1( 兰州交通大学电子与信息工程学院 兰州 730070);2( 国网甘肃省电力公司信通公司 兰州 730050) (luoh382@163.com)
出版日期:
2020-05-01基金资助:
国家自然科学基金项目(61662066,61163010);甘肃省青年科技基金计划项目(1606RJYA222)Research on Node Importance Fused Multi-Information for Multi-Relational Social Networks
Luo Hao1, Yan Guanghui1, Zhang Meng1, Bao Junbo1, Li Juncheng1, Liu Ting1, Yang Bo2, Wei Jun21( School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070);2( Information and Telecommunication Company, State Grid Gansu Electric Power Company, Lanzhou 730050)
Online:
2020-05-01Supported by:
This work was supported by the National Natural Science Foundation of China (61662066, 61163010) and the Technique Foundation Program for Young Scientists of Gansu Province (1606RJYA222).摘要/Abstract
摘要: 识别重要节点是社会网络分析领域的重要任务之一,也是理解复杂网络结构和动力学特性的有效方式,迄今发展起来的节点重要性分析框架主要面向单关系网络.多关系网络作为准确刻画现实世界复杂系统的典型建模形式,已成为当前网络科学领域研究的热点,但对于多关系网络的节点重要性研究尚缺乏系统性的研究成果.针对多关系社交网络节点重要性研究问题,通过构建有向多重网络模型和基于张量代数的数学框架对其进行建模和分析,将中心性、声望和传递性作为影响社交网络节点重要性的关键因素,提出了一种面向多关系社交网络的节点重要性度量指标,并针对其存在不足引入D-S(Dempster-Shafer)证据理论进行改进,进一步提出了IOMEC(in-degree out-degree multiplex evidential centrality)节点重要性度量方法.在4个真实网络上的实验结果表明:采取信息融合的方法可以有效消除多关系网络耦合信息和传递机制对节点重要性评测造成的影响,提出的IOMEC方法能够更准确地对节点重要性进行度量,并且具有较低的时间复杂度,在论证节点中心性和声望是衡量节点重要程度主要因素的同时,说明了综合考虑节点传递性的必要性.所做工作为多关系网络节点重要性研究提供新的思路方法的同时,进一步拓展了信息融合技术的应用场景.
参考文献
相关文章 15
[1] | 陈亦琦, 钱铁云, 李万理, 梁贻乐. 基于复合关系图卷积的属性网络嵌入方法[J]. 计算机研究与发展, 2020, 57(8): 1674-1682. |
[2] | 刘子图, 全紫薇, 毛如柏, 刘勇, 朱敬华. NT-EP:一种无拓扑结构的社交消息传播范围预测方法[J]. 计算机研究与发展, 2020, 57(6): 1312-1322. |
[3] | 黄海平, 张东军, 王凯, 朱毅凯, 王汝传. 带权值的大规模社交网络数据隐私保护方法[J]. 计算机研究与发展, 2020, 57(2): 363-377. |
[4] | 李黎, 柳寰宇, 鲁来凤. 基于内容中心性的概率缓存内容放置方法[J]. 计算机研究与发展, 2020, 57(12): 2648-2661. |
[5] | 郑文萍,吴志康,杨贵. 一种基于局部中心性的网络关键节点识别算法[J]. 计算机研究与发展, 2019, 56(9): 1872-1880. |
[6] | 涂盼鹏,王兴伟,李婕,黄敏. BIRI:支持信息中心范型的BBO启发式MSN路由算法[J]. 计算机研究与发展, 2019, 56(9): 1918-1926. |
[7] | 孟绪颖,张琦佳,张瀚文,张玉军,赵庆林. 社交网络链路预测的个性化隐私保护方法[J]. 计算机研究与发展, 2019, 56(6): 1244-1251. |
[8] | 于亚新,王磊. 地理社交网络中重叠种子的广告博弈决策机制[J]. 计算机研究与发展, 2019, 56(6): 1302-1311. |
[9] | 李婕,洪韬,王兴伟,黄敏,郭静. 机会移动社交网络中基于群组构造的数据分发机制[J]. 计算机研究与发展, 2019, 56(11): 2494-2505. |
[10] | 龚卫华,金蓉,裴小兵,梅建萍. LBSN中基于社区联合聚类的协同推荐方法[J]. 计算机研究与发展, 2019, 56(11): 2506-2517. |
[11] | 李莹莹,马帅,蒋浩谊,刘喆,胡春明,李雄. 一种基于社交事件关联的故事脉络生成方法[J]. 计算机研究与发展, 2018, 55(9): 1972-1986. |
[12] | 余永红,高阳,王皓,孙栓柱. 融合用户社会地位和矩阵分解的推荐算法[J]. 计算机研究与发展, 2018, 55(1): 113-124. |
[13] | 笱程成,杜攀,贺敏,刘悦,程学旗. tsk-shell:一种话题敏感的高影响力传播者发现算法[J]. 计算机研究与发展, 2017, 54(2): 361-368. |
[14] | 谭振华,时迎成,石楠翔,杨广明,王兴伟. 基于引力学的在线社交网络空间谣言传播分析模型[J]. 计算机研究与发展, 2017, 54(11): 2586-2599. |
[15] | 余永红,高阳,王皓. 基于Ranking的泊松矩阵分解兴趣点推荐算法[J]. 计算机研究与发展, 2016, 53(8): 1651-1663. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4178