(北京市智能通信软件与多媒体重点实验室(北京邮电大学) 北京 100876) (北京邮电大学计算机学院 北京 100876) (liuyutong@bupt.edu.cn)
出版日期:
2020-06-01基金资助:
国家重点研发计划项目(2018YFC0831500);国家自然科学基金项目(U1936220,61972047)The Construction and Analysis of Classical Chinese Poetry Knowledge Graph
Liu Yutong, Wu Bin, Bai Ting(Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia (Beijing University of Posts and Telecommunications), Beijing 100876) (School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876)
Online:
2020-06-01Supported by:
This work was supported by the National Key Research and Development Program of China (2018YFC0831500) and the National Natural Science Foundation of China (U1936220, 61972047).摘要/Abstract
摘要: 古诗词是中国宝贵的文化遗产.利用计算机对诗词进行辅助研究,对语言、文学、传承普及中华文化,具有重要意义.然而,关于诗词的知识是高度碎片化的,原因是互联网上的诗词知识,不仅存在于诗词本身,还分布于诗词的各种解读资料,比如诗词的注释、译文、赏析等.若以知识图谱的方式,捕捉古诗词中词语之间潜在的语义联系并将它们以知识的方式关联起来,能够将诗词碎片化的知识有条理地整合在一起,从而更好地对古诗词知识进行推理和分析.基于此,提出了一种古诗词知识图谱的构建方法.构建图谱的节点时,首先利用改进的Apriori算法产生诗词中的候选词,然后检验候选词是否出现在诗词注释和中文词典中,从而判断其是否构成图谱节点.构建图谱的边时,首先利用注释信息在词语之间建立语义联系,然后用人工构建的诗词分类体系在抽象的语义之间建立联系.最终得到一个内容覆盖全面且包含多层词语语义联系的古诗词图谱.古诗词图谱可用于对诗词各种不同维度的分析研究,相比于基于字的数据分析,利用古诗词图谱能够从语义的角度更加深入具体地辅助文学研究.以唐诗为例,说明了古诗词图谱在诗词分析中的必要性.此外,古诗词图谱还适用于各种关于诗词的推理和分析任务,以判定诗词题材和分析诗词情感这2个任务为例,证明了古诗词图谱的有效性和应用价值.
参考文献
相关文章 15
[1] | 黄鹂声, 冉金也, 罗静, 张翔引. 基于XDR数据分析的OTT视频服务感知质量评估方法[J]. 计算机研究与发展, 2021, 58(2): 418-426. |
[2] | 曾维新, 赵翔, 唐九阳, 谭真, 王炜. 基于重排序的迭代式实体对齐[J]. 计算机研究与发展, 2020, 57(7): 1460-1471. |
[3] | 崔员宁, 李静, 沈力, 申扬, 乔林, 薄珏. Duration-HyTE:基于持续时间建模的时间感知知识表示学习方法[J]. 计算机研究与发展, 2020, 57(6): 1239-1251. |
[4] | 张莹莹, 钱胜胜, 方全, 徐常胜. 基于多模态知识感知注意力机制的问答方法[J]. 计算机研究与发展, 2020, 57(5): 1037-1045. |
[5] | 董永强, 王鑫, 刘永博, 杨望. 异构YANG模型驱动的网络领域知识图谱构建[J]. 计算机研究与发展, 2020, 57(4): 699-708. |
[6] | 申毅杰, 曾丹, 熊劲. 基于收益模型的Spark SQL数据重用机制[J]. 计算机研究与发展, 2020, 57(2): 318-332. |
[7] | 王萌, 王靖婷, 江胤霖, 漆桂林. 人机混合的知识图谱主动搜索[J]. 计算机研究与发展, 2020, 57(12): 2501-2513. |
[8] | 姚思雨, 赵天哲, 王瑞杰, 刘均. 规则引导的知识图谱联合嵌入方法[J]. 计算机研究与发展, 2020, 57(12): 2514-2522. |
[9] | 左笑晨,窦志成,黄真,卢淑祺,文继荣. 微博热门话题关联商品品类挖掘[J]. 计算机研究与发展, 2019, 56(9): 1927-1938. |
[10] | 王飞,钱铁云,刘斌,彭智勇. 支持范围查询的低冗余知识图谱管理[J]. 计算机研究与发展, 2019, 56(8): 1758-1771. |
[11] | 王硕,王建华,汤光明,裴庆祺,张玉臣,刘小虎. 一种智能高效的最优渗透路径生成方法[J]. 计算机研究与发展, 2019, 56(5): 929-941. |
[12] | 王智强,梁吉业,李茹. 基于信息融合的概率矩阵分解链路预测方法[J]. 计算机研究与发展, 2019, 56(2): 306-318. |
[13] | 黄培馨, 赵翔, 方阳, 朱慧明, 肖卫东. 融合对抗训练的端到端知识三元组联合抽取[J]. 计算机研究与发展, 2019, 56(12): 2536-2548. |
[14] | 杜治娟, 杜治蓉, 王璐. 基于相邻和语义亲和力的开放知识图谱表示学习[J]. 计算机研究与发展, 2019, 56(12): 2549-2561. |
[15] | 郑庆华,董博,钱步月,田锋,魏笔凡,张未展,刘均. 智慧教育研究现状与发展趋势[J]. 计算机研究与发展, 2019, 56(1): 209-224. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4200