1(湖北科技学院计算机科学与技术学院湖北咸宁437100);2(江西省智慧城市产业技术研究院南昌330096) (liao_haibing@163.com.cn)
出版日期:
2021-03-01基金资助:
国家自然科学基金项目(61701174);咸宁市自然科学基金项目(2019kj130);湖北科技学院培育基金项目(202022GP03)Robust Face Expression Recognition Based on Gender and Age Factor Analysis
Liao Haibin1,2, Xu Bin11(School of Computer Science and Technology, Hubei University of Science and Technology, Xianning, Hubei 437100);2(Jiangxi Smart City Industrial Technology Research Institute, Nanchang 330096)
Online:
2021-03-01Supported by:
This work was supported by the National Natural Science Foundation of China (61701174), the Xianning Municipal Natural Science Foundation (2019kj130), and the Cultivation Foundation of Hubei University of Science and Technology (202022GP03).摘要/Abstract
摘要: 针对非可控环境下人脸表情识别面临的诸如种族、性别和年龄等因子变化问题, 提出一种基于深度条件随机森林的鲁棒性人脸表情识别方法.与传统的单任务人脸表情识别方法不同, 设计了一种以人脸表情识别为主, 人脸性别和年龄属性识别为辅的多任务识别模型.在研究中发现, 人脸性别和年龄等属性对人脸表情识别有一定的影响, 为了捕获它们之间的关系, 提出一种基于人脸性别和年龄双属性的深度条件随机森林人脸表情识别方法.在特征提取阶段, 采用多示例注意力机制进行人脸特征提取以便去除诸如光照、遮挡和低分辨率等变化问题; 在人脸表情识别阶段, 根据人脸性别和年龄双属性因子, 采用多条件随机森林方法进行人脸表情识别.在公开的CK+, ExpW, RAF-DB, AffectNet人脸表情数据库上进行了大量实验:在经典的CK+人脸库上达到99%识别率, 在具有挑战性的自然场景库(ExpW, RAF-DB, AffectNet组合库)上达到70.52%的识别率.实验结果表明:与其他方法相比具有先进性, 对自然场景中的遮挡、噪声和分辨率变化具有一定的鲁棒性.
参考文献
相关文章 15
[1] | 王慧娇, 丛鹏, 蒋华, 韦永壮. 基于深度学习的SIMON32/64安全性分析[J]. 计算机研究与发展, 2021, 58(5): 1056-1064. |
[2] | 潘旭东, 张谧, 颜一帆, 陆逸凡, 杨珉. 通用深度学习语言模型的隐私风险评估[J]. 计算机研究与发展, 2021, 58(5): 1092-1105. |
[3] | 李明慧, 江沛佩, 王骞, 沈超, 李琦. 针对深度学习模型的对抗性攻击与防御[J]. 计算机研究与发展, 2021, 58(5): 909-926. |
[4] | 汪嘉来, 张超, 戚旭衍, 荣易. Windows平台恶意软件智能检测综述[J]. 计算机研究与发展, 2021, 58(5): 977-994. |
[5] | 周纯毅, 陈大卫, 王尚, 付安民, 高艳松. 分布式深度学习隐私与安全攻击研究进展与挑战[J]. 计算机研究与发展, 2021, 58(5): 927-943. |
[6] | 汪烨, 陈骏武, 夏鑫, 姜波. 智能需求获取与建模研究综述[J]. 计算机研究与发展, 2021, 58(4): 683-705. |
[7] | 吴宗友, 白昆龙, 杨林蕊, 王仪琦, 田英杰. 电子病历文本挖掘研究综述[J]. 计算机研究与发展, 2021, 58(3): 513-527. |
[8] | 付章杰, 李恩露, 程旭, 黄永峰, 胡雨婷. 基于深度学习的图像隐写研究进展[J]. 计算机研究与发展, 2021, 58(3): 548-568. |
[9] | 古天龙, 冯旋, 李龙, 包旭光, 李云辉. 基于社会新闻数据集的伦理行为判别方法[J]. 计算机研究与发展, 2021, 58(2): 253-263. |
[10] | 陈晋音, 陈奕芃, 陈一鸣, 郑海斌, 纪守领, 时杰, 程瑶. 面向深度学习的公平性研究综述[J]. 计算机研究与发展, 2021, 58(2): 264-280. |
[11] | 李金鹏, 张闯, 陈小军, 胡玥, 廖鹏程. 自动文本摘要研究综述[J]. 计算机研究与发展, 2021, 58(1): 1-21. |
[12] | 孟子尧, 谷雪, 梁艳春, 许东, 吴春国. 深度神经架构搜索综述[J]. 计算机研究与发展, 2021, 58(1): 22-33. |
[13] | 朱泓睿, 元国军, 姚成吉, 谭光明, 王展, 户忠哲, 张晓扬, 安学军. 分布式深度学习训练网络综述[J]. 计算机研究与发展, 2021, 58(1): 98-115. |
[14] | 王继娜, 陈军华, 高建华. 基于排序损失的ECC多标签代码异味检测方法[J]. 计算机研究与发展, 2021, 58(1): 178-188. |
[15] | 张世琨, 谢睿, 叶蔚, 陈龙. 基于关键词的代码自动摘要[J]. 计算机研究与发展, 2020, 57(9): 1987-2000. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4384