刘朝顺,,
高炜
华东师范大学地理信息科学教育部重点实验室/华东师范大学地理科学学院/华东师范大学中国科学院对地观测与数字地球学中心环境遥感与数据同化联合实验室 上海 200241
基金项目: 地理信息科学教育部重点实验室主任基金项目KLGIS2011C06
上海市自然科学基金17ZR1408600
详细信息
作者简介:江铭诺, 主要研究方向为气候变化对作物的影响。E-mail:15999777209@139.com
通讯作者:刘朝顺, 主要研究方向为气候变化对作物的影响。E-mail:csliu@re.ecnu.edu.cn
中图分类号:S162.3计量
文章访问数:786
HTML全文浏览量:1
PDF下载量:858
被引次数:0
出版历程
收稿日期:2017-09-06
录用日期:2018-01-23
刊出日期:2018-06-01
Analysis of spatial and temporal variation in potential summer maize yield and its response to climate change in the North China Plain
JIANG Mingnuo,LIU Chaoshun,,
GAO Wei
Key Laboratory of Geographic Information Science(Ministry of Education), East China Normal University/School of Geographic Science, East China Normal University/Joint Laboratory for Environmental Remote Sensing and Data Assimilation, East China Normal University & Center for Earth Observation and Digital Earth, Chinese Academy of Sciences, Shanghai 200241, China
Funds: the Open Fund of Key Laboratory of Geographic Information Science of Ministry of Education of ChinaKLGIS2011C06
the Natural Science Foundation of Shanghai, China17ZR1408600
More Information
Corresponding author:LIU Chaoshun, E-mail: csliu@re.ecnu.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:华北平原是我国的粮食主产区,为探讨气候变化可能对该地区粮食产量产生的影响,本文以中国科学院青藏高原研究所的中国区域地面气象要素数据集为基础,对作物生长模型WOFOST(WOrld FOod STudy)进行面域化,模拟华北平原1979—2015年夏玉米的生长情况;利用一元线性回归、经验正交分解(EOF)分析了华北平原夏玉米潜在产量的时空变化,利用逐个栅格相关性分析、奇异值分解(SVD)分析了华北平原不同区域夏玉米潜在产量与全生育期、吐丝前和吐丝后平均温度及日均太阳总辐射的相关性。结果表明,研究区夏玉米潜在产量大致呈现从南向北逐渐升高的特点,大部分地区夏玉米潜在产量为7 000~9 000 kg·hm-2;研究区西北部夏玉米潜在产量波动较大,波动较小的地区在北京南部、天津以及河北中部一带,标准差在500 kg·hm-2以下;研究区西北部及河北唐山北部以及山东半岛东部夏玉米潜在产量呈上升趋势,这些地区的夏玉米潜在产量上升幅度大部分在200~600 kg·hm-2·(10a)-1;研究区的其余大部分地区夏玉米潜在产量呈下降趋势,其中河北中南部、天津、鲁西北以及皖北的部分区域下降较明显,变化幅度在-250 kg·hm-2·(10a)-1左右。河北西部和东北部、北京西北部以及山东中部和东部等地区的夏玉米潜在产量与气温具有较显著的相关关系,相关系数在0.9以上,这些地区的夏玉米潜在产量在过去37年呈上升趋势,表明这些地区夏玉米潜在产量的增加可能是由气温上升导致的。北京东部和南部、天津、河北中南部及秦皇岛唐山南部、山东、河南东部、皖北和苏北等地区的夏玉米潜在产量与太阳总辐射具有较好的相关关系,相关系数在0.8左右,其中,吐丝后通过显著性检验的区域较吐丝前大,相关系数也较吐丝前大,该区域大部分地区夏玉米潜在产量呈下降趋势,可能是由该区域太阳总辐射下降导致的,且总辐射的下降主要对夏玉米的生殖生长阶段构成影响。总的来说,研究区夏玉米潜在产量上升的区域与温度的上升有关,温度的变化是这些地区夏玉米潜在产量变化的主导因子;研究区夏玉米潜在产量下降的区域与太阳总辐射的下降有关,太阳总辐射的变化是这些地区夏玉米潜在产量变化的主导因子。因此,气候变化背景下针对华北平原不同地区制定不同的合理应对措施显得尤为重要。
关键词:气候变化/
华北平原/
夏玉米潜在产量/
WOFOST模型/
温度/
太阳总辐射
Abstract:The North China Plain is a major food producing region in China and climate change could have beneficial or unbeneficial effects on food production in the region. To accurately assess the effect of climate change on potential yield of summer maize in different regions in the North China Plain, we simulated the growth of summer maize in the plain for the period 1979-2015 using regional implementation crop growth model WOFOST (WOrld FOod STudy). We also used China Meteorological Forcing Data (form the Institute of Tibetan Plateau Research of Chinese Academy of Science) as weather data input for the crop growth model. To analyze the spatial and temporal variations in potential summer maize yield in the North China Plain, simple linear regression and empirical orthogonal decomposition (EOF) methods were applied. Using grid-by-grid correlation analysis and singular value decomposition (SVD) methods, we analyzed the correlations between potential summer maize yield and temperature and the correlations between the potential summer maize yield and total daily solar radiation during the whole growth period, pre-silking stage and post-silking stage of maize. The results showed that potential summer maize yield generally increased from south to north in the range of 7 000-9 000 kg·hm-2. While potential summer maize yield in the northwest part of the study area was more volatile, yield fluctuation was small in southern Beijing, Tianjin and central Hebei Province, with standard deviation less than 500 kg·hm-2. Potential summer maize yield in northern Tangshan of Hebei Province, northwestern part of the study area and the eastern part of Shandong Peninsula had a fluctuating increasing trend for the study period, with a range of 200-600 kg·hm-2·(10a)-1 in most of these regions. Potential summer maize yield in the rest of the study area decreased, especially in central and southern Hebei Province, Tianjin, northwestern Shandong Province, northern Anhui Province, which was around 250 kg·hm-2·(10a)-1. Potential summer maize yield in western and northeastern parts of Hebei Province, northwestern part of Beijing and central and eastern parts of Shandong Province had a significant positive correlation (R=0.9) with temperature. Summer maize yield in these areas had increased over the past 37 years. The analysis suggested that the increase in summer maize yield in those places were driven by rising temperatures. Potential yield in southern and eastern parts of Beijing, Tianjin, central and southern parts of Hebei Province, southern parts of Tangshan and Qinhuangdao of Hebei Province, Shandong Province, eastern part of Henan Province, northern part of Anhui Province and northern part of Jiangsu Province had a significant positive correlation (R=0.8) with total solar radiation. At the same time, the shaded area of 99% confidence level (based on Student's t-test) for the post-silking stage was larger than that for the pre-silking stage. Also the correlation coefficients were more significant for the post-silking stage. Potential summer maize yield in most of these regions was on the decline, which was caused by the decline in total solar radiation in the regions. Furthermore, total radiation reduction mainly influenced the reproductive stage of summer maize. In conclusion, increase in temperature was the main factor driving the increase in potential summer maize yield. Also the decreasing total solar radiation was the main factor driving the decrease in potential summer yield in the North China Plain.
Key words:Climate change/
North China Plain/
Potential summer maize yield/
WOFOST model/
Temperature/
Total solar radiation
HTML全文

图1华北平原研究区及农业气象试验站分布
Figure1.Study area of the North China Plain and distribution of agrometeorological stations


图2华北平原农业气象试验站多年灌溉夏玉米实测产量与WOFOST模拟潜在产量结果对比
对角线为1:1线; 虚线为相对于1:1线±25%的偏离。
Figure2.Observed yield and simulated potential summer maize yields of agrometeorological stations in the North China Plain
Diagonal solid line is 1:1 ratio; dotted lines show ±25% deviation from 1:1 line.


图31979—2015年华北平原气温倾向率分布图(a:玉米全生育期; b:玉米吐丝前; c:玉米吐丝后)
白色区域表示未通过0.01水平的显著性检验。
Figure3.Spatial distributions about mean temperature tendency in the North China Plain from 1979 to 2015 (a: entire crop cycle of amize; b: pre-silking phase of maize; c: post-silking phase of maize)
Colored area means P ≤ 0.01.


图41979—2015年华北平原日均太阳总辐射倾向率分布图(a:玉米全生育期; b:玉米吐丝前; c:玉米吐丝后)
白色区域表示未通过0.01水平的显著性检验。
Figure4.Spatial distribution about mean daily total solar radiation tendency in the North China Plain from 1979 to 2015 (a: entire crop cycle of maize; b: pre-silking phase of maize; c: post-silking phase of maize)
colored area means P ≤ 0.01.


图5WOFOST模型模拟的1979—2015年华北平原夏玉米平均潜在产量分布图
Figure5.Spatial distribution of mean potential summer maize yield simulated with WOFOST model in the North China Plain (1979-2015)


图6WOFOST模型模拟的1979—2015年华北平原夏玉米潜在产量标准偏差(a)及产量倾向率(b)分布图
Figure6.Spatial distribution of standard deviation (a) and tendency (b) of potential summer maize yield simulated with WOFOST model in the North China Plain from 1979 to 2015


图7华北平原夏玉米潜在产量经验正交分解(EOF)分析第1(a)和第2(b)特征向量空间分布
Figure7.Spatial pattern of EOF1 (a) and EOF2 (b) for potential summer maize yield in the North China Plain


图81979—2015年华北平原夏玉米潜在产量经验正交分解(EOF)分析第1模态时间系数(a)和第2模态时间系数(b)图
Figure8.Time coefficients of EOF1 (a) and EOF2 (b) for potential summer maize yield in the North China Plain from 1979 to 2015


图91979—2015年华北平原通过显著性检验的温度与夏玉米潜在产量相关系数分布图(a:全生育期; b:吐丝前; c:吐丝后)
白色区域表示未通过0.01水平的显著性检验。
Figure9.Spatial distribution of correlation coefficients between temperature and potential summer maize yield in the North China Plain from 1979 to 2015 (a: entire crop cycle; b: pre-silking phase; c: post-silking phase.)
Colored area means P ≤ 0.01.


图10SVD分析第1模态华北平原夏玉米潜在产量(a)和平均温度(b)异性相关性分布
Figure10.Heterogeneous correlation patterns for the first mode of potential summer maize yield (a) and mean temperature (b) of SVD analysis in the North China Plain


图111979—2015年华北平原通过显著性检验的日均太阳总辐射与夏玉米潜在产量相关系数分布图(a:全生育期; b:吐丝前; c:吐丝后)
白色区域表示未通过0.01水平的显著性检验。
Figure11.Spatial distribution of correlation coefficients between mean daily total solar radiation and summer maize yield in the North China Plain from 1979 to 2015 (a: entire crop cycle; b: pre-silking phase; c: post-silking phase.)
Colored area means P ≤ 0.01.


图12第1模态华北平原夏玉米潜在产量(a)和太阳总辐射(b)异性相关性分布
Figure12.Heterogeneous correlation patterns for the first mode of potential summer maize yield (a) and mean daily total solar radiation (b) of SVD analysis in the North China Plain

表1华北平原夏玉米潜在产量与平均温度奇异值分解(SVD)分析结果
Table1.Singular value decomposition (SVD) expansion of potential summer maize yield and mean temperature in the North China Plain
模态序号 Mode | 方差贡献率 Variance contribution (%) | 累积方差贡献率 Cumulative variance (%) | 时间相关系数 Time correlation coefficients |
1 | 84.14 | 84.14 | 0.94 |
2 | 11.43 | 95.57 | 0.75 |
3 | 2.38 | 97.95 | 0.82 |

表2华北平原夏玉米潜在产量与日均总辐射奇异值分解(SVD)分析结果
Table2.Singular value decomposition (SVD) expansion of potential summer maize yield and mean daily total solar radiation in the North China Plain
模态序号 Mode | 方差贡献率 Variance contribution (%) | 累积方差贡献率 Cumulative variance (%) | 时间相关系数 Time correlation coefficients |
1 | 93.12 | 93.12 | 0.88 |
2 | 2.76 | 95.88 | 0.70 |
3 | 1.51 | 97.39 | 0.74 |

参考文献
[1] | 张岩. 中国黄淮海夏玉米区玉米光温生产潜力时空演变特征模拟分析[D]. 南京: 南京农业大学, 2013: 2-13 http://cdmd.cnki.com.cn/Article/CDMD-10307-1014216875.htm ZHANG Y. Simulation analysis of the temporal and spatial changing trends of photo-thermal yields of summer maize in Huang-Huai-Hai area of China[D]. Nanjing: Nanjing Agri-cultural University, 2013: 2-13 http://cdmd.cnki.com.cn/Article/CDMD-10307-1014216875.htm |
[2] | Stocker T F, Qin D, Plattner G K, et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmen-tal[M]. Cambridge, United Kingdom and New York, USA: Panel on Climate Change Cambridge University Press, 2013 |
[3] | 孟林, 刘新建, 邬定荣, 等.华北平原夏玉米主要生育期对气候变化的响应[J].中国农业气象, 2015, 36(4):375-382 http://mall.cnki.net/magazine/Article/ZNTB201333012.htm MENG L, LIU X J, WU D R, et al. Responses of summer maize main phenology to climate change in the North China Plain[J]. Chinese Journal of Agrometeorology, 2015, 36(4):375-382 http://mall.cnki.net/magazine/Article/ZNTB201333012.htm |
[4] | WILD M. Enlightening global dimming and brightening[J]. Bulletin of the American Meteorological Society, 2012, 93(1):27-37 doi: 10.1175/BAMS-D-11-00074.1 |
[5] | 张祎, 赵艳霞.多模式集合模拟气候变化对玉米产量的影响[J].中国生态农业学报, 2017, 25(6):941-948 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170618&flag=1 ZHANG Y, ZHAO Y X. Multi-model ensemble for simulation of the impact of climate change on maize yield[J]. Chinese Journal of Eco-Agriculture, 2017, 25(6):941-948 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170618&flag=1 |
[6] | 孙宏勇, 张喜英, 陈素英, 等.气象因子变化对华北平原夏玉米产量的影响[J].中国农业气象, 2009, 30(2):215-218 http://www.irgrid.ac.cn/handle/1471x/527488 SUN H Y, ZHANG X Y, CHEN S Y, et al. Effect of meteoro-logical factors on grain yield of summer maize in the North China Plain[J]. Chinese Journal of Agrometeorology, 2009, 30(2):215-218 http://www.irgrid.ac.cn/handle/1471x/527488 |
[7] | 周梦子, 王会军, 霍治国.极端高温天气对玉米产量的影响及其与大气环流和海温的关系[J].气候与环境研究, 2017, 22(2):134-148 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200811010053.htm ZHOU M Z, WANG H J, HUO Z G. The influence of heat stress on maize yield and its association with atmospheric general circulation and sea surface temperature[J]. Climatic and Environmental Research, 2017, 22(2):134-148 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200811010053.htm |
[8] | 陆伟婷, 于欢, 曹胜男, 等.近20年黄淮海地区气候变暖对夏玉米生育进程及产量的影响[J].中国农业科学, 2015, 48(16):3132-3245 doi: 10.3864/j.issn.0578-1752.2015.16.004 LU W T, YU H, CAO S N, et al. Effects of climate warming on growth process and yield of summer maize in Huang-Huai-Hai Plain in last 20 years[J]. Scientia Agricultura Sinica, 2015, 48(16):3132-3145 doi: 10.3864/j.issn.0578-1752.2015.16.004 |
[9] | KASSIE B T, VAN ITTERSUM M K, HENGSDIJK H, et al. Climate-induced yield variability and yield gaps of maize (Zea mays L.) in the Central Rift Valley of Ethiopia[J]. Field Crops Research, 2014, 160:41-53 doi: 10.1016/j.fcr.2014.02.010 |
[10] | GRASSINI P, YANG H S, CASSMAN K C. Limits to maize productivity in Western Corn-Belt:A simulation analysis for fully irrigated and rainfed conditions[J]. Agricultural and Forest Meteorology, 2009, 149(8):1254-1265 doi: 10.1016/j.agrformet.2009.02.012 |
[11] | TOLLENAAR M, FRIDGEN J, TYAGI P, et al. The contribution of solar brightening to the US maize yield trend[J]. Nature Climate Change, 2017, 7(4):275-278 doi: 10.1038/nclimate3234 |
[12] | 王泓霏, 陈新平, 崔振岭, 等.气候变化对邢台夏玉米的影响及品种适应性[J].应用生态学报, 2014, 25(1):155-161 http://www.cjae.net/CN/abstract/abstract19388.shtml WANG H F, CHEN X P, CUI Z L, et al. Impacts of climate change on summer maize production and adaptive selection of varieties in Xingtai County, Hebei, China[J]. Chinese Journal of Applied Ecology, 2014, 25(1):155-161 http://www.cjae.net/CN/abstract/abstract19388.shtml |
[13] | 钟新科, 刘洛, 徐新良, 等.近30年中国玉米气候生产潜力时空变化特征[J].农业工程学报, 2012, 28(15):94-101 https://www.cnki.com.cn/qikan-NYGU201215018.html ZHONG X K, LIU L, XU X L, et al. Characteristics of spa-tial-temporal variation of maize climate productivity during last 30 years in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(15):94-101 https://www.cnki.com.cn/qikan-NYGU201215018.html |
[14] | 葛亚宁, 刘洛, 徐新良, 等.近50a气候变化背景下我国玉米生产潜力时空演变特征[J].自然资源学报, 2015, 30(5):784-795 doi: 10.11849/zrzyxb.2015.05.007 GE Y N, LIU L, XU X L, et al. Temporal and spatial varia-tions of Chinese maize production potential on the back-ground of climate change during 1960-2010[J]. Journal of Natural Resources, 2015, 30(5):784-795 doi: 10.11849/zrzyxb.2015.05.007 |
[15] | 黄川容, 刘洪.气候变化对黄淮海平原冬小麦与夏玉米生产潜力的影响[J].中国农业气象, 2011, 32(S1):118-123 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY2011S1029.htm HUANG C R, LIU H. The effect of the climate change on potential productivity of winter wheat and summer maize in the Huang-Huai-Hai Plain[J]. Chinese Journal of Agromete-orology, 2011, 32(S1):118-123 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY2011S1029.htm |
[16] | 刘玲, 刘建栋, 邬定荣, 等.华北平原夏玉米生产潜力数值模拟及其自然正交分析[J].中国农学通报, 2013, 29(33):85-93 https://wenku.baidu.com/view/50e5850eb207e87101f69e3143323968001cf45e.html LIU L, LIU J D, WU D R, et al. EOF analysis of the potential yield based on the simulation results of summer maize growth in the North China Plain[J]. Chinese Agricultural Science Bulletin, 2013, 29(33):85-93 https://wenku.baidu.com/view/50e5850eb207e87101f69e3143323968001cf45e.html |
[17] | LIU S X, MO X G, LIN Z H, et al. Crop yield responses to climate change in the Huang-Huai-Hai Plain of China[J]. Ag-ricultural Water Management, 2010, 97(8):1195-1209 doi: 10.1016/j.agwat.2010.03.001 |
[18] | WU D R, YU Q, LU C H, et al. Quantifying production po-tentials of winter wheat in the North China Plain[J]. European Journal of Agronomy, 2006, 24(3):226-235 doi: 10.1016/j.eja.2005.06.001 |
[19] | BINDER J, GRAEFF S, LINK J, et al. Model-based approach to quantify production potentials of summer maize and spring maize in the North China Plain[J]. Agronomy Journal, 2008, 100(3):862-873 doi: 10.2134/agronj2007.0226 |
[20] | CHEN Y Y, YANG K, HE J, et al. Improving land surface temperature modeling for dry land of China[J]. Journal of Geophysical Research:Atmospheres, 2011, 116(D20):D20104 doi: 10.1029/2011JD015921 |
[21] | BOOGAARD H, WOLF J, SUPIT I, et al. A regional imple-mentation of WOFOST for calculating yield gaps of au-tumn-sown wheat across the European Union[J]. Field Crops Research, 2013, 143:130-142 doi: 10.1016/j.fcr.2012.11.005 |
[22] | 王占彪, 王猛, 尹小刚, 等.气候变化背景下华北平原夏玉米各生育期水热时空变化特征[J].中国生态农业学报, 2015, 23(4):473-481 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015411&flag=1 WANG Z B, WANG M, YIN X G, et al. Spatiotemporal char-acteristics of heat and rainfall changes in summer maize sea-son under climate change in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2015, 23(4):473-481 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015411&flag=1 |
[23] | MA G N, HUANG J X, WU W B, et al. Assimilation of MODIS-LAI into the WOFOST model for forecasting regional winter wheat yield[J]. Mathematical and Computer Modelling, 2013, 58(3/4):634-643 http://cn.bing.com/academic/profile?id=8e333234c11caa14dd658fcd517df0fa&encoded=0&v=paper_preview&mkt=zh-cn |
[24] | 邵立威, 罗建美, 尹工超, 等.河北低平原区冬小麦夏玉米产量提升的理论与技术研究[J].中国生态农业学报, 2016, 24(8):1114-1122 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016813&flag=1 SHAO L W, LUO J M, YIN G C, et al. Research on exploiting wheat-maize grain yield theory and technology in the eastern low plain of Hebei Province[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8):1114-1122 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016813&flag=1 |
[25] | WANG J, LI X, LU L, et al. Parameter sensitivity analysis of crop growth models based on the extended Fourier Amplitude Sensitivity Test method[J]. Environmental Modelling & Software, 2013, 48:171-182 http://cn.bing.com/academic/profile?id=6c4b35a8972d55dc68801b2cb14ba86e&encoded=0&v=paper_preview&mkt=zh-cn |
[26] | MA H Y, HUANG J X, ZHU D H, et al. Estimating regional winter wheat yield by assimilation of time series of HJ-1 CCD NDVI into WOFOST-ACRM model with Ensemble Kalman Filter[J]. Mathematical and Computer Modelling, 2013, 58(3/4):759-770 http://cn.bing.com/academic/profile?id=9811424ed8be1eea3da81d3a3373fe18&encoded=0&v=paper_preview&mkt=zh-cn |
[27] | LI Y, ZHOU Q G, ZHOU J, et al. Assimilating remote sensing information into a coupled hydrology-crop growth model to estimate regional maize yield in arid regions[J]. Ecological Modelling, 2014, 291:15-27 doi: 10.1016/j.ecolmodel.2014.07.013 |
[28] | STOL W, ROUSE D I, KRAALINGEN D W G V, et al. FSEOPT a FORTRAN program for calibration and uncertain-ty analysis of simulation models[J]. European Urology Sup-plements, 1992, 6(1992):229 http://www.worldcat.org/title/fseopt-a-fortran-program-for-calibration-and-uncertainty-analysis-of-simulation-models/oclc/41366906 |
[29] | 房世波, 沈斌, 谭凯炎, 等.大气[CO2]和温度升高对农作物生理及生产的影响[J].中国生态农业学报, 2010, 18(5):1116-1124 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=201051116&flag=1 FANG S B, SHEN B, TAN K Y, et al. Effect of elevated CO2 concentration and increased temperature on physiology and production of crops[J]. Chinese Journal of Eco-Agriculture, 2010, 18(5):1116-1124 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=201051116&flag=1 |
[30] | CHALLINOR A J, KOEHLER A K, RAMIREZ-VILLEGAS J, et al. Current warming will reduce yields unless maize breeding and seed systems adapt immediately[J]. Nature Climate Change, 2016, 6(10):954-958 doi: 10.1038/nclimate3061 |