1.University of Oklahoma, Norman, OK 73072, USA 2.NOAA/National Weather Service, Norman, OK 73072, USA 3.Enterprise Electronics Corporation, Enterprise, AL 36330, USA 4.NOAA/National Severe Storms Laboratory, Norman, OK 73072, USA 5.National Center for Atmospheric Research, Boulder, CO 80307, USA 6.Raytheon Company, Waltham, MA 02451, USA 7.Radar Operations Center, Norman, OK 73072, USA Manuscript received: 2018-08-14 Manuscript revised: 2018-12-21 Manuscript accepted: 2019-02-01 Abstract:After decades of research and development, the WSR-88D (NEXRAD) network in the United States was upgraded with dual-polarization capability, providing polarimetric radar data (PRD) that have the potential to improve weather observations, quantification, forecasting, and warnings. The weather radar networks in China and other countries are also being upgraded with dual-polarization capability. Now, with radar polarimetry technology having matured, and PRD available both nationally and globally, it is important to understand the current status and future challenges and opportunities. The potential impact of PRD has been limited by their oftentimes subjective and empirical use. More importantly, the community has not begun to regularly derive from PRD the state parameters, such as water mixing ratios and number concentrations, used in numerical weather prediction (NWP) models. In this review, we summarize the current status of weather radar polarimetry, discuss the issues and limitations of PRD usage, and explore potential approaches to more efficiently use PRD for quantitative precipitation estimation and forecasting based on statistical retrieval with physical constraints where prior information is used and observation error is included. This approach aligns the observation-based retrievals favored by the radar meteorology community with the model-based analysis of the NWP community. We also examine the challenges and opportunities of polarimetric phased array radar research and development for future weather observation. Keywords: weather radar polarimetry, radar meteorology, numerical weather prediction, data assimilation, microphysics parameterization, forward operator 摘要:经过数十年的研究和发展, 天气雷达偏振技术日渐成熟, 美国新一代天气雷达(WSR-88D)已全面升级成双偏振雷达, 并提供具有改进天气观测, 量化, 预报, 和预警潜能的偏振雷达数据(PRD). 中国和其他国家的天气雷达网也正在被升级成具有双偏振功能. 现在, 雷达偏振技术已经成熟, 偏振雷达数据可在全美和全世界范围获取, 有必要理解其研发现状和未来的挑战及机遇. 偏振雷达数据潜在作用常受到主观和经验应用的限制. 更重要的是我们还没有常规的, 由偏振数据导出数值预报模式(NWP)中的状态参数. 在这篇综述中, 我们总结天气雷达技术的现状, 讨论偏振数据应用的问题和局限, 探讨在定量降水估计和预报中更有效地应用雷达数据的潜在方法, 也就是基于统计反演加物理限定, 并将先验信息和观测误差考虑在内的优化方法. 这种方法将雷达气象学领域中常用的观测反演和数值天气预报中的模式分析统一起来. 我们也将讨论用于未来天气观测的偏振相控阵雷达研发的挑战和机遇. 关键词:天气雷达偏振技术, 雷达气象学, 数值天气预报, 资料同化, 微物理参数化, 前向算子
HTML
--> --> --> -->
2.1. PRD for weather observation and forecasting
As shown in the left column of Fig. 1, WSR-88D level II data contain six variables, consisting of three existing single-polarization variables (Z, vr, σv) and three added dual-polarization variables (ZDR, ρhv, and ΦDP), which contain a wealth of information about cloud and precipitation microphysics. Figure1. WSR-88D data and their derived products after the dual-polarization upgrade. The data and products in the dashed boxes are for single polarization.
Each dual-polarization variable has specific properties/characteristics with regard to different weather or non-weather radar echoes, and, together with Z, they reveal the microphysical properties of clouds and precipitation. ZDR is a measure of the reflectivity weighted shape of the scatterers and tends to increase for more oblate scatterers (within the Rayleigh regime). ρhv represents the similarity between the horizontal and vertical polarization signals, and it is reduced when there is increased randomness and diversity between the horizontally and vertically polarized backscattered waves, especially for non-Rayleigh scattering. Finally, ΦDP is the difference in phase shift between horizontally and vertically polarized waves, including both differential scattering phase (δ) and differential propagation phase ($\phi_{DP}$). $\phi_{DP}$ increases rapidly for heavy rain because the horizontally polarized wave propagates slower than the vertically polarized wave, as its polarization is in the direction of the larger dimension of oblate particles. When used in conjunction with ground-based observations and storm reports (when available), their understanding of the storm morphology, and the near-storm environment (i.e., mesoanalysis), meteorologists who serve as warning forecasters at the U.S. NWS use radar data to make warning decisions on whether a thunderstorm is capable of producing severe weather (≥ 26 m s-1 winds and/or ≥ 2.54 cm hail) and/or a tornado. If a forecaster has enough confidence for severe weather and/or a tornado, the forecaster can issue a severe thunderstorm warning or tornado warning with the potential hazards (i.e., estimated maximum hail size, estimated maximum wind speed, and tornado damage threat). The addition of PRD gives forecasters additional information on the storm morphology, which can assist in warning decision-making. An example from a warm-season event is used to demonstrate the PRD and its utility in weather observations and warnings. Figure 2 shows the plan position indicator (PPI) images of these data at an elevation of 1.3° for a tornadic supercell event observed by the S-band polarimetric WSR-88D (KFDR) radar in southwest Oklahoma at 2243 UTC 16 May 2015. Six PPI images represent the polarimetric Doppler weather radar measurements of Z (Fig. 2a), vr (Fig. 2b), and σv (Fig. 2c), as well as the added dual-polarization measurements of ZDR (Fig. 2d), ρhv (Fig. 2e), and ΦDP (Fig. 2f). The red polygon is a tornado warning that was issued by NWS Norman, Oklahoma, Weather Forecast Office (WFO). Figure2. Polarimetric variables at the S-band radar KFDR for a supercell observed in southwest Oklahoma, USA, at 2243 UTC 16 May 2015: (a) reflectivity (Z); (b) radial velocity (vr); (c) spectrum width (σv); (d) differential reflectivity (ZDR); (e) copolar correlation coefficient (ρhv); and (f) differential phase (ΦDP). The radar (not shown) is located southeast of the supercell. The white lines are county or state borders, and the orange and brown lines are roadways. Plotted using GR2Analyst software.
The storm is a classic supercell with a hook echo. At the tip of the hook (on the southwest flank of the storm), a mesocyclone is sampled by the radar, as indicated by a cyclonic velocity couplet. On the forward flank of the supercell, along with the reflectivity gradient on the southern edge, there is an increase in ZDR. This feature is known as a ZDR arc, which occurs due to size-sorting in a supercell that occurs because of vertical wind shear (Kumjian and Ryzhkov, 2008). Northwest of the ZDR arc, ΦDP increases markedly with range. This is due to very heavy rainfall in the forward flank downdraft (FFD) of the supercell. Immediately to the west-northwest of the hook, there is a reduction in ZDR and ρhv within an area of high reflectivity. These measurements are likely due to the presence of hail mixing with rain. The final signature to note is a local minimum in the ρhv and ZDR at the center of the velocity couplet, which is coincident with reflectivity >40 dBZ. The low ρhv and ZDR indicates the presence of non-meteorological targets. This signature, known as a TDS, exists due to debris being lofted by a tornado (Ryzhkov et al., 2005; Kumjian and Ryzhkov, 2008; Kumjian, 2013; Van Den Broeke and Jauernic, 2014). In this event, the presence of a TDS resulted in the NWS Norman WFO issuing a severe weather statement (i.e., updated tornado warning) where the hazard in the warning became "damaging tornado" and the source for the warning became "radar confirmed tornado." In this example, the PRD had an important role in warning decision-making by providing information that heightened the wording of the warning statement. Though the previous example is a warm-season event, PRD have applications in the cold season too (Zhang et al., 2011; Andri? et al., 2013), including melting-layer detection and precipitation type transition zones (Brandes and Ikeda, 2004; Giangrande et al., 2008; Bukov?i? et al., 2017), and in the study of ice microphysical processes (Griffin et al., 2018). Polarimetric radars have also been successfully used in the study of tropical meteorology (Rauber et al., 2007; May et al., 2008; Brown et al., 2016; Didlake and Kumjian, 2017).
2 2.2. PRD products -->
2.2. PRD products
2.2.1. HC While it is informative to look at the individual polarimetric variable images, it is more scientific, rigorous, and efficient to systematically and automatically use the PRD for accurate weather measurements and forecasting (Straka and Zrni?, 1993; Straka, 1996). The first such use was in hydrometeor (or echo) classification based on a fuzzy logic algorithm (Vivekanandan et al., 1999; Liu and Chandrasekar, 2000). An updated version of the HC algorithm (HCA) described by (Park et al., 2009) is implemented on the WSR-88D. Its input parameters are Z, ZDR, ρhv, the logarithm of KDP, the standard deviation of Z, and the standard deviation of ΦDP. Its output is ten classes of radar returns (light/moderate rain, heavy rain, rain/hail mix, big drops, dry snow, wet snow, crystals, graupel, biological, and ground clutter) plus "no echo" and "unknown", and the elevation-based HC is available as one of the WSR-88D level III products. A hybrid version of the HC product (called HHC), derived from the elevation-based HC, is created for the dual polarization QPE. Recent modifications to the HCA include a hail size discrimination for the rain/hail mix category (Ryzhkov et al., 2013a, b; Ortega et al., 2016): large hail (at least 2.54 cm in diameter but less than 5.08 cm) and giant hail (greater than or equal to 5.08 cm). Using the graupel classification from the HCA as a primary input, the WSR-88D algorithm suite now also includes an icing hazard level product that is used by the Federal Aviation Administration to detect regions of icing aloft. Figure 3a shows the HCA output from the KFDR radar for the event depicted in Fig. 2. Although it is not easy to verify the HCA output by comparisons with in-situ measurements, the results of the classification in Fig. 3a fit the accepted microphysical understanding of a severe super-cell storm. As expected, the area of high reflectivity with reduced ZDR and ρhv is classified as rain and hail (HA: red). Heavy rain (HR: dark green) is identified in the FFD region, consistent with the rapid increase in ΦDP noted in the previous subsection. Light and moderate rain (RA: light green) are identified at the southwest edge of the storm. The leading side of the storm is classified as big drops (BD: brown), which is reasonable due to size sorting. It is also reasonable to see biological scatterers (BI: light gray) identified ahead of the storm near the radar where insects normally appear. Figure3. (a) Hydrometeor classification product generated from the NSSL hydrometeor classification algorithm at 2243 UTC 16 May 2015, and (b) dual-polarization radar estimated hourly rainfall accumulation. The radar is located southeast of the supercell (not shown). The white lines are county or state borders, and the orange and brown lines are roadways. These were plotted using GRLvel3 software. The echo class notations are: biological scatterers (BI); ground clutter (GC); ice crystals (IC); dry snow (DS); wet snow (WS); light/moderate rain (RA); heavy rain (HR); big drops (BD); graupel (GR); and rain and hail (HA). Purple areas represent unknown classification.
However, a couple of issues presently exist and are being addressed. The melting layer with high reflectivity has often been misclassified as graupel and big drops. A recent version of HCA classifies more hydrometeors within the melting layer as wet snow. Also, the current melting layer detection algorithm (MLDA) does not perform well with cool-season precipitation where the melting layer is close to the ground and where there are mixed-phase hydrometeors. An improved MLDA that allows for microphysically based variations in the heights of the top and bottom of the melting layer is under development (Reeves, 2016). It uses several inputs from a rapid refresh forecast model. A recent advancement in HCA with PRD is to use an objective approach to derive statistical relations based on cluster analysis (Wen et al., 2015, 2016). 2.2.2. QPE Whereas HCA is very successful in systematically utilizing PRD for revealing cloud and precipitation microphysics, it is qualitative and empirical rather than quantitative. One of the main motivations to develop weather radar polarimetry was to improve QPE with polarimetric measurements, such as ZDR (Seliga and Bringi, 1976; Seliga et al., 1979; Ulbrich and Atlas, 1984) and KDP (Sachidananda and Zrni?, 1987; Ryzhkov and Zrni?, 1996), because polarimetric measurements depend on the shape of hydrometeors, and raindrop shape is monotonically related to the drop size. Hence, radar rain estimators with different combinations of Z, ZDR, and KDP were developed using simulated or measured rain drop size distributions (DSDs) and electromagnetic scattering models (Jameson, 1991; Vivekanandan et al., 1991; Ryzhkov and Zrni?, 1995). The improvement of QPE with PRD has been demonstrated with real data in a subtropical environment (Brandes et al., 2002), in the Southern Great Plains region (Giangrande and Ryzhkov, 2008), and in a tropical region (May et al., 1999; Chang et al., 2009), as well as in Europe (Figueras i Ventura and Tabary, 2013). It is generally accepted that the estimation error decreases from 30% to 40% uncertainty for a single polarization reflectivity to about 15% error for polarimetric measurements (Brandes et al., 2002). A synthetic polarimetric radar rain estimator that combines different estimators based on HCA results was initially adapted by the dual-polarization WSR-88D to produce level III QPE products (Giangrande and Ryzhkov, 2008). The dual-polarization QPE products are currently generated based on the five primary rain estimators: \begin{eqnarray} R(Z)&=&0.017Z^{0.714},\quad (Z=300R^{1.4}) ; \ \ (1)\\ R(K_{\rm DP})&=&44|K_{\rm DP}|^{0.822}{\rm sign}(K_{\rm DP}) ;\ \ (2)\\ R(Z,Z_{\rm dr})&=&0.0142Z^{0.77}Z_{\rm dr}^{-1.67} ;\ \ (3)\\ R(Z,Z_{\rm dr})&=&0.0067Z^{0.927}Z_{\rm dr}^{-3.43} ;\ \ (4)\\ R(K_{\rm DP})&=&27|K_{\rm DP}|^{0.822}{\rm sign}(K_{\rm DP}) . \ \ (5)\end{eqnarray} Here, sign(KDP) allows for negative KDP values and both Z and Zdr are in linear units instead of logarithmic values for Z/ZH and ZDR. The three rain estimators are used/chosen based on HCA results. For example, if the echo is classified as light to moderate rain, Eq. (3) or Eq. (4) of R(Z,Zdr) is used to estimate the rain rate, depending whether an operator chooses a "continental" or "stratiform/tropical" relationship, respectively; if the echo is classified as heavy rain, Eq. (2) of R(KDP) is used; if the echo is classified as hail-rain mixture, Eq. (5) of R(KDP) is used to mitigate hail contamination. Most classifications within and above the melting layer use Eq. (1), usually with a multiplier of R(Z), such as 0.6× R(Z) for wet snow. Figure 3b shows the dual-polarization radar-based QPE result that has much less contamination from anomalous propagation clutter and biological scatterers. The dual-polarization QPE, based on Z, Zdr, and KDP, provided improved precipitation estimates over the previous single polarization QPE in warm-season events where the freezing level was high. However, it has relatively large random errors due to its sensitivity to errors in Zdr, which are significant at times. The dual-polarization QPE also suffers from discontinuities and some biases near the melting layer. The R(KDP) estimator can produce a negative rain rate, which is physically impossible, if KDP is estimated from ΦDP using a least-squares fit, as is currently used for WSR-88D. A recent advancement is to improve KDP estimation for better QPE by using a hybrid method of combining linear programming (also called linear optimization) and physical constraints (Giangrande et al., 2013, Huang et al., 2017), which yields the best match with observed ΦDP while ensuring positive KDP estimates. The latest developments also include the use of specific attenuation for rainfall estimation (Ryzhkov et al., 2014; Zhang et al., 2017). There is also interest in using X-band polarimetric radar networks to improve QPE and low-level coverage (Chen et al., 2015).