1(东北大学计算机科学与工程学院 沈阳 110819);2(广东外语外贸大学语言工程与计算实验室 广州 510006) (lgr@neuq.edu.cn)
出版日期:
2020-06-01基金资助:
国家自然科学基金项目(61876205);中央高校基本科研业务费专项资金(N172304022);广州市科技计划项目(201804010433);语言工程与计算实验室招标课题(LEC2017ZBKT001)A Distributed Data Reconstruction Algorithm Based on Jacobi ADMM for Compressed Sensing in Sensor Networks
Li Guorui1, Meng Jie1, Peng Sancheng2, Wang Cong11(School of Computer Science and Engineering, Northeastern University, Shenyang 110819);2(Laboratory of Language Engineering and Computing, Guangdong University of Foreign Studies, Guangzhou 510006)
Online:
2020-06-01Supported by:
This work was supported by the National Natural Science Foundation of China (61876205), the Fundamental Research Funds for the Central Universities (N172304022), the Science and Technology Plan Project of Guangzhou (201804010433), and the Bidding Project of Laboratory of Language Engineering and Computing (LEC2017ZBKT001).摘要/Abstract
摘要: 针对无线传感网中分布式数据收集及应用,采用分布式压缩感知理论中的JSM-1 (joint sparse model-1)模型,提出了一种基于Jacobi ADMM (alternating direction method of multipliers)的分布式压缩感知数据重构算法.该算法通过在簇头节点间交换公共信息以挖掘关联数据集的公共部分,并在各个簇头节点内部更新各自的独立部分,从而实现无线传感网中相关感知数据的分布式压缩重构.首先,将无线传感网中的数据收集问题抽象为一个分布式优化问题.然后,为了能够有效地解决分布式计算过程中产生的不收敛问题,在优化目标函数中引入了近似项,从而使得子优化问题具有严格凸性,并利用交替方向乘子法求解压缩感知数据的重构问题.最后,分别利用合成数据集和真实数据集进行验证.实验结果表明:与现有其他数据重构算法相比,基于Jacobi ADMM的分布式压缩感知数据重构算法具有更高的数据重构精度.
参考文献
相关文章 15
[1] | 谢震, 谭光明, 孙凝晖. 基于PPR模型的稀疏矩阵向量乘及卷积性能优化研究[J]. 计算机研究与发展, 2021, 58(3): 445-457. |
[2] | 赖庆宽, 吕方, 贺春林, 何先波, 冯晓兵. 面向理想性能空间的跨架构编译分析方法[J]. 计算机研究与发展, 2021, 58(3): 668-680. |
[3] | 李乾, 胡玉鹏, 叶振宇, 肖叶, 秦拯. 基于蚁群优化算法的纠删码存储系统数据更新方案[J]. 计算机研究与发展, 2021, 58(2): 305-318. |
[4] | 张永, 陈蓉蓉, 张晶. 基于交叉熵的安全Tri-training算法[J]. 计算机研究与发展, 2021, 58(1): 60-69. |
[5] | 朱泓睿, 元国军, 姚成吉, 谭光明, 王展, 户忠哲, 张晓扬, 安学军. 分布式深度学习训练网络综述[J]. 计算机研究与发展, 2021, 58(1): 98-115. |
[6] | 祖家琛, 胡谷雨, 严佳洁, 李实吉. 网络功能虚拟化下服务功能链的资源管理研究综述[J]. 计算机研究与发展, 2021, 58(1): 137-152. |
[7] | 张燕咏, 张莎, 张昱, 吉建民, 段逸凡, 黄奕桐, 彭杰, 张宇翔. 基于多模态融合的自动驾驶感知及计算[J]. 计算机研究与发展, 2020, 57(9): 1781-1799. |
[8] | 李德权, 许月, 薛生. 基于动态约束自适应方法抵御高维鞍点攻击[J]. 计算机研究与发展, 2020, 57(9): 2001-2008. |
[9] | 丁成诚, 陶蔚, 陶卿. 一种三参数统一化动量方法及其最优收敛速率[J]. 计算机研究与发展, 2020, 57(8): 1571-1580. |
[10] | 张军, 谢竟成, 沈凡凡, 谭海, 汪吕蒙, 何炎祥. 通用图形处理器缓存子系统性能优化方法综述[J]. 计算机研究与发展, 2020, 57(6): 1191-1207. |
[11] | 郭羽含, 张宇, 沈学利, 于俊宇. 即时车辆共乘问题的多策略解空间图搜索算法[J]. 计算机研究与发展, 2020, 57(6): 1269-1283. |
[12] | 王桂芝, 吕光宏, 贾吾财, 贾创辉, 张建申. 机器学习在SDN路由优化中的应用研究综述[J]. 计算机研究与发展, 2020, 57(4): 688-698. |
[13] | 王艳, 李念爽, 王希龄, 钟凤艳. 编码技术改进大规模分布式机器学习性能综述[J]. 计算机研究与发展, 2020, 57(3): 542-561. |
[14] | 于亚新, 张文超, 李振国, 李莹. 基于超图的EBSN个性化推荐及优化算法[J]. 计算机研究与发展, 2020, 57(12): 2556-2570. |
[15] | 沈洁, 龙标, 姜浩, 黄春. 飞腾处理器上向量三角函数的设计实现与优化[J]. 计算机研究与发展, 2020, 57(12): 2610-2620. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4202