(国防科技大学计算机学院 长沙 410073) (cglnudt@163.com)
出版日期:
2019-02-01基金资助:
国家自然科学基金项目(61672526);国防科技大学科研计划项目(ZK17-03-06)Survey on Accelerating Neural Network with Hardware
Chen Guilin, Ma Sheng, Guo Yang(College of Computer ,National University of Defense Technology, Changsha 410073)
Online:
2019-02-01摘要/Abstract
摘要: 人工神经网络目前广泛应用于人工智能的应用当中,如语音助手、图像识别和自然语言处理等.随着神经网络愈加复杂,计算量也急剧上升,传统的通用芯片在处理复杂神经网络时受到了带宽和能耗的限制,人们开始改进通用芯片的结构以支持神经网络的有效处理.此外,研发专用加速芯片也成为另一条加速神经网络处理的途径.与通用芯片相比,它能耗更低,性能更高.通过介绍目前通用芯片和专用芯片对神经网络所作的支持,了解最新神经网络硬件加速平台设计的创新点和突破口.具体来说,主要概述了神经网络的发展,讨论各类通用芯片为支持神经网络所作的改进,其中包括支持低精度运算和增加一个加速神经网络处理的计算模块.然后从运算结构和存储结构的角度出发,归纳专用芯片在体系结构上所作的定制设计,另外根据神经网络中各类数据的重用总结了各个神经网络加速器所采用的数据流.最后通过对已有加速芯片的优缺点分析,给出了神经网络加速器未来的设计趋势和挑战.
参考文献
相关文章 15
[1] | 吴宗友, 白昆龙, 杨林蕊, 王仪琦, 田英杰. 电子病历文本挖掘研究综述[J]. 计算机研究与发展, 2021, 58(3): 513-527. |
[2] | 刘颖, 杨轲. 基于深度集成学习的类极度不均衡数据信用欺诈检测算法[J]. 计算机研究与发展, 2021, 58(3): 539-547. |
[3] | 徐坤浩, 聂铁铮, 申德荣, 寇月, 于戈. 基于CPU-GPU异构体系结构的并行字符串相似性连接方法[J]. 计算机研究与发展, 2021, 58(3): 598-608. |
[4] | 陈晋音, 陈奕芃, 陈一鸣, 郑海斌, 纪守领, 时杰, 程瑶. 面向深度学习的公平性研究综述[J]. 计算机研究与发展, 2021, 58(2): 264-280. |
[5] | 于畅, 王雅文, 林欢, 宫云战. 基于故障检测上下文的等价变异体识别算法[J]. 计算机研究与发展, 2021, 58(1): 83-97. |
[6] | 曾碧卿, 曾锋, 韩旭丽, 商齐. 基于交互特征表示的评价对象抽取模型[J]. 计算机研究与发展, 2021, 58(1): 224-232. |
[7] | 李双峰. TensorFlow Lite:端侧机器学习框架[J]. 计算机研究与发展, 2020, 57(9): 1839-1853. |
[8] | 陈珂锐, 孟小峰. 机器学习的可解释性[J]. 计算机研究与发展, 2020, 57(9): 1971-1986. |
[9] | 丁成诚, 陶蔚, 陶卿. 一种三参数统一化动量方法及其最优收敛速率[J]. 计算机研究与发展, 2020, 57(8): 1571-1580. |
[10] | 贺一笑, 庞明, 姜远. 蒙德里安深度森林[J]. 计算机研究与发展, 2020, 57(8): 1594-1604. |
[11] | 陈彦敏, 王皓, 马建辉, 杜东舫, 赵洪科. 基于层级注意力机制的互联网用户信用评估框架[J]. 计算机研究与发展, 2020, 57(8): 1755-1768. |
[12] | 林培光, 周佳倩, 温玉莲. SCONV:一种基于情感分析的金融市场趋势预测方法[J]. 计算机研究与发展, 2020, 57(8): 1769-1778. |
[13] | 李若南, 李金宝. 一种无源被动室内区域定位方法的研究[J]. 计算机研究与发展, 2020, 57(7): 1381-1392. |
[14] | 李冬梅, 张扬, 李东远, 林丹琼. 实体关系抽取方法研究综述[J]. 计算机研究与发展, 2020, 57(7): 1424-1448. |
[15] | 邢新颖, 冀俊忠, 姚垚. 基于自适应多任务卷积神经网络的脑网络分类方法[J]. 计算机研究与发展, 2020, 57(7): 1449-1459. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=3860