一氧化氮(nitric oxide; NO)是生物体内的一种重要信号分子,参与调控了众多生物学过程。NO发挥生理效应的主要方式是对特定靶蛋白上特异半胱氨酸残基进行翻译后修饰,这个过程称为S-亚硝基化修饰。细胞内NO的水平是决定S-亚硝基化修饰的主要因素之一。S-亚硝基谷胱甘肽(GSNO)是NO在体内的主要生物学活性形式,可被亚硝基化谷胱甘肽还原酶(GSNOR)不可逆分解。因此,高度保守的GSNOR是NO信号途径的主效调节因子。然而,GSNOR活性的调控机制知之甚少。
中国科学院遗传与发育生物学研究所左建儒研究组发现模式植物拟南芥中GSNOR1蛋白在低氧胁迫时发生选择性自噬降解的新机制。ATG8蛋白是自噬途径的关键调控蛋白,而靶蛋白中可以被ATG8识别的特异基序(AIM基序)决定了自噬的选择性。研究人员发现NO介导拟南芥GSNOR1蛋白Cys-10位点发生S-亚硝基化修饰引,诱导GSNOR1蛋白的局部构象变化,促使其AIM基序被暴露出来,进而介导其通过自噬途径被降解。NO介导GSNOR1的选择性自噬降解在种子萌发过程中正调控了植物对低氧胁迫的响应(见图示)。上述研究发现了NO、细胞自噬与低氧胁迫信号途径之间交互调控的新机制。
上述研究由左建儒研究组、中山大学肖仕研究组、中科院遗传发育所黄勋研究组、中国农业科学院水稻所王克剑研究组等合作完成。相关论文于2018年6月28日在Molecular Cell杂志在线发表。左建儒研究组博士后詹妮博士、已毕业博士研究生王春博士为该论文的共同第一作者。该研究得到了国家自然科学基金委、国家科技部、中国科学院以及植物基因组学国家重点实验室的资助。
图:一氧化氮与自噬途径互作调控植物对低氧胁迫响应的工作模型
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
左建儒研究组等揭示植物中一氧化氮调控选择性自噬的新机制
本站小编 Free考研/2020-05-26
相关话题/植物 信号
高彩霞研究组在植物基因组编辑突变体筛选方法研究中取得新进展
如何快速高效进行突变体检测和鉴定是植物基因组编辑技术迅速发展面临的重要问题之一。目前植物基因组编辑突变检测方法主要包括PCR/RE、T7EI错配切割、临界退火温度PCR (ACT-PCR)、Sanger测序和二代测序(NGS)等。以上所有的检测方法都基于PCR反应,且都有各自的不足之处。PCR/RE ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26储成才研究组发现糖信号通过影响ABA信号传导调节水稻穗发芽
水稻、小麦等禾谷类作物是世界上重要的粮食作物,部分栽培品种由于缺少收获期休眠,收获前籽粒遇到高温高湿等外界条件在穗上会发生胎萌或穗发芽(Pre-harvest sprouting,PHS)现象。穗发芽不仅造成粮食作物的减产,也会导致食用品质的下降,更重要的是,严重影响了制种的质量。因此,穗发芽是影响 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26周俭民研究员应邀在《植物生物学年鉴》杂志撰写关于植物细胞质类受体激酶的综述文章
植物通过其细胞表面的受体蛋白来感知并响应各种信号分子,受体激酶(Receptor Kinase, RK)是植物细胞受体的最主要组成部分。受体激酶由负责感知信号的胞外结构域、单次跨膜结构域和胞内激酶结构域组成。植物受体激酶通过感知各种内源激素和多肽信号来协调生长发育过程,如BRI1能够识别油菜素内酯并 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26张劲松研究组和陈受宜研究组揭示生长素介导乙烯反应的信号转导过程
植物激素生长素和乙烯协同调控植物根的生长。乙烯促进了生长素的合成与运输,生长素受体TIR1/AFB2感受到生长素后,结合并泛素化转录抑制子Aux/IAA蛋白,使其通过26S蛋白酶体途径降解,从而将转录因子ARF释放出来调控下游基因的表达。目前介导乙烯反应的生长素信号过程并不清楚。 中国科学院遗传与 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26李云海研究组等发现糖信号调控植物生长发育的新机制
在植物、动物和细菌中,糖类不仅能作为体内能源和碳骨架的提供者,还作为非常重要的信号分子调控植物的生长发育过程。虽然近年来在动物和酵母中糖揭示了几个糖信号途径,但植物不同于动物和细菌,植物是通过光合作用产生糖类的自营生物,植物体可能通过其它的分子机制来感受糖信号的变化从而调控植物的生长发育。 中国科 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26李家洋研究组应邀在《植物生物学年鉴》杂志撰写“植物株型的遗传调控机制”综述文章
高等植物株型形成是指在植物整个生长发育过程中与植株形态相关器官的发生,尤其是指分枝、叶片和花器官的形成、形状与着生位置等。植物株型的形成过程主要受遗传与植物激素等内在因素的调控,同时还受光周期、温度、水肥等外界环境因素的影响。高等植物株型形成的分子机理是植物生长发育研究的基本科学问题,具有重要的理论 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26李家洋研究组在植物程序性细胞死亡调控上取得重要进展
程序性细胞死亡是一种受到遗传调控的细胞死亡方式,在动植物的生长发育和抵御生物与非生物胁迫过程中均具有重要作用。已有研究表明叶绿体和线粒体都在植物程序性细胞死亡中发挥重要作用,但此二者是否存在信号交流,以及如何协同作用共同调控程序性细胞死亡等方面尚不清楚。此前,中国科学院遗传与发育生物学研究所植物基因 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26张劲松研究组和陈受宜研究组揭示乙烯信号转导新调控因子MHZ3的作用机制
乙烯在植物生长发育过程中以及环境应答反应中起着重要的调控作用。EIN2是乙烯信号转导的中心组分,其N端是由12个跨膜区组成的类似于哺乳动物Nramp离子通道的Nramp-like结构域,C端为位于细胞质的亲水结构域。尽管EIN2 C端的生化功能得到了广泛深入研究,即乙烯处理导致C端蛋白从内质网上剪切 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26李云海研究组发现了植物器官大小调控的新机制
植物拟分生细胞(meristemoid cells)是具有干细胞活性的一类细胞,分布在分化和扩展的叶子表皮等细胞之间。在拟南芥的叶片中,有大约一半的表皮细胞来源于拟分生细胞,因此拟分生细胞的增殖对于叶片大小有重要的影响。目前,对于拟分生细胞调控植物器官大小的分子机理尚不清楚。在前期研究中,中国科学院 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26刘西岗研究组在植物激素调控花分生组织维持及分化的分子机制解析中取得新进展
高等植物中,植物体所有胚后发育的组织和器官都来源于各级分生组织。花分生组织(floral meristem, FM)产生及维持是花器官生成及发育的前提,而FM活性的程序性终止(FM determinacy)导致的细胞分化是后续的生殖生长及世代交替的保证,在实际应用中能够保证农作物的产量。分生组织的维 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26