删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

可可西里地区中更新世以来气候演化周期特征分析

本站小编 Free考研考试/2021-12-29

田庆春,1, 裴瑜1, 石培宏21.山西师范大学地理科学学院,临汾 041000
2.陕西师范大学地理科学与旅游学院,西安 710119

Characteristics of climate evolution cycle since the Middle Pleistocene in the Hoh Xil area

TIAN Qingchun,1, PEI Yu1, SHI Peihong21. College of Geographical Science, Shanxi Normal University, Linfen 041000, Shanxi, China
2. School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China

收稿日期:2020-01-6接受日期:2020-07-20网络出版日期:2021-03-10
基金资助:国家自然科学基金项目.41701223


Received:2020-01-6Accepted:2020-07-20Online:2021-03-10
作者简介 About authors
田庆春(1982-),男,内蒙古呼和浩特人,博士,副教授,硕士生导师,主要研究方向为全球变化与第四纪环境演变。E-mail: tianqch2006@126.com





摘要
以青藏高原腹地可可西里地区为研究区,于2006年8月取得一湖泊沉积钻孔,进深106m,地理位置35°13′05″N,93°55′52.2″E,命名为BDQ06。选择湖泊沉积物粒度和总有机碳作为气候代用指标。基于古地磁建立的年代框架为基础,分析了可可西里地区929 kaBP以来古气候变化的周期特征。选择的分析方法为功率谱分析、小波分析和奇异谱分析。结果表明地球轨道三要素偏心率(100 ka)、地轴倾角(41 ka)和岁差(23 ka、19 ka)的准周期成分在BDQ06孔沉积中有明显反映,同时也包含84、66、54、36、31、27、17、15、12 、11.5、10 ka等周期成分。说明本区气候变化既受到轨道参数的影响,同时也与地球系统内部其它因素变化有关。小波分析和奇异谱分析显示不同气候周期既可在同一时段内叠加存在,又可在不同的时段内独立存在。780 kaBP左右古气候周期发生转型,在此之前以41 ka为主,同时也存在100 ka周期成分,之后以100 ka周期为主,但580 kaBP开始气候周期信号变得复杂,可能是受到青藏高原构造隆升的影响,导致水动力条件发生变化有关。
关键词: 可可西里;中更新世;气候变化;周期特征

Abstract
As one of the most important geological events in the Cenozoic era, the Tibetan Plateau's (TP) uplift has profoundly influenced the Asian and global climate and environmental evolution. Therefore, the TP has become the focus of geography research subject at home and abroad and has obtained great achievements. However, there are still many problems to be further explored. In this study, Hoh Xil, the hinterland of TP, was taken as the research area, and a 106-meter lake sedimentary borehole called BDQ06 was obtained in August 2006, geographically at 35°13′05″N and 93°55′52.2″E. The grain size and total organic carbon of lake sediments are chosen as climatic indicators. The approaches of Power Spectrum Analysis (PSA), Singular Spectrum Analysis (SSA), and the Continuous Wavelet Transform (CWT) are used to analyze the climate evolution cycle. Based on paleomagnetism's chronological framework, paleoclimatic cycle evolution since the last 929 ka has been investigated. The results show that the quasi-periodic components of the earth's eccentricity (100 ka), obliquity (41 ka), and precession (23 ka and 19 ka) exist in the BDQ06 hole. Meanwhile, the periodic components of 84, 66, 54, 36, 31, 27, 17, 15, 12, 11.5, 10 ka, and so on are found in the record. All this indicates that the climate changes in the Hoh Xil area are influenced not only by the earth's orbital parameters but also by other factors in the inner of the earth system. Furthermore, CWT and SSA show that different climate cycles can be superimposed in the same period and exist in different periods. Besides, an obvious climate transition has been observed at 780 ka. The dominant period is 41 ka though the period of 100 ka existed in the record ahead of this time point. However, after 780 ka, the controlling period shifted to 100 ka. Moreover, the climatic periodic characteristic has become gradually complicated since 580 ka BP, which is possibly affected by the change of hydrodynamic conditions caused by the TP's tectonic uplift. We concluded that although the Hoh Xil's climate cycle characteristics are consistent with global features, but they have apparent regional characteristics. Also, the periodic signals of grain size and total organic carbon are not wholly consistent, so the significance of climate proxy indicators needs to be further explored.
Keywords:Hoh Xil area;Mid-Pleistocene;climate change;cycle characteristics


PDF (4075KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
田庆春, 裴瑜, 石培宏. 可可西里地区中更新世以来气候演化周期特征分析. 地理研究[J], 2021, 40(3): 900-911 doi:10.11821/dlyj020200004
TIAN Qingchun, PEI Yu, SHI Peihong. Characteristics of climate evolution cycle since the Middle Pleistocene in the Hoh Xil area. Geographical Research[J], 2021, 40(3): 900-911 doi:10.11821/dlyj020200004


1 引言

20世纪古气候研究最突出的成果为米兰科维奇周期的发现[1]。随后Hays等[2]通过谱分析和滤波技术对深海沉积记录进行了分析,提取出深海沉积记录中的天文周期规律,对米氏理论提供了有力的支持。尽管米氏理论在解释气候变化上取得了很大的成功,但气候变化中存在的一些问题[3,4],很难用轨道驱动来解释[5,6]。因此,关于米氏理论的研究仍将继续持续下去。

青藏高原独特的地理环境及其对全球响应的敏感性,成为气候变化研究的理想地点。其沉积记录能为区域古气候、古环境信息的获取提供重要的线索[7]。青藏高原东部若尔盖盆地RM和RH两个湖泊钻孔都记录到气候变化存在米氏周期的特征[8,9],甚至RM孔还记录到中更新世气候转型[8],但这两个钻孔记录到的周期信号与其他沉积记录的周期信号在强度和出现时间上都存在明显差异,认为是受到青藏高原构造隆升的影响[8,9]。甘孜黄土的研究结果也支持了这一结论[10]。而柴达木盆地记录显示虽然气候周期信号也受到高原隆升的影响,但800 kaBP以来100 ka周期信号较强[11]。由此看出青藏高原不同地区气候存在明显差异。为了更多的了解青藏高原内部的气候变化特征,本文选取高原腹地的可可西里为研究区域,提取该区湖泊沉积记录的环境信息,从而探讨该区气候变化的周期特征。

2 地理位置

可可西里地处青藏高原腹地,隶属青海省。钻孔位置距青藏公路约30 km的不冻泉附近(图1),其经纬度为93°55′52″E,35°13′05″N,钻孔总进深为106 m,取芯率超过90%,命名为BDQ06孔。

图1

新窗口打开|下载原图ZIP|生成PPT
图1可可西里地区BDQ06钻孔位置

Fig. 1The location of BDQ06 core in the Hoh Xil area



3 年代框架的建立

本文年代框架建立在古地磁定年的基础上,对选定的353块古地磁样品(2 cm×2 cm×2 cm)进行系统热退磁。特征剩磁方向的计算方法见参考文献[12],剔除特征剩磁MAD超过15°的样品,约占20%。图2为代表性样品的热退磁结果,最后利用磁倾角来建立极性柱(图3,见第903页)。在通过检验的285块样品中,216块为正极性,平均磁倾角为35.32;69块为负极性,平均磁倾角为-34.16。正负极性方向对趾分布,说明正负极性得到的平均方向基本上呈反向平行,样品通过了倒转检验[13]

图2

新窗口打开|下载原图ZIP|生成PPT
图2BDQ06孔岩芯样品热退磁结果

Fig. 2Thermal field behavior of rock samples from the BDQ06 core



图3

新窗口打开|下载原图ZIP|生成PPT
图3BDQ06孔古地磁结果与标准极性柱[14,15,16]

Fig. 3Compared paleomagnetic results of the BDQ06 core with the standard polarity column



将实测极性柱与标准极性柱[14,15,16]对比如图3(见第903页)所示,其中B/M界限落在地层91.46~91.04 m段落的某一层位上,由于该段岩芯有破碎情况,选取的古地磁样品较少,因此对于B/M界限的准确位置还无法确定。B/M界限以上能明显的分辨出10次古地磁极性倒转事件,结果见图3。但由于部分层位也存在岩芯破碎的情况,没有得到所需要的古地磁样品,因此古地磁极性倒转的具体时间就不能确定。为了确保年代标尺的准确性,没有使用这些岩芯破碎段的极性事件(5、7、10和11)作为年代控制点,仅将其用于最后年代标尺的检验。

将古地磁结果作为年代控制点,通过对两个年代控制点之间的线性内插和外推,得到了钻孔的时间标尺,B/M界限在该时间标尺中落在了地层的90.53 m深度,符合前面所得到的结果,B/M界限应在地层的90.46~91.46 m之间,同时得到钻孔底界年代约929 kaBP,其余几个极性事件(5、7、10和11)也落在相应的地层上。说明建立的年代标尺大框架是正确的。

4 周期性分析

湖泊沉积物各指标的变化受湖水动力大小的影响,而湖水动力大小受气候干湿变化的控制,应与古气候的旋回有关。对BDQ06孔沉积物磁化率、色度、粒度、总有机碳、碳氮比、有机碳同位素等环境代用指标进行了分析,发现粒度(<4 μm粒径组分)、总有机碳、有机碳同位素和碳氮比对环境指示较为敏感,效果较好[17,18]。由于有机碳同位素和碳氮比采样间隔较大分辨率低,不能很好的反应气候的周期规律,因此本文选择粒度和总有机碳进行时间序列谱分析,探讨可可西里地区气候演化的周期特征。

总有机碳——湖泊沉积物总有机碳含量的多少取决于有机质的输入量及保存能力,记录着湖区的生态环境信息,能反映湖区的环境状况[19]。青藏高原不同时期湖泊沉积研究结果基本上一致,认为总有机碳高值段对应暖期,反之为冷期[20,21,22]

粒度——湖泊沉积物粒度受水动力条件大小的控制,是反映古环境演化的一项重要指标[23,24]。按照湖泊沉积学原理,湖泊沉积物粒度从湖岸到湖心呈同心圆结构逐渐变细[24,25,26]。因此,当沉积物粒度变细的时段,说明湖泊水体扩大,为湿润气候期;反之,为干旱气候期。

4.1 沉积物粒度、总有机碳功率谱分析

根据年代模型,把BDQ06孔沉积物粒度和总有机碳随深度变化转化为时间序列,并通过对时间序列的插值,转变为1 ka等时间间隔的时间序列,得到用于分析周期变化的数据(图4,见第904页),利用redfit38进行功率谱分析[27]

图4

新窗口打开|下载原图ZIP|生成PPT
图4BDQ06孔岩芯中<4 μm粒径组分和总有机碳含量随时间的变化

Fig. 4Variation of <4 μm particle size composition and TOC content of the BDQ06 core as a function of the time scale



对<4 μm粒径组分、总有机碳含量进行功率谱分析,由图5所示本区气候表现出与地球轨道三要素相一致的周期信号。偏心率准100 ka周期在<4 μm粒径组分、总有机碳表现为102 ka和116 ka周期,说明在同一地区不同指标对气候的指示意义也有差别。鹿化煜等[28]对洛川黄土研究中也认为偏心率周期包括95~136 ka,与本文结论相一致;地轴倾角和岁差在<4 μm粒径组分、总有机碳则都表现出相应的周期信号41 ka及23 ka、19 ka周期。

图5

新窗口打开|下载原图ZIP|生成PPT
图5BDQ06孔主要气候指标时间序列的功率谱分析结果

Fig. 5The result of FFT analysis for main climate proxies in the BDQ06 core



为了更好的对周期信号强度检验,对<4 μm粒径组分进行奇异谱分析(Singular Spectrum Analysis,SSA),选择嵌入维m=40,t=1000 a,具体分析方法见参考文献[29,30]图6(见第905页)展示了前6阶主成分,由图看出主成分都不是规则的曲线(与滤波曲线不同),但都较好保留了原有的气候代用指标信息。如主成分1(31.68531%)和主成分2(23.29056%)较好地保留了原粒度曲线旋回框架,说明SSA主成分分离法能较好地保留地质信息。由于湖泊沉积物粒度的振荡旋回受到气候干湿变化的控制,应与古气候的旋回有关。主成分1主要显示以102 ka左右的旋回,与偏心率的100 ka周期相吻合。

图6

新窗口打开|下载原图ZIP|生成PPT
图6BDQ06孔<4 μm粒径组分部分奇异谱分析结果

Fig. 6The partial SSA results of <4 μm particle size component in the BDQ06 core



主成分2仍以102 ka左右旋回,但叠加了41 ka的旋回。

主成分3受到了41 ka周期的影响,但又叠加了一个31 ka左右的旋回(14.68%)。

主成分4、主成分5和主成分6对应于岁差周期信号,其方差贡献了约16.76%。主成分4、主成分5周期较长一些,与23 ka周期有关,后者对应于19 ka周期变化。主成分6还叠加了约12 ka的周期。

前6阶主成分贡献了86.42%的序列方差,之后的方差贡献率都很小,包含半岁差及更小的周期信号,是否有意义还有待更进一步的挖掘。第20阶主成分为随机选取。

前人研究结果得到在不同沉积记录中1.6~0.8 MaBP气候变化主导周期为41 ka,0.8 MaBP至今气候变化以100 ka周期为主[31],本区929 kaBP以来气候变化检测出偏心率准100 ka周期信号(116 ka和102 ka),地轴倾角的41 ka周期信号都较强,这与其他的研究结果相一致。其中<4 μm粒径组分SSA分析结果得到,主成分1和主成分2可与100 ka周期相对应,但并不是完全的线性响应。因此,还不能确定10万年周期信号的产生是否由轨道参数直接驱动。后文对其可能产生的原因进行了简单分析。

频谱分析显示出本区气候存在岁差信号,SSA分析得到岁差信号主成分贡献率占16.76%。岁差信号一般在低纬地区表现明显[32],低纬地区石笋沉积频谱分析结果显示其包含明显岁差信号,而石笋的沉积主要受到夏季风的影响[33,34]。纬度较高的西安刘家坡黄土磁化率也显示出较强的岁差信号[35],也说明岁差信号可能与夏季风有关。那么本区显示出较强的岁差信号,是否也与夏季风的影响有关呢?前人对此进行了大量的研究,其中Kutzbach的大气环流模式(CCM)影响最大[36],他将地球轨道参数设置为距今9 ka的值后,模型结果得出受岁差的影响北半球夏季太阳辐射增多,从而使陆地增温较多,海陆热力差异增大,从而在全新世早期出现了比现今更强的亚-非季风,降水量也比现今要多。施雅风等[37]通过大量的研究认为青藏高原MIS3阶段的高温大降水事件,源于特强夏季风,当时正是岁差的高辐射阶段。而高原本身的热力、动力学效应也对季风强度有重要的影响[38,39],本区气候表现出较强的岁差信号,可能与此有关。

图5看出除上述轨道周期外,<4 μm粒径组分和总有机碳还检测到其他一些周期信号的存在,如84、66、54、36、31、27、17、15、12、11.5、10 ka等周期信号。Berger等[40]研究认为地轴倾角除41 ka典型周期外还包括54 ka和31 ka周期。总有机碳表现出较强的54 ka周期特征,而粒度变化检出的66 ka周期可能也与此相关,说明不同指标对于轨道周期信号的响应可能存在一定差异;岁差除23 ka、19 ka外还包含17 ka周期,同时认为15 ka周期信号也属于轨道驱动的结果[40]。前人在对印度洋沉积物研究结果也得到上述周期信号[41]。12、11.5、10 ka(半岁差)周期的产生可能也与低纬有关,在一个岁差旋回中近日点与春风点和秋分点的重合而产生[40,42],如太阳一年经过两次赤道产生一个半年周期,还可能与非洲季风与亚洲季风的影响有关[43]

除以上周期信号外更多研究证明,由于地球系统内部各要素的非线性反馈作用,第四纪期间气候存在多周期的特征[44]。鹿化煜等[28]对洛川黄土250 Ma以来>30 μm粒径组分和磁化率周期特征分析发现除存在明显的轨道周期外还存在80 ka、56 ka和30 ka的周期,认为是轨道要素和季风系统内部因子相互作用的结果。<4 μm粒径组分、总有机碳频谱分析得到的84 ka、36 ka、27 ka周期信号可能也是这种作用的结果。

4.2 沉积物粒度、总有机碳小波分析

使用Morlet母小波,利用Matlab软件对粒度和总有机碳含量进行小波分析,结果见图7,其中黑线围绕区域为通过95%显著性检验。由图7看出功率谱检测得到的周期信号都有不同程度体现。小波分析还清晰的显示了气候演化周期信号的转变,尤以<4 μm粒径组分最为明显。780 kaBP前表现出明显的41 ka和100 ka周期,780 kaBP之后41 ka周期信号消失,100 ka周期信号仍较为明显。SSA分析中主成分1和2为100 ka周期信号(图6),其波动特征也很好的体现了周期信号强度的变化,780 kaBP之前41 ka和100 ka周期信号都存在且振幅较高,780 kaBP之后41 ka周期消失,100 ka周期信号仍较强。其它地质沉积也记录到这一现象[45,46,47]。这一时间点与前人提出的中更新世气候转型时间上一致[48,49,50],但关于中更新世转型的原因,不同****提出不同的假说与模型。SSA分析结果也看出代表100 ka周期的主成分1和2都存在明显的频率变化,但与轨道参数比较,都不是严格的线性响应。余志伟等[30]对宝鸡黄土粒度SSA分析也认为粒度曲线主成分与轨道参数都不是严格的线性响应,表现为复杂的非线性响应。说明气候变化受到轨道参数的影响,但是否为太阳辐射直接驱动还不能确定。而其他一些研究成果不管是北半球冰盖驱动模型[51,52],还是低纬热带碳循环调节大气CO2浓度而产生100 ka周期信号,都不能对100 ka周期信号的产生给出完美的解释[53]。还有****认为青藏高原的构造隆升可能对气候主导周期转变起一定作用[54]。因此,对于100 ka周期信号的产生原因,还有很长的路要走。

图7

新窗口打开|下载原图ZIP|生成PPT
图7BDQ06孔主要气候指标的小波分析结果

Fig. 7Wavelet analysis result of main climate index of the BDQ06 core



从580 kaBP开始周期信号变得复杂,各周期信号都不太明显。SSA分析结果也显示,580 kaBP之后100 ka周期信号振幅平平,变得很弱。相同记录还出现在高原及周边地区,如,Wang等[8]对若尔盖古湖沉积物研究过程中发现0.58 MaBP开始出现不规律的沉积,并认为是受到高原构造隆升的影响。而在0~800 kaBP时段RH孔沉积物有机碳同位素频谱分析结果显示100 ka周期不显著,认为这一时段高原气候的变化既与轨道驱动有关,又受到了构造运动的影响[9]。甘孜黄土磁化率也得出相似的结论100 ka周期信号在600 kaBP开始逐渐衰退[10]。本区气候在此时段周期信号变得复杂可能也是受到高原隆升的影响,此时正好处于青藏高原快速隆升时期——昆黄运动[55,56],高原进入冰冻圈、阻挡了印度季风的深入、改变了西风环流、造成水动力条件不稳定等因素有关。至于柴达木盆地800 kaBP以来表现出很强的100 ka周期信号[11],表明青藏高原隆升的影响在其内部也存在差异。高原隆升的时间以及对气候变化产生多大的影响,目前为止也没有统一的定论,还有待更多的资料进行佐证。粒度显示在220 kaBP之后又出现了100 ka周期的信号,总有机碳对此记录显示不太明显。由此可以看出,环境指标对于气候变化的响应也存在差异,因此对于环境指标变化的机制以及气候意义还有待更深层次的挖掘。

5 结论

(1)929 kaBP以来可可西里地区气候存在偏心率(116 ka和102 ka)、地轴倾角(41 ka)和岁差(23 ka、19 ka)周期成分,说明本区气候的变化受到地球轨道三要素的影响,除此之外还存在54 ka和36 ka,17 ka、15 ka的周期信号可能也与轨道要素有关,另外存在84 ka、36 ka、27 ka等周期信号可能是地球系统内部的非线性反馈作用的结果。

(2)780 kaBP左右古气候周期性发生转型,在此之前以41 ka为主,同时也存在100 ka周期成分,之后以100 ka周期为主,但到580 kaBP气候周期信号变得复杂。可能受到高原构造隆升的影响导致水动力条件发生变化有关。

总的来说,本区气候变化既表现出与轨道周期一致的信号,反映了与全球气候变化同步的信息,同时本区气候还显示出次一级的周期变化,表现出明显的区域特征。两个指标反映出现周期信号稍有差别,一方面可能与高原本身的水热配置和湖泊本身演化所造成,另一方面也可能与不同环境代用指标所指示的环境意义不同有关。还有可能是由于年代框架本身的误差,也会在一定程度上造成一些周期信号的变化或失真。

致谢

真诚感谢二位匿名评审专家和编辑部老师对本文的细心审阅和提出的宝贵修改意见,使本文获益匪浅。


参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Milankovi?, Milutin.. Kanon der Erdbestrahlung
Serbian Royal Academy Belgrade, 1941: 100-484.

[本文引用: 1]

Hays J D, Imbrie j, Shackleton N J. Variation in the earth′s orbit: Pacemaker of the ice ages
Science, 1976,194(4270):1121-1132. DOI: 10.1126/science.194.4270.1121.

[本文引用: 1]

Rial J A, Anaclerio C A. Understanding nonlinear responses of the climate system to orbital forcing
Quaternary Science Reviews, 2000,19(17-18):1709-1722. DOI: 10.1016/S0277-3791(00)00087-1.

[本文引用: 1]

Elkibbi M, Rial J A. An outsider's review of the astronomical theory of the climate: Is the eccentricity-driven insolation the main driver of the ice ages?
Earth-Science Reviews, 2001,56(1-4):161-177. DOI: 10.1016/S0012-8252(01)00061-7.

[本文引用: 1]

Wunsch C. The spectral description of climate change including the 100 kyr energy
Climate Dynamics, 2003,20(4):353-363. DOI: 10.1007/s00382-002-0279-z.

[本文引用: 1]

Wunsch C. Quantitative estimate of the Milankovitch-forced contribution to observed Quaternary climate change
Quaternary Science Reviews, 2004,23(9-10):1001-1012. DOI: 10.1016/j.quascirev.2004.02.014.

[本文引用: 1]

Hou J Z, D'Andrea W J, Liu Z H. The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau
Quaternary Science Reviews, 2012,48(10):67-79. DOI: 10.1016/j.quascirev.2012.06.008.

[本文引用: 1]

Wang Sumin, Xue Bin. Environmental evolution of Zoige Basin since 900 kaB.P. and comparison study with Loess Plateau
Science in China (Series D), 1997,40(3):329-336. DOI: CNKI: SUN: JDXG.0.1997-03-014.

[本文引用: 4]

吴敬禄. 若尔盖盆地RH孔近80万年来δ13Corg气候特征的频谱分析
湖泊科学, 1997,9(3):211-216.

[本文引用: 3]

[ Wu Jinglu. δ13C frequency spectrum analyses on climatic characteristics of Zoige Basin since 800000 years
Journal of Lake Sciences, 1997,9(3):211-216.]. DOI: CNKI: SUN: FLKX.0.1997-03-002.

[本文引用: 3]

刘冬雁, 彭莎莎, 乔彦松, . 青藏高原东南缘甘孜黄土磁化率揭示的西南季风演化
海洋地质与第四纪地质, 2009,29(5):115-121.

[本文引用: 2]

[ Liu Dongyan, Peng Shasha, Qiao Yansong, et al. Evolution of the southwest monsoon on orbital time-scale revealed by a loess-paleosol sequence on the southeastern margin of the Qinghai-Tibetan Plateau for the last 1.16 Ma
Marine Geology & Quaternary Geology, 2009,29(5):115-121.]. DOI: CNKI: SUN: HYDZ.0.2009-05-021.

[本文引用: 2]

陈晔, 袁林旺, 周春林, . 柴达木盆地第四纪古气候变化在自然伽马测井曲线上的记录
古地理学报, 2001,3(2):29-37.

[本文引用: 2]

[ Chen Ye, Yuan Linwang, Zhou Chunlin, et al. Quaternary palaeoclimate changes recorded by natural gamma logging curve in Qaidam Basin
Journal of Palaeogeography, 2001,3(2):29-37.]. DOI: 10.3969/j.issn.1671-1505.2001.02.005.

[本文引用: 2]

Kirschvink J L. The least-squares line and plane and the analysis of the paleomagnetic data
Roy Astranom Soc Geophys J, 1980,62:699-718. DOI: 10.1111/j.1365-246X.1980.tb02601.x.

[本文引用: 1]

方大均, 沈忠悦, 谈晓冬. 塔里木盆地显生宙古地磁与板块运动学. 杭州: 浙江大学出版社, 2006: 185-197.
[本文引用: 1]

[ Fang Dajun, Shen Zhongyue, Tan Xiaodong. Paleomagnetism of Tarim Basin and the Plate Motion. Hangzhou: Zhejiang University Press, 2006: 185-197.]
[本文引用: 1]

Morner N A. Lanser J P. Gothenburg magnetic flip
Nature, 1974,251(5474):408-409. DOI: 10.1038/251408a0.

[本文引用: 2]

Langereis C G, Dekkers M J, de Lange G J, et al. Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes
Geophysical Journal International, 1997,129(1):75-94. DOI: 10.1111/j.1365-246X.1997.tb00938.x.

[本文引用: 2]

Cande S C, Kent D V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic
Journal of Geophysical Research, 1995,100(B4):6093-6095. DOI: 10.1029/94JB03098.

[本文引用: 2]

田庆春, 杨太保, 石培宏. 末次间冰期-末次冰期可可西里地区气候演化形式
地理研究, 2017,36(2):336-344.

[本文引用: 1]

[ Tian Qinchun, Yang Taibao, Shi Peihong. Climatic changes between the last interglacial age and the last glacial age in Hoh Xil area
Geographical Research, 2017,36(2):336-344.]. DOI: 10.11821/dlyj201702011.

[本文引用: 1]

田庆春, 杨太保, 石培宏. 可可西里地区湖泊深钻揭示的中更新世以来环境变化
第四纪研究, 2018,38(5):1101-1110.

[本文引用: 1]

[ Tian Qingchun, Yang Taibao, Shi Peihong. Paleoclimate change since the Middle Pleistocene recorded by lake sediments in Hoh Xil
Quaternary Sciences, 2018,38(5):1101-1110.]. DOI: 10.11928/j.issn.1001-7410.2018.05.05.

[本文引用: 1]

Shen J. Spatiotemporal variations of Chinese lakes and their driving mechanisms since the Last Glacial Maximum: A review and synthesis of lacustrine sediment archives
Chinese Science Bulletin, 2013,58(1):17-31. DOI: 10.1007/s11434-012-5510-7.

[本文引用: 1]

张平中, 王先彬, 陈践发, . 青藏高原若尔盖盆地RH孔沉积有机质的δ13C值和氢指数记录
中国科学(B辑), 1995,6:450-463.

[本文引用: 1]

[ Zhang Pingzhong, Wang Xianbin, Chen Jianfa, et al. The records about Organic Matter, 13C and Hydrogen index in the RH core of the Zoige Basin in Tibetan Plateau
Science in China (Series B), 1995, (6):450-463.]. DOI: CNKI: SUN: JBXK.0.1995-06-011.

[本文引用: 1]

黄麒, 孟昭强, 刘海玲. 柴达木盆地查尔汗盐湖区古气候波动模式的初步研究
中国科学(B辑), 1990,6:652-663.

[本文引用: 1]

[ Huang Qi, Meng Zhaoqiang, Liu Hailing. The preliminary study of ancient climate fluctuation patterns of Qarhan salt lake, Qaidam Basin
Science in China(Series B), 1990,6:652-663.]. DOI: http://ir.isl.ac.cn/handle/363002/1455.

[本文引用: 1]

孙晓红, 赵艳, 李泉. 青藏高原东部若尔盖盆地全新世泥炭地发育和植被变化
中国科学: 地球科学, 2017,47(9):1097-1109.

[本文引用: 1]

[ Sun Xiaohong, Zhao Yan, Li Quan. Holocene peatland debelopment and vegetation changes in the Zoige Basin, eastern Tibetan Plateau
Science China Earth Sceences, 2017,47(9):1097-1109.]. DOI: CNKI: SUN: JDXK.0.2017-09-009.

[本文引用: 1]

Menking K M. Climatic signals in clay mineralogy and grain-size variations in Owens lake core OL-92, southeast California
Special Paper of the Geological Society of America, 1997,317:25-36. DOI: 10.1130/0-8137-2317-5.25.

[本文引用: 1]

孙千里, 周杰, 肖举乐. 岱海沉积物粒度特征及其古气候意义
海洋地质与第四纪地质, 2001,21(1):93-95.

[本文引用: 2]

[ Sun Qianli, Zhou Jie, Xiao Jule. Grain size characteristics of lake Daihai sediments and its paleaoenvironment significance
Marine Geology & Quaternary Geology, 2001,21(1):93-95.]. DOI: CNKI: SUN: HYDZ.0.2001-01-018.

[本文引用: 2]

Sly P G. Sedimentary processes in lakes
In: Lerman A, ed. Lakes: Chemistry, Geology, Physics. New York: Springer-Verlag, 1978, 65-89. DOI: 10.1007/978-1-4757-1152-3_3.

[本文引用: 1]

刘玉青, 林晓, 王君波, . 西藏中部当惹雍错湖阶地记录的中晚全新世古气候变化
地理研究, 2017,36(6):1191-1200.

[本文引用: 1]

[ Liu Yuqing, Lin Xiao, Wang Junbo, et al. Paleoclimate changes reflected by like terrace in Tangra Yumco of Central Tibet since middle-late Holocene
Geographical Research, 2017,36(6):1191-1200.]. DOI: 10.11821/dlyj201706016.

[本文引用: 1]

Schulz M, Mudelsee M. REDFIT: Estimating red-noise directly from unevenly spaced paleoclimatic time series
Computer & Geoscience, 2002,28(3):421-426. DOI: 10.1016/S0098-3004(01)00044-9.

[本文引用: 1]

鹿化煜, 安芷生, 刘洪滨, . 洛川黄土记录的最近2500ka东亚冬夏季风变化周期
地质论评, 1998,44(5):553-558.

[本文引用: 2]

[ Lu Huayu, An Zhingsheng, Liu Hongbin, et al. Periodicity of East Asian winter and summer monsoon vonsoon variation during the past 2500 ka recorded by loess deposits at Luochuan on the Central Chinese Loess Plateau
Geological Review, 1998,44(5):553-558.]. DOI: CNKI: SUN: DZLP.0.1998-05-017.

[本文引用: 2]

Fraedrich K. Estimating the dimensions of weather and climate attractors
Journal of the Atmaspheric Sciences, 1986,43:419-432. DOI: 10.1175/1520-0469(1986)043<0419: ETDOWA>2.0.CO;2.

[本文引用: 1]

余志伟, 丁仲礼, 刘东生. 第四纪古气候变化非线性动力学初步研究: 黄土粒度曲线的奇异谱分析
第四纪研究, 1993, (3):214-230.

[本文引用: 2]

[ Yu Zhiwei, Ding Zhongli, Liu Tungsheng. A study on nonlinear dynamics of paleoclimate variations during Quaternary: Singular spectrum analysis of loess grain-size record
Quaternary Sciences, 1998, (3):214-230.]. DOI: CNKI: SUN: DSJJ.0.1993-03-002.

[本文引用: 2]

Ding Z L, Yu Z, Rutter N W, et al. Towards an orbital time scale for Chinese loess deposits
Quaternary Science Reviews, 1994,13(1):39-44. DOI: 10.1016/0277-3791(94)90124-4.

[本文引用: 1]

Mclntyre A, Molfinot B. Forcing of Atlantic equatorial and subpolar millennial cycles by precession
Science, 1996,274(5294):1867-1870. DOI: 10.1126/science.274.5294.1867.

[本文引用: 1]

Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640000 years and ice age terminations
Nature, 2016,534(7609):640-646. DOI: 10.1038/nature18591.

DOI:10.1038/nature18591URLPMID:27357793 [本文引用: 1]
Oxygen isotope records from Chinese caves characterize changes in both the Asian monsoon and global climate. Here, using our new speleothem data, we extend the Chinese record to cover the full uranium/thorium dating range, that is, the past 640,000 years. The record's length and temporal precision allow us to test the idea that insolation changes caused by the Earth's precession drove the terminations of each of the last seven ice ages as well as the millennia-long intervals of reduced monsoon rainfall associated with each of the terminations. On the basis of our record's timing, the terminations are separated by four or five precession cycles, supporting the idea that the '100,000-year' ice age cycle is an average of discrete numbers of precession cycles. Furthermore, the suborbital component of monsoon rainfall variability exhibits power in both the precession and obliquity bands, and is nearly in anti-phase with summer boreal insolation. These observations indicate that insolation, in part, sets the pace of the occurrence of millennial-scale events, including those associated with terminations and 'unfinished terminations'.

Yuan D X, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian Monsoon
Science, 2004,304(5670):575-578. DOI: 10.1126/science.1091220.

[本文引用: 1]

Derbyshire E, Kemp R A, Meng X M. Variations in loess and palaeosol properties as indicators of palaeoclimatic gradients across the Loess Plateau of Northern China
Quaternary Science Reviews, 1995,14(7-8):681-697. DOI: 10.1016/0277-3791(95)00077-1.

[本文引用: 1]

Kutzbach J. E. Monsoon climate of the early Holocene: Climate experiment with the Earth's orbital parameters for 9000 years ago
Science, 1981,214(4516):59-61. DOI: 10.1126/science.214.4516.59.

URLPMID:17802573 [本文引用: 1]

Shi Yafeng, Liu Xiaodong, Li Bingyuan, et al. A very strong summer monsoon event during 30-40 ka BP in the Qinghai Xizang (Tibet) Plateau and its relation to precessional cycle
Chinese Science Bulletin, 1999,44(20):1851-1857. DOI: 10.1007/BF02886339.

[本文引用: 1]

Bansod S D, Yin Z Y, Lin Z, et al. Thermal field over Tibetan Plateau and Indian summer monsoon rainfall
International Journal of Climatology, 2003,23(13):1589-1605. DOI: 10.1002/joc.953.

[本文引用: 1]

Sato T. Influences of subtropical jet and Tibetan Plateau on precipitation pattern in Asia: Insights from regional climate modeling
Quaternary International, 2009,192(1-2):148-158. DOI: 10.1016/j.quaint.2008.07.008.

[本文引用: 1]

Berger A, Loutre M F. Intertropical latitudes and precessional and half-precessional cycles
Science, 1997,278(5342):1476-1478. DOI: 10.1126/science.278.5342.1476.

[本文引用: 3]

Gupta S M. Orbital frequencies in radiolarian assemblages of the central Indian Ocean: Implications on the Indian sum mer monsoon
Palaeogeography, Palaeoclimatology, Palaeoecology, 2003,197(1-2):97-112. DOI: 10.1016/S0031-0182(03)00388-2.

[本文引用: 1]

Hagelberg T K, Bond G, deMenocal P. Milankovitch band forcing of sub-Milankovitch climate variability during the Pleistocene
Paleoceanography, 1994,9(4):545-558. DOI: 10.1029/94PA00443.

[本文引用: 1]

Rutherford S, D'Hondt S. Early onset and tropical forcing of 100000-year Pleistocene glacial cycles
Nature, 2000,408(6808):72-75. DOI: https://doi.org/10.1038/35040533.

URLPMID:11081508 [本文引用: 1]

Yiou P, Ghil M, Jousel J, et al. Nonlinear variability of the climatic system from singular and power spectral of Late Quaternary records
Climatic Dynamic, 1994,9(8):371-389. DOI: 10.1007/bf00207933.

[本文引用: 1]

Berger W H, Bickert T, Jansen E. The central mystery of the Quaternary Ice Age
Oceanus, 1993,36(4):53-56.

[本文引用: 1]

Paillard D. The timing of Pleistocene glaciations from a simple multiple-state climate model
Nature, 1998,391(6665):378-381. DOI: 10.1038/34891.

[本文引用: 1]

Schefuss E, Schouten S, Fred Jansen J H, et al. African vegetation controlled by tropical sea surface temperatures in the mid-Pleistocene period
Nature, 2003,422(6930):418-421. DOI: 10.1038/nature01500.

URLPMID:12660780 [本文引用: 1]

Prell W L. Oxygen and carbon isotope stratigraphy for the Quaternary of Hole 502B: Evidence for two modes of isotopic variability. in: W.L. Prell and J.V. Gardner et al. (eds.), Initial Reports of the Deep Sea Drilling Project (U.S. Govt. Printing Office), 1982,68:455-464. DOI: 10.2973/dsdp.proc.68.120.1982.
[本文引用: 1]

Liu T S, Ding Z L, Rutter N. Comparison of Milankovitch periods between continental loess and deep sea records over the last 2.5Ma
Quaternary Science Reviews, 1999,18(10-11):1205-1212. DOI: 10.1016/S0277-3791(98)00110-3.

[本文引用: 1]

Clark P U, Archer D, Pollard D, et al. The Middle Pleistocene Transition: Characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2
Quaternary Science Reviews, 2006,25(23-24):3150-3184. DOI: 10.1016/j.quascirev.2006.07.008.

[本文引用: 1]

Berger W H, Jansen E. Mid-Pleistocene climate shift: The Nansen connection
Geophysical Monograph, 1994,84:295-311. DOI: 10.1029/GM085p0295.

[本文引用: 1]

Clark P U, Alley R B, Pollard D. Northern hemisphere ice-sheet influences on global climate change
Science, 1999,286(5442):1104-1111. DOI: 10.1126/science.286.5442.1104.

[本文引用: 1]

Shackleton N J. The 100000-year ice age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity
Science, 2000,289(5486):1897-1902. DOI: 10.1126/science.289.5486.1897.

DOI:10.1126/science.289.5486.1897URLPMID:10988063 [本文引用: 1]
The deep-sea sediment oxygen isotopic composition (delta(18)O) record is dominated by a 100,000-year cyclicity that is universally interpreted as the main ice-age rhythm. Here, the ice volume component of this delta(18)O signal was extracted by using the record of delta(18)O in atmospheric oxygen trapped in Antarctic ice at Vostok, precisely orbitally tuned. The benthic marine delta(18)O record is heavily contaminated by the effect of deep-water temperature variability, but by using the Vostok record, the delta(18)O signals of ice volume, deep-water temperature, and additional processes affecting air delta(18)O (that is, a varying Dole effect) were separated. At the 100,000-year period, atmospheric carbon dioxide, Vostok air temperature, and deep-water temperature are in phase with orbital eccentricity, whereas ice volume lags these three variables. Hence, the 100,000-year cycle does not arise from ice sheet dynamics; instead, it is probably the response of the global carbon cycle that generates the eccentricity signal by causing changes in atmospheric carbon dioxide concentration.

Liu Tungsheng, Ding Zhongli. Stepwise coupling of monsoon circulations to global ice volume variations during the late Cenozoic
Global and Planetary Change, 1993,7(1-3):119-130. DOI: 10.1016/0921-8181(93)90044-O.

[本文引用: 1]

李吉均, 方小敏. 青藏高原隆起与环境变化研究
科学通报, 1998,43(15):1569-1574.

[本文引用: 1]

[ Li Jijun, Fang Xiaomin. Uplift of Qinghai-Xizang Plateau and study on the changes of the environment
Chinese Science Bulletin, 1998,43(15):1569-1574.]. DOI: CNKI: SUN: KXTB.0.1998-15-000.

[本文引用: 1]

崔之久, 伍永秋, 刘耕年, . 关于"昆仑-黄河运动"
中国科学(D辑), 1998,16(l):53-60.

[本文引用: 1]

[ Cui Zhijiu, Wu Yongqiu, Liu Gengnian, et al. On Kunlun-Yellow River tectonic movement
Science in China (Series D), 1998,28(1):53-60.]. DOI: CNKI: SUN: JDXK.0.1998-01-009.

[本文引用: 1]

相关话题/信号 青藏高原 环境 指标 地球