删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

异构YANG模型驱动的网络领域知识图谱构建

本站小编 Free考研考试/2022-01-01

董永强1,3,王鑫1,刘永博1,杨望2,3
1(东南大学计算机科学与工程学院 南京 211189);2(东南大学网络空间安全学院 南京 211189);3(计算机网络和信息集成教育部重点实验室(东南大学) 南京 211189) (dongyq@seu.edu.cn)
出版日期: 2020-04-01


基金资助:国家自然科学基金项目(61971131);国家重点研发计划项目(2018YFB1800205)

Building Network Domain Knowledge Graph from Heterogeneous YANG Models

Dong Yongqiang1,3, Wang Xin1, Liu Yongbo1, Yang Wang2,3
1(School of Computer Science and Engineering, Southeast University, Nanjing 211189);2(School of Cyber Science and Engineering, Southeast University, Nanjing 211189);3(Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing 211189)
Online: 2020-04-01


Supported by:This work was supported by the National Natural Science Foundation of China (61971131) and the National Key Research and Development Program of China (2018YFB1800205).




摘要/Abstract


摘要: 随着网络规模持续扩大,复杂且异构的网络环境给网络的自动化配置管理带来了严峻的挑战,现有的网络智能化运维方案缺少知识层面的统一数据模型,难以有效进行网络大数据处理.YANG作为一种数据建模语言,用于对网络配置管理协议NETCONF传输的配置与状态数据进行建模.提出一种YANG模型驱动的网络领域知识图谱构建方案,该方案基于YANG语言规范,提出网络知识本体构建的基本原则,形成包含51个类、70余种属性的本体结构;随后对来自不同标准化组织和厂商的异构YANG模型,进行数据抽取和实例化生成单源知识图谱,进而利用YANG模型之间存在的异构共指特性,采用实体对齐方法建立模型间的语义映射关系,形成网络领域知识图谱.该知识图谱可为网络运维大数据的生成与维护提供统一的语义框架,无须再进行手工的运维本体构建,从而极大地简化网络的配置管理与运行维护,为网络性能优化和异常检测等运维难题提供新的解决思路.






[1]曾维新, 赵翔, 唐九阳, 谭真, 王炜. 基于重排序的迭代式实体对齐[J]. 计算机研究与发展, 2020, 57(7): 1460-1471.
[2]崔员宁, 李静, 沈力, 申扬, 乔林, 薄珏. Duration-HyTE:基于持续时间建模的时间感知知识表示学习方法[J]. 计算机研究与发展, 2020, 57(6): 1239-1251.
[3]刘昱彤, 吴斌, 白婷. 古诗词图谱的构建及分析研究[J]. 计算机研究与发展, 2020, 57(6): 1252-1268.
[4]张莹莹, 钱胜胜, 方全, 徐常胜. 基于多模态知识感知注意力机制的问答方法[J]. 计算机研究与发展, 2020, 57(5): 1037-1045.
[5]王萌, 王靖婷, 江胤霖, 漆桂林. 人机混合的知识图谱主动搜索[J]. 计算机研究与发展, 2020, 57(12): 2501-2513.
[6]姚思雨, 赵天哲, 王瑞杰, 刘均. 规则引导的知识图谱联合嵌入方法[J]. 计算机研究与发展, 2020, 57(12): 2514-2522.
[7]左笑晨,窦志成,黄真,卢淑祺,文继荣. 微博热门话题关联商品品类挖掘[J]. 计算机研究与发展, 2019, 56(9): 1927-1938.
[8]王飞,钱铁云,刘斌,彭智勇. 支持范围查询的低冗余知识图谱管理[J]. 计算机研究与发展, 2019, 56(8): 1758-1771.
[9]王硕,王建华,汤光明,裴庆祺,张玉臣,刘小虎. 一种智能高效的最优渗透路径生成方法[J]. 计算机研究与发展, 2019, 56(5): 929-941.
[10]黄培馨, 赵翔, 方阳, 朱慧明, 肖卫东. 融合对抗训练的端到端知识三元组联合抽取[J]. 计算机研究与发展, 2019, 56(12): 2536-2548.
[11]杜治娟, 杜治蓉, 王璐. 基于相邻和语义亲和力的开放知识图谱表示学习[J]. 计算机研究与发展, 2019, 56(12): 2549-2561.
[12]郑庆华,董博,钱步月,田锋,魏笔凡,张未展,刘均. 智慧教育研究现状与发展趋势[J]. 计算机研究与发展, 2019, 56(1): 209-224.
[13]王倩,聂秀山,尹义龙. 密集异构网络中基于强化学习的流量卸载算法[J]. 计算机研究与发展, 2018, 55(8): 1706-1716.
[14]杨晓慧,万睿,张海滨,曾义夫,刘峤. 基于符号语义映射的知识图谱表示学习算法[J]. 计算机研究与发展, 2018, 55(8): 1773-1784.
[15]张晓冉,袁满. 通用数据质量评估模型及本体实现[J]. 计算机研究与发展, 2018, 55(6): 1333-1344.





PDF全文下载地址:

https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4154
相关话题/计算机 网络 知识 数据 东南大学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 面向低维工控网数据集的对抗样本攻击分析
    周文1,3,张世琨2,丁勇4,陈曦51(北京大学软件与微电子学院北京100871);2(北京大学软件工程国家工程研究中心北京100871);3(中国航空油料集团有限公司北京100088);4(鹏城实验室广东深圳518000);5(中国软件测评中心北京100048)(zhou.wen@pku.edu. ...
    本站小编 Free考研考试 2022-01-01
  • 公交数据驱动的城市车联网转发机制
    唐晓岚,顼尧,陈文龙(首都师范大学信息工程学院北京100048)(tangxl@cnu.edu.cn)出版日期:2020-04-01基金资助:国家重点研发计划项目(2018YFB1800403);国家自然科学基金项目(61872252);北京市自然科学基金项目(4202012);北京市教委科技计划一 ...
    本站小编 Free考研考试 2022-01-01
  • 面向云数据中心多语法日志通用异常检测机制
    张圣林1,李东闻1,孙永谦1,孟伟彬2,3,4,张宇哲1,张玉志1,刘莹3,4,裴丹2,41(南开大学软件学院天津300350);2(清华大学计算机科学与技术系北京100084);3(清华大学网络科学与网络空间研究院北京100084);4(北京信息科学与技术国家研究中心北京100084)(zhang ...
    本站小编 Free考研考试 2022-01-01
  • 基于随机博弈与禁忌搜索的网络防御策略选取
    孙骞1,2,薛雷琦2,高岭2,3,王海2,王宇翔11(西北大学现代教育技术中心西安710127);2(西北大学信息科学与技术学院新型网络智能信息服务国家地方联合工程研究中心西安710127);3(西安工程大学计算机科学学院新型网络智能信息服务国家地方联合工程研究中心西安710600)(sq@nwu. ...
    本站小编 Free考研考试 2022-01-01
  • 基于深度神经网络burst特征分析的网站指纹攻击方法
    马陈城1,2,杜学绘1,2,曹利峰1,2,吴蓓31(战略支援部队信息工程大学郑州450001);2(河南省信息安全重点实验室(战略支援部队信息工程大学)郑州450001);3(61497部队北京100000)(machencheng07@foxmail.com)出版日期:2020-04-01基金资助 ...
    本站小编 Free考研考试 2022-01-01
  • 基于半监督学习的无线网络攻击行为检测优化方法
    王婷1,2,王娜3,崔运鹏1,2,李欢1,21(中国农业科学院农业信息研究所北京100081);2(农业农村部农业大数据重点实验室(中国农业科学院农业信息研究所)北京100081);3(96962部队北京102206)(wangting01@caas.cn)出版日期:2020-04-01基金资助:国 ...
    本站小编 Free考研考试 2022-01-01
  • 基于混合神经网络和注意力机制的软件缺陷自动分派方法
    刘烨,黄金筱,马于涛(武汉大学计算机学院武汉430072)(ye_liu@whu.edu.cn)出版日期:2020-03-01基金资助:国家重点研发计划项目(2018YFB1003801);国家自然科学基金项目(61832014,61672387,61572371);湖北省自然科学基金项目(2018 ...
    本站小编 Free考研考试 2022-01-01
  • 一种权重平均值的深度双Q网络方法
    吴金金1,刘全1,2,3,4,陈松1,闫岩11(苏州大学计算机科学与技术学院江苏苏州215006);2(符号计算与知识工程教育部重点实验室(吉林大学)长春130012);3(江苏省计算机信息处理技术重点实验室(苏州大学)江苏苏州215006);4(软件新技术与产业化协同创新中心(南京大学)南京210 ...
    本站小编 Free考研考试 2022-01-01
  • 基于特征对抗对的视觉特征归因网络研究
    张宪1,史沧红2,李孝杰11(成都信息工程大学计算机学院成都610103);2(西南交通大学信息科学与技术学院成都611765)(zhangxian317@gmail.com)出版日期:2020-03-01基金资助:国家自然科学基金项目(61602066,61702058);四川省科技厅****科技 ...
    本站小编 Free考研考试 2022-01-01
  • 2020大数据与智能存储系统前沿技术专题前言
    舒继武1,王意洁21(清华大学北京100084);2(国防科技大学长沙410073)出版日期:2020-02-01Online:2020-02-01摘要/Abstract摘要:近年来,随着国家和社会信息化发展的不断加速,对信息存储提出了越来越高的要求.一方面,大数据时代,数据存储的规模和处理需求越来 ...
    本站小编 Free考研考试 2022-01-01