图ZIP|生成PPT 图2MODIS AOD与AERONET AOD对比 -->Figure 2Comparison of AOD observations by MODIS and AERONET -->
3.2.1 地表辐射值验证 本研究选取全球能量与水循环试验(GEWEX)Baseline Surface Radiation Network(BSRN)中9个站点的高时间分辨率地表太阳短波总辐射和散射辐射观测资料对Fu-Liou模型计算的全球辐射进行对比验证,这些站点分布于全球各大洲,并对太阳辐射进行了长期连续观测。为了便于分析,按站点所属地区将其划分为北美站点、欧洲站点和其他大陆站点。为减少云带来的不确定性,采用站点每日所有辐射数据平均后的日均辐射参与验证;且为保证验证的可靠性,只有在有效观测率达到90%时,当日数据才可参与验证。类似的,将前面Fu-liou模型计算得到的全球3h辐射资料进行平均得到模拟的日均辐射。模拟与观测的日均辐射对比结果如表1。 Table 1 表1 表1Fu-Liou模拟与BSRN观测日均辐射对比 Table 1Comparison of daily average radiation between BSRN observations and Fu-Liou simulations
北美
欧洲
其他大陆
所有站点
总辐射
R
0.91
0.95
0.87
0.92
RMSE/%
24
32
24
26
散射辐射
R
0.77
0.93
0.82
0.84
RMSE/%
34
33
34
34
新窗口打开 由表1可以看出,Fu-Liou模型模拟的日均辐射与观测结果具有很好的一致性。欧洲地区的模拟结果最好,总辐射和散射辐射的R值均在0.9以上。北美和其他大陆的模拟结果也较为良好,均在比较合理的范围内。这些结果说明,Fu-liou模型可以较好地模拟太阳总辐射与散射辐射。 3.2.2 气溶胶直接辐射效应 利用Fu-liou模型分别计算有气溶胶和无气溶胶情况下的2007年地表总辐射(图3a、图3b)和散射辐射(图3c、图3d),两者的差值即为气溶胶导致的地表辐射变化(图3e、图3f)。 显示原图|下载原图ZIP|生成PPT 图32007年全球地表有无气溶胶情况下的平均总辐射、平均散射辐射及气溶胶直接辐射效应导致的辐射变化 -->Figure 3Global distributions of average surface solar radiation,surface diffuse radiation with and without aerosols and changes in them caused by aerosols in 2007 -->
从图3a、图3b和图3e可以看出,气溶胶会明显减少到达地面的太阳总辐射。结合图1还可以发现,总辐射减少较多的地区,如中国东部地区、中西亚以及非洲中部和南美中部地区,往往AOD也较高。可见对于地表总辐射来说,气溶胶的直接辐射效应与其光学厚度存在一定程度的正相关。而图3c、图3d和图3f显示,对于散射辐射来说,气溶胶在全球不同地区却有着不同的正负效应。从整体上看,气溶胶会增加全球散射辐射。尤其是在中西亚、非洲撒哈拉地区、美国中西部以及靠近南北两极的地区,这种增加效应最为强烈。原因很可能在于这些地区常年干旱或者被冰雪所覆盖,地表反照率较高,导致天空和地表之间发生多次散射而使散射辐射增加。但在非洲中部、亚马逊地区以及东南亚靠近赤道的地区,气溶胶的存在却使地表散射辐射不同程度地减少。结合图4(见第518页)可以看出,这些地区的云分数都相对较高。云对太阳辐射存在强烈的反射和散射效应。在云天散射辐射比例已经很高的情况下,气溶胶的存在无法使得该比例再有效增加;而此时气溶胶会导致总辐射减少从而最终使散射辐射降低。因此云的存在可以大大抑制气溶胶增加散射辐射的效应,甚至会导致该效应变为负值。 显示原图|下载原图ZIP|生成PPT 图42007年全球平均云分数分布 -->Figure 4Global distribution of annual mean cloud fraction in 2007 -->
本文利用Fu-Liou大气辐射传输模型,基于MODIS气溶胶数据、CERES云数据等遥感卫星产品对2007年全球气溶胶的直接辐射效应进行了探讨与分析。主要结论如下: (1)MODIS气溶胶光学厚度反演结果与Aeronet观测值具有良好的一致性。其反演效果与AOD值具有一定关联,当AOD值较大时,MODIS的反演结果的偏差较大。 (2)以MODIS气溶胶光学厚度、CERES云数据等遥感资料作为输入,Fu-Liou模型可以比较理想地模拟地表总辐射与散射辐射,模拟值与BSRN站点观测值具有比较好的一致性。 (3)气溶胶使全球的地表总辐射降低,降低幅度较大的地区往往AOD也较高。对于散射辐射,气溶胶在全球不同地区有着不同的正负效应。地表反照率高的地区,气溶胶往往使得散射辐射大幅增加;而云分数较高的地区,气溶胶往往导致散射辐射大幅度下降。2007年,气溶胶导致全球平均地表总辐射减少了9.16W/m2,全球平均散射辐射增加了8.17W/m2。 (4)本研究基于遥感卫星数据,针对2007年全球气溶胶的直接辐射效应进行了分析。更长时间的模拟研究将有助于了解气溶胶直接辐射效应的长期变化规律。 (5)大气气溶胶的直接辐射效应增加了光合有效辐射,可能会对全球陆地生态系统碳循环产生影响,增加陆地生态系统的碳汇。这是下一步的研究目标。 The authors have declared that no competing interests exist.
Badarinath K VS,Kharol SK,Kaskaoutis DG,et al. Influence of atmospheric aerosols on solar spectral irradiance in an urban area [J]. ,2007,69(4-5):589-599. [本文引用: 1]
[2]
Kaskaoutis DG,Kambezidis HD,Jacovides CP,et al.Modification of solar radiation components under different atmospheric conditions in the Greater Athens Area,Greece [J]. ,2006,68(10):1043-1052.
[3]
MahowaldN,Ward DS,KlosterS,et al.Aerosol impacts on climate and biogeochemistry [J]. ,2011,36(1):45-74. [本文引用: 1]
[4]
Kanniah KD,BeringerJ,Tapper NJ,et al.Aerosols and their influence on radiation partitioning and savanna productivity in Northern Australia [J]. ,2010,100(3-4):423-438. [本文引用: 1]
[5]
Steiner AL,MermelsteinD,Cheng SJ,et al.Observed impact of atmospheric aerosols on the surface energy budget [J]. ,2013,17(14):1-22. [本文引用: 1]
[Zhang XL,Xia XA,Che HZ,et al.Observation study on aerosol optical properties and radiative forcing using the ground-based and satellite remote sensing at background station during the regional pollution episodes [J]. ,2014,35(7):2439-2448.] [本文引用: 1]
[Zhang FX,Li ZQ,Li KT,et al.Aerosol direct radiative forcing in Beijing-Tianjin-Tangshan region based on remote sensing measurements [J]. ,2016,33(2):155-161.] [本文引用: 1]
[8]
YuH,KaufmanY,ChinM,et al.A review of measurement-based assessments of the aerosol direct radiative effect and forcing [J]. ,2006,6(11):613-666. [本文引用: 1]
[ZhangH,Ma JH,Zheng YF.A modeling study of global radiative forcing due to dust aerosol [J]. ,2009,67(4):510-521.] [本文引用: 1]
[10]
YuH,DickinsonR,ChinM,et al.Direct radiative effect of aerosols as determined from a combination of MODIS retrievals and GOCART simulations [J]. ,2004,109(D03206):293-305. [本文引用: 1]
[11]
SuW,LoebN,SchusterG,et al.Global all-sky shortwave direct radiative forcing of anthropogenic aerosols from combined satellite observations and GOCART simulations [J]. ,2013,118(2):655-669. [本文引用: 1]
[12]
ChenM,ZhuangQ.Evaluating aerosol direct radiative effects on global terrestrial ecosystem carbon dynamics from 2003 to 2010 [J]. ,2014,66(1):81-89. [本文引用: 1]
[13]
Stocker TF,QinD,Plattner GK,et al.[C]. Cambridge: Cambridge University Press,2013. [本文引用: 1]
[14]
TieX,CaoJ.Aerosol pollution in China:Present and future impact on environment [J]. ,2009,7(6):426-431. [本文引用: 1]
[15]
CaoJ,ShenZ,Chow JC,et al.Winter and summer PM2.5 chemical compositions in fourteen Chinese cities [J]. ,2012,62(10):1214-1226.
[16]
QuW,ArimotoR,ZhangX,et al.Spatial distribution and inter-annual variation of surface PM10 concentrations over eighty-six Chinese cities [J]. ,2010,10(12):5641-5662. [本文引用: 1]
[17]
FuQ,Liou KN.On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres [J]. ,1992,49(22):2139-2156. [本文引用: 1]
[18]
FuQ,Liou KN.Parameterization of the radiative properties of cirrus clouds [J]. ,1993,50(13):2008-2025. [本文引用: 1]
[19]
Rose FG,Charlock TP.New Fu-Liou Code Tested with ARM Raman Lidar Aerosols and CERES in Pre-CALIPSO Exercise [C]. ,2002. [本文引用: 2]
[20]
KatoS,Rose FG,Charlock TP.Computation of domain-averaged irradiance using satellite-derived cloud properties [J]. ,2005,22(2):146-164. [本文引用: 1]
[21]
Goddard Space Flight Center,National Aeronautics and Space Administration(NASA). The Level-3 MODIS Atmosphere Daily Global Product [EB/OL].[2008-02-01]. URL [本文引用: 1]
[22]
GarciaD.Robust smoothing of gridded data in one and higher dimensions with missing values [J]. ,2010,54(4):1167-1178. [本文引用: 1]
[23]
GarciaD.A fast all-in-one method for automated post-pro-cessing of PIV data [J]. ,2011,50(5):1247-1259. [本文引用: 1]
[24]
ChinM,GinouxP.Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements [J]. ,2002,59(3):461-483. [本文引用: 1]
[25]
ChinM,ChuA,LevyR,et al.Aerosol distribution in the northern hemisphere during ACE-Asia:Results from global model,satellite observations,and sun photometer measurements [J]. ,2004,109(D23):2401-2423.
[26]
ChinM,DiehlT,GinouxP,et al.Intercontinental transport of pollution and dust aerosols:Implications for regional air quality [J]. ,2007,7(21):5501-5517.
[27]
ChinM,DiehlT,DubovikO,et al.Light absorption by pollution,dust,and biomass burning aerosols:A global model study and evaluation with AERONET measurements [J]. ,2009,27(9):3439-3464.
[28]
GinouxP,ChinM,TegenI,et al.Sources and distributions of dust aerosols simulated with the GOCART Model [J]. ,2001,106(D17):20255-20273.
[29]
GinouxP,ProsperoJ,TorresO,et al.Long-term simulation of global dust distribution with the GOCART model:Correlation with North Atlantic Oscillation [J]. ,2004,19(2):113-128. [本文引用: 1]
[30]
Clouds and the Earth' Radiant Energy System (CERES),Na-tional Aeronautics and Space Administration (NASA). The Level-3 CERES SYN1deg Product [EB/OL].[2008-02-01]. .URL [本文引用: 1]
[31]
Land Processes Distributed Active Archive Center (LP DAAC),U.S.Geological Survey (USGS). The MODerate-resolution Imaging Spectroradiometer (MODIS)Albedo Product [EB/OL].[2008-02-01]. URL [本文引用: 1]
Earth System Research Laboratory (ESRL),National Oceanic & Atmospheric Administration (NOAA). NCEP/NCAR Re-analysis 1:Summary [EB/OL].[2008-02-01]. .URL [本文引用: 1]
[34]
ShaoS,ZhangJ.All-sky direct radiative effects of urban aerosols in Beijing and Shanghai,China [J]. ,2015,8(5):295-300. [本文引用: 1]
[35]
MatsuiT,Beltrán-PrzekuratA,NiyogiD,et al.Aerosol light scattering effect on terrestrial plant productivity and energy fluxes over the Eastern United States [J]. ,2008,113(D14):762-770. [本文引用: 1]