在农业生产中,大量施用氮肥一直是水稻、小麦等农作物增产的重要措施。然而,氮肥的使用量逐年增加并未带来农作物产量的大幅提高,经济效益和生态效益反而呈下降趋势。因此,培育氮肥高效利用的新品种是降低生产成本、减少环境污染、绿色高效提高水稻、小麦等农作物产量的一种有效途经。
8月16日,英国《自然》杂志以研究长文形式在线发表了中国科学院遗传与发育生物学研究所傅向东研究组关于赤霉素信号传导途径调控植物氮肥高效利用的最新研究进展。该项成果进一步深入了我们对于植物生长与代谢协同调控机制的认识,从而找到了一条在保证粮食总产量不断提高的同时,提高了氮肥利用效率,降低了生产投入成本,减少了对环境造成的污染的可持续发展农业新途径。
上世纪60年代,以半矮化育种为特征的第一次“绿色革命”,使得全世界水稻和小麦产量翻了一番。“绿色革命”最明显的特征是水稻和小麦植株半矮化,提高了收获指数,解决了因大量施肥导致的植株倒伏和减产问题,从而实现了水稻和小麦单产的大幅度提升。目前这些半矮化、耐高肥、抗倒伏的品种类型在当前小麦和水稻作物育种中仍然占据主导地位。但是,携带“绿色革命”基因的农作物中抑制植物生长的DELLA蛋白高水平积累,导致其对氮肥响应减弱和利用效率下降。目前,我国水稻氮肥利用率平均只有35%。为了提高水稻产量,不得不大量使用氮肥。中国水稻种植面积占世界水稻种植面积的20%,但中国水稻氮肥用量却占全球水稻氮肥总用量的37%。持续大量的氮肥投入,不仅浪费了资源和能源,而且加剧了土壤酸化、水体富营养化和农业温室气体排放等一系列生态环境污染问题。
在科技部、中科院和基金委的大力支持下,历时6年的协作与攻关,从携带“绿色革命”基因的水稻资源材料中筛选到一个氮素吸收速率显著增加的新品系,通过QTL定位、图位克隆等技术获得了氮肥高效利用的关键基因GRF4。尽管GRF4之前就被证实是可能参与了赤霉素信号传递途径,对植物生长发育起重要调控作用,但具体分子机制不是很清楚。该研究证实了GRF4是一个植物碳-氮代谢的正调控因子,可以促进氮素吸收、同化和转运途径,以及光合作用、糖类物质代谢和转运等,进而促进植物生长发育。研究还发现了一个新型的优异等位基因GRF4ngr2,将这个等位变异位点导入当前高产主栽高产水稻和小麦品种后,不仅提高其氮肥利用效率,同时还可保持其优良的半矮化和高产特性,最终导致水稻和小麦在适当减少施氮肥条件下获得更高的产量。
研究还证实了GRF4是赤霉素信号传递途径的一个关键元件,它能与DELLA蛋白互作。赤霉素通过促进DELLA蛋白降解,进而增强GRF4转录激活活性,实现植物叶片光合碳固定能力和根系氮吸收能力的协同调控,从而维持植物碳-氮代谢平衡。DELLA蛋白的积累导致了第一次“绿色革命”,实现了植株半矮化、耐高肥和抗倒伏的高产目标,但也伴随着氮肥利用效率的降低。相反,GRF4蛋白的高水平积累能协同提高作物光合作用和氮肥利用效率,但并不改变“绿色革命”的半矮化优良性状,从而实现了在现有高产品种中进一步提升产量和氮肥利用效率。GRF4新功能的发现不仅丰富了我们对于赤霉素信号传导分子机制的认识,而且从分子水平阐明了“绿色革命”矮杆育种伴随氮肥利用效率低下的原因,并提出了明确的解决方案。名古屋大学松冈信教授在Nature同期“新闻与展望”栏目发表专文评述指出,这项发现为“少投入、多产出”的绿色高产高效农作物新品种培育提供具有重要育种利用价值的新基因资源。
该研究结果于2018年8月16日在线发表于Nature杂志,傅向东研究组博士生李姗为该论文第一作者。该研究得到了中科院战略性先导科技专项、国家重点研究计划、国家自然科学基金委的资助。
图: GA-DELLA-GRF4分子模块调控植物碳-氮代谢平衡和氮肥利用效率
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
傅向东研究组在赤霉素信号途径调控作物氮肥高效利用研究中取得重要进展
本站小编 Free考研/2020-05-26
相关话题/植物 信号
尼克酸可逆甲酯化参与NAD在植物组织间的长距离运输
NAD (尼克酰胺腺嘌呤二核苷酸) 作为电子传递载体(辅酶)参与众多的氧化还原反应而为广大研究人员所熟知。NAD消耗酶的发现再次引起科研人员对其补救合成途径研究的热情。与哺乳动物中的NAD两步补救合成途径不同,在陆生植物中是四步反应的Preiss-Handler途径;同时植物中特异性存在多种尼克酸( ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26Wnt信号通路介导神经到肠道细胞的线粒体应激反应
线粒体不仅是细胞能量供给的中心,也是调控衰老进程以及影响神经退行性疾病的重要细胞器之一。当线粒体功能损伤,将启动细胞内的线粒体未折叠蛋白反应(UPRmt),使线粒体分子伴侣、蛋白酶、代谢相关基因等表达水平上调,重建线粒体稳态平衡。在多细胞的机体内,不同组织之间(神经细胞-肠道细胞)也会感知并协调各自 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26左建儒研究组等揭示植物中一氧化氮调控选择性自噬的新机制
一氧化氮(nitric oxide; NO)是生物体内的一种重要信号分子,参与调控了众多生物学过程。NO发挥生理效应的主要方式是对特定靶蛋白上特异半胱氨酸残基进行翻译后修饰,这个过程称为S-亚硝基化修饰。细胞内NO的水平是决定S-亚硝基化修饰的主要因素之一。S-亚硝基谷胱甘肽(GSNO)是NO在体内 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26高彩霞研究组在植物基因组编辑突变体筛选方法研究中取得新进展
如何快速高效进行突变体检测和鉴定是植物基因组编辑技术迅速发展面临的重要问题之一。目前植物基因组编辑突变检测方法主要包括PCR/RE、T7EI错配切割、临界退火温度PCR (ACT-PCR)、Sanger测序和二代测序(NGS)等。以上所有的检测方法都基于PCR反应,且都有各自的不足之处。PCR/RE ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26储成才研究组发现糖信号通过影响ABA信号传导调节水稻穗发芽
水稻、小麦等禾谷类作物是世界上重要的粮食作物,部分栽培品种由于缺少收获期休眠,收获前籽粒遇到高温高湿等外界条件在穗上会发生胎萌或穗发芽(Pre-harvest sprouting,PHS)现象。穗发芽不仅造成粮食作物的减产,也会导致食用品质的下降,更重要的是,严重影响了制种的质量。因此,穗发芽是影响 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26周俭民研究员应邀在《植物生物学年鉴》杂志撰写关于植物细胞质类受体激酶的综述文章
植物通过其细胞表面的受体蛋白来感知并响应各种信号分子,受体激酶(Receptor Kinase, RK)是植物细胞受体的最主要组成部分。受体激酶由负责感知信号的胞外结构域、单次跨膜结构域和胞内激酶结构域组成。植物受体激酶通过感知各种内源激素和多肽信号来协调生长发育过程,如BRI1能够识别油菜素内酯并 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26张劲松研究组和陈受宜研究组揭示生长素介导乙烯反应的信号转导过程
植物激素生长素和乙烯协同调控植物根的生长。乙烯促进了生长素的合成与运输,生长素受体TIR1/AFB2感受到生长素后,结合并泛素化转录抑制子Aux/IAA蛋白,使其通过26S蛋白酶体途径降解,从而将转录因子ARF释放出来调控下游基因的表达。目前介导乙烯反应的生长素信号过程并不清楚。 中国科学院遗传与 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26李云海研究组等发现糖信号调控植物生长发育的新机制
在植物、动物和细菌中,糖类不仅能作为体内能源和碳骨架的提供者,还作为非常重要的信号分子调控植物的生长发育过程。虽然近年来在动物和酵母中糖揭示了几个糖信号途径,但植物不同于动物和细菌,植物是通过光合作用产生糖类的自营生物,植物体可能通过其它的分子机制来感受糖信号的变化从而调控植物的生长发育。 中国科 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26李家洋研究组应邀在《植物生物学年鉴》杂志撰写“植物株型的遗传调控机制”综述文章
高等植物株型形成是指在植物整个生长发育过程中与植株形态相关器官的发生,尤其是指分枝、叶片和花器官的形成、形状与着生位置等。植物株型的形成过程主要受遗传与植物激素等内在因素的调控,同时还受光周期、温度、水肥等外界环境因素的影响。高等植物株型形成的分子机理是植物生长发育研究的基本科学问题,具有重要的理论 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26李家洋研究组在植物程序性细胞死亡调控上取得重要进展
程序性细胞死亡是一种受到遗传调控的细胞死亡方式,在动植物的生长发育和抵御生物与非生物胁迫过程中均具有重要作用。已有研究表明叶绿体和线粒体都在植物程序性细胞死亡中发挥重要作用,但此二者是否存在信号交流,以及如何协同作用共同调控程序性细胞死亡等方面尚不清楚。此前,中国科学院遗传与发育生物学研究所植物基因 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26