1(烟台大学计算机与控制工程学院 山东烟台 264005);2(纽约州立大学宾汉姆顿分校计算机科学系 纽约州宾汉姆顿市 13902) (qifaxin123@163.com)
出版日期:
2020-06-01基金资助:
国家自然科学基金项目(61572418)Agent Trust Boost via Reinforcement Learning DQN
Qi Faxin1, Tong Xiangrong1, Yu Lei1,21(School of Computer and Control Engineering, Yantai University, Yantai, Shandong 264005);2(Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902)
Online:
2020-06-01Supported by:
This work was supported by the National Natural Science Foundation of China (61572418).摘要/Abstract
摘要: 信任推荐系统是以社交网络为基础的一种重要推荐系统应用,其结合用户之间的信任关系对用户进行项目推荐.但之前的研究一般假定用户之间的信任值固定,无法对用户信任及偏好的动态变化做出及时响应,进而影响推荐效果.实际上,用户接受推荐后,当实际评价高于心理预期时,体验用户对推荐者的信任将增加,反之则下降.针对此问题,并且重点考虑用户间信任变化过程及信任的动态性,提出了一种结合强化学习的用户信任增强方法.因此,使用最小均方误差算法研究评价差值对用户信任的动态影响,利用强化学习方法deep q-learning(DQN)模拟推荐者在推荐过程中学习用户偏好进而提升信任值的过程,并且提出了一个多项式级别的算法来计算信任值和推荐,可激励推荐者学习用户的偏好,并使用户对推荐者的信任始终保持在较高程度.实验表明,方法可快速响应用户偏好的动态变化,当其应用于推荐系统时,相较于其他方法,可为用户提供更及时、更准确的推荐结果.
参考文献
相关文章 15
[1] | 卢海峰, 顾春华, 罗飞, 丁炜超, 杨婷, 郑帅. 基于深度强化学习的移动边缘计算任务卸载研究[J]. 计算机研究与发展, 2020, 57(7): 1539-1554. |
[2] | 范浩, 徐光平, 薛彦兵, 高赞, 张桦. 一种基于强化学习的混合缓存能耗优化与评价[J]. 计算机研究与发展, 2020, 57(6): 1125-1139. |
[3] | 刘辰屹, 徐明伟, 耿男, 张翔. 基于机器学习的智能路由算法综述[J]. 计算机研究与发展, 2020, 57(4): 671-687. |
[4] | 王桂芝, 吕光宏, 贾吾财, 贾创辉, 张建申. 机器学习在SDN路由优化中的应用研究综述[J]. 计算机研究与发展, 2020, 57(4): 688-698. |
[5] | 吴金金, 刘全, 陈松, 闫岩. 一种权重平均值的深度双Q网络方法[J]. 计算机研究与发展, 2020, 57(3): 576-589. |
[6] | 陈红名,刘全,闫岩,何斌,姜玉斌,张琳琳. 基于经验指导的深度确定性多行动者-评论家算法[J]. 计算机研究与发展, 2019, 56(8): 1708-1720. |
[7] | 张文韬,汪璐,程耀东. 基于强化学习的Lustre文件系统的性能调优[J]. 计算机研究与发展, 2019, 56(7): 1578-1586. |
[8] | 章晓芳,周倩,梁斌,徐进. 一种自适应的多臂赌博机算法[J]. 计算机研究与发展, 2019, 56(3): 643-654. |
[9] | 张凯峰,俞扬. 基于逆强化学习的示教学习方法综述[J]. 计算机研究与发展, 2019, 56(2): 254-261. |
[10] | 白辰甲,刘鹏,赵巍,唐降龙. 基于TD-error自适应校正的深度Q学习主动采样方法[J]. 计算机研究与发展, 2019, 56(2): 262-280. |
[11] | 王金迪,童向荣. 融合非稀疏信任网络的时间底限变动的智能体协商模型[J]. 计算机研究与发展, 2019, 56(12): 2612-2622. |
[12] | 杜瑞忠,刘妍,田俊峰. 物联网中基于智能合约的访问控制方法[J]. 计算机研究与发展, 2019, 56(10): 2287-2298. |
[13] | 朱斐,吴文,刘全,伏玉琛. 一种最大置信上界经验采样的深度Q网络方法[J]. 计算机研究与发展, 2018, 55(8): 1694-1705. |
[14] | 王倩,聂秀山,尹义龙. 密集异构网络中基于强化学习的流量卸载算法[J]. 计算机研究与发展, 2018, 55(8): 1706-1716. |
[15] | 任彦冰,李兴华,刘海,程庆丰,马建峰. 基于区块链的分布式物联网信任管理方法研究[J]. 计算机研究与发展, 2018, 55(7): 1462-1478. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4198