删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Correlation-driven topological phase transition from quantum anomalous Hall insulator to Mott insula

本站小编 Free考研考试/2021-12-25

XU Yongfeng1, SHENG Xianlei2, ZHENG Qingrong1
1. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
2. Key Laboratory of Micro-Nano Measurement-Manipulation and Physics of Ministry of Education, Department of Physics, Beihang University, Beijing 100191, China

Received 26 March 2019; Revised 8 May 2019
Foundation items: Supported by the National Natural Science Foundation of China(11574309, 11504013)
Corresponding author: SHENG Xianlei, E-mail: xlsheng@buaa.edu.cn
ZHENG Qingrong, E-mail: qrzheng@ucas.ac.cn

Abstract: Based on the first-principle calculations, we propose that the monolayer VCl3 and VBr3 are quantum anomalous Hall insulators with in-plane magnetization without considering the correlation effect of the 3d electron-electron interaction. The band gap is predicted to be about 3.4 meV for VCl3, but no global gap for VBr3. It is interesting to note that VCl3 (VBr3) possesses a Chern number of C=3 (C=1) with three (one) chiral edge states. After considering correlation effect, we obtain Mott insulator if U>0.45 (U>0.35) eV for VCl3 (VBr3).
Keywords: ferromagnetic semiconductorlarge Chern numberMott insulator
单层VCl3和VBr3中相互作用导致的量子反常霍尔绝缘体到莫特绝缘体相变
徐永峰1, 胜献雷2, 郑庆荣1
1. 中国科学院大学物理科学学院, 北京 100049;
2. 北京航空航天大学物理系 微纳测控与低维物理教育部重点实验室, 北京 100191
摘要: 基于第一性原理计算,发现在不考虑3d电子间关联作用的情况下,二维单层材料VCl3和VBr3是面内铁磁半导体,并且具有量子反常霍尔效应。VCl3能隙约为3.4 meV,VBr3没有全局的能隙。有趣的是,VCl3的陈数为3,有3个手性边缘态;VBr3的陈数为1,对应1个手性边缘态。当考虑关联作用U后,它们会变为Mott绝缘体。对于VCl3,相变点发生在U=0.45 eV;对于VBr3,相变点发生在U=0.35 eV。
关键词: 铁磁半导体大陈数Mott绝缘体
Since the discovery of quantum Hall (QH) effect, the study of the topological phase of matter has attracted great attention in the condensed-matter community. A voltage caused by the deflected motion of charged particles under external electric field and magnetic field leads to the quantized Hall conductance [1]. Nevertheless, the quantum Hall effect may be achieved without external magnetic field. In 1988, Haldane[2] proposed the quantum anomalous Hall (QAH) effect in a two-dimensional (2D) honeycomb lattice with next-nearest-neighboring hopping modulated by staggered flux. Dissipative boundary states exist in the two edges of materials with QAH effect[3-5]. The anomalous Hall effect has an intrinsic origin due to spin-dependent band structure of conduction electrons, which can be expressed in terms of the Berry phase or Chern number in the momentum space[6]. This effect originates from the coupling of electron orbital motion to its spin, i.e., spin orbit coupling (SOC), resulting in the opposite motion of electrons with spin-up and spin-down. In a ferromagnetic metal, the magnetization causes an imbalance in the population between the electrons with spin-up and spin-down and consequently leads to the anomalous Hall effect. Considering the time reversal (TR) symmetry, the quantities of electrons moving in the opposite directions with different spins are equal and as a result there is no charge Hall conductance, but a nonzero spin Hall conductance exhibits quantum spin Hall (QSH) effect[7]. The QAH insulator[8] was a recently discovered topological electronic phase where strong SOC and ferromagnetic ordering conspire to generate a band gap Eg in the bulk of a two-dimensional (2D) electron system, as well as conducting gapless chiral edge states in its boundaries. The edge states are robust against impurities or disorders because the electron backscattering in the two edge channels is prohibited due to the TR symmetry. Topologically nontrivial band structure is characterized by a nonzero Chern number by counting the number of edge states. The QAH effect not only occurs in out-of-plane magnetization systems[9-15], but also exists in in-plane magnetization materials[16-21].
The layered transition-metal trichlorides materials of MCl3 (M=Ti, V, Cr, Fe, Mo, Ru, Rh, Ir) have been achieved for many years due to relatively weak van der Waals interaction between the interlayers [22-25]. These layered materials, which possess honeycomb lattice, partially occupied d-orbitals, and nonnegligible SOC, may have interesting properties, and thus they are worth studying.
1 Computational methodsThe first-principle calculations were performed within the Vienna ab initio simulation package (VASP) using the projector augmented wave (PAW) method in the framework of density functional theory (DFT)[26-28]. The electron exchange correlation functional was described by the generalized gradient approximation (GGA) in the form proposed by Perdew, Burke, and Ernzerhof (PBE)[29]. The lattice parameters are chosen from Springer Materials[30]. The structure relaxation considering both the atomic positions and lattice vectors was performed by the conjugate gradient (CG) scheme until the maximum force on each atom was less than 0.01eV/?(1?=0.1nm), and the total energy converge threshold was 10-6eV with Gaussian smearing method. To avoid unnecessary interactions between the monolayer and its periodic images, the vacuum layer was set as 20?. The energy cut off of the plane waves was chosen as 520eV. The Brillouin zone (BZ) integration was sampled with a 9×9×1 G-centered Monk horst Pack grid. The relaxed lattice parameter (a=6.012?) was adopted in the calculations. SOC is included by a second variational procedure on a fully self-consistent basis. An effective tight binding Hamiltonian based on the maximally localized Wannier functions (MLWF) was used to investigate the surface states[21, 31]. The iterative Greens function method[32] was used with the package WannierTools[33].
2 Results and discussionThe two-dimensional VCl3 (VBr3) consists of a V atomic layer sandwiched by two Cl atomic layers. The V atoms form a honeycomb lattice and each V atom is surrounded by six Cl atoms, which forms an octahedral crystal field, as shown in Fig. 1. It takes the same structure as monolayer OsCl3 that has been shown to be an intrinsic quantum anomalous Hall insulator[34]. V is a transition metal element with partially filled 3d-orbitals, which may result in magnetism. Based on the first-principle calculations, we consider several magnetic configurations, including ferromagnetic (FM), antiferromagnetic (AFM), and paramagnetic (PM) states. We firstly take VCl3 as an example and find that VCl3 takes the FM ground state with in-plane magnetization along zigzag direction as shown in Table 1.
Fig. 1
Download: JPG
larger image


Fig. 1 Top (a) and side (b) views of monolayer VCl3, first Brillouin zone(c) of monolayer VCl3 with direct reciprocal lattice vectors and the high symmetry points indicated, and 3d orbital splitting under octahedral crystal field (d)


Table 1
Table 1 FM and AFM energies of VCl3
VCl3 FMx NAFMx SAFMx ZAFMx FMy FMz PM
Etot/eV 0.00 423.35 79.78 64.36 16484.90 2.42 3209.96
< S > (μB) 1.94 1.93 1.911 1.94 0.54 1.94 0
< O > (μB) 0.12 0.20 0.033 0.22 0.13 0.05 0
Note:The total energy Etot per unit cell (relative to Etot of FMx ground state) as well as spin < S > and orbital < O > moments in unit of μB.

Table 1 FM and AFM energies of VCl3

The band structure calculations show that VCl3 is a fully spin-polarized half metal. Without considering SOC, it is a 2D Weyl half semimetal with a band crossing point in each G-M path, such that there are total 6 Weyl points in the first BZ. After turning on SOC, a band gap of about 3.4meV was opened, and the material becomes a ferromagnetic semiconductor, which is different from PtCl3 which is a 2D Weyl half semimetal even with SOC due to additional symmetry protection[35]. To understand these features, we find that under the octahedral crystal field formed by Cl atoms, V-3d orbitals are split into t2gand eg orbital groups, and the latter is higher in energy. For each V3+ with two valence electrons, there are four valence electrons in one primitive cell, such that V-t2g orbitals will be partially filled in one spin channel. The other t2g spin channel and all eg orbitals are empty. Therefore, the system is half Weyl semimetal without considering SOC. If turning on SOC, the t2g orbitals will split into j=1/2 doublet state and j=3/2 quartet state with the former energetically higher, such that the system becomes a semiconductor, as shown in Fig. 2. The topologically nontrivial band structure of VCl3 may come from the combination effect of honeycomb lattice formed by V atoms and the SOC of transition metal V atoms.
Fig. 2
Download: JPG
larger image


Fig. 2 Electronic band structures of monolayer VCl3 and VBr3

Furthermore, because of the ferromagnetic ordering of the magnetic moments in V atoms, the system results in a quantum anomalous Hall insulator. To show the topology, we calculated the gauge-invariant Berry curvature in momentum space. The Berry curvature Ωz(k) in 2D can be obtained by analyzing the Bloch wave functions from the self-consistent potentials
${\Omega _z}\left( k \right) = {\sum _n}f_n^z{\Omega _n}\left( k \right), $ (1)
$\begin{array}{l}\Omega _n^z\left( k \right) = - 2{\sum _{m \ne n}}{\rm{Im}}\\{\rm{ }}\frac{{\left\langle {{\psi _n}\left( k \right)\left| {{v_x}} \right|{\psi _m}\left( k \right)} \right\rangle \left\langle {{\psi _m}\left( k \right)\left| {{v_y}} \right|{\psi _n}\left( k \right)} \right\rangle }}{{{{\left( {{\varepsilon _n}\left( k \right) - {\varepsilon _m}\left( k \right)} \right)}^2}}}, \end{array}$ (2)
where fn is the Fermi-Dirac distribution function, vx(y) is the velocity operator, ψn(k) is the Bloch wave function, εn(k) is the eigenvalue, the summation is over all n occupied bands below the Fermi level, m indicates the unoccupied bands above the Fermi level. Based on the first-principle calculations, one observes that, in the absence of SOC, there are totally 6 Weyl nodes (Fig. 3(a)) related with C3 and inversion symmetry along the G-M(M') high symmetry lines of the hexagonal Brillouin zone. SOC will open a tiny gap, correspondingly. Six Berry curvature peaks appear. The nonzero Berry curvature mainly distributes around the opened band crossings at the Fermi level. Furthermore, a plot of the 6 Berry curvature peaks over the whole BZ (Fig. 3(c)) indicates that all 6 peaks have the same sign. The Chern number can be obtained by integrating the Berry curvature Ωz(k) over the BZ
$C = \frac{1}{{2{\rm{ \mathsf{ π} }}}}\int {{\rm{d}}{k^2}{\Omega _z}(k)} .$ (3)
Fig. 3
Download: JPG
larger image


Fig. 3 Surface spectra of monolayer VCl3 at energy level 0.01eV (a) and monolayer VBr3 at energy level 0.07eV (b), and Berry curvature of monolayer VCl3 and VBr3 in the BZ (c, d)

Two Berry curvature peaks contribute to the nonzero Chern number 1 and consequently the total Chern number is 3 by integrating the Berry curvature in the whole BZ. According to the bulk-edge correspondence[36], the nonzero Chern number is closely related to the number of nontrivial chiral edge states that emerge inside the bulk gap of a semi-infinite system. With an effective concept of principle layers, an iterative procedure to calculate the Greens function for a semi-infinite system is employed. The momentum and energy dependence of the local density of states at the edge can be obtained from the imaginary part of the surface Greens function
$A\left( {k, \omega } \right) = - \frac{1}{{\rm{ \mathsf{ π} }}}\mathop {{\rm{lim}}}\limits_{\eta \to {0^ + }} {\rm{ImTrGs}}\left( {k, \omega + {\rm{i}}\eta } \right), $ (4)
and the results are shown in Fig. 4(a) and 4(b). It is obvious that there are three gapless chiral edge states that emerge inside the bulk gap connecting the valence and conduction bands corresponding to the Chern number C=3.
Fig. 4
Download: JPG
larger image


Fig. 4 Energy and k-dependence of the local DOS on the edge of the semi-infinite sheet of VCl3 (a, b) and VBr3(c, d)

As shown in Fig. 5 (Fig. 6), the change of band structure as a function of correlation strength U for monolayer VCl3 (VBr3)indicates that there exits a phase transition at U≈0.45eV (0.35eV), and stronger correlation will turn it into a Mott insulator. We also calculated the properties of a monolayer VBr3. Although the monolayer VBr3 exhibits some similar properties as in VCl3, i.e., a Weyl semimetal without SOC (Fig. 2(b)) and an energy gap is opened when including SOC (Fig. 2(d)), the monolayer VBr3 has the total Chern number C=1 from 6 Berry curvature peaks, of which 4 peaks have positive sign and 2 peaks have negative sign (Fig. 3(d)). The nonzero Chern number 1 corresponds to one gapless chiral edge state (Fig. 4(b) and 4(d)) connecting the valence and conduction bands.
Fig. 5
Download: JPG
larger image


Fig. 5 Electronic band structure of monolayer VCl3 with ferromagnetic momentum 4μB per unit cell along the zigzag direction at different correlation energy values


Fig. 6
Download: JPG
larger image


Fig. 6 Electronic band structure of monolayer VBr3 with ferromagnetic momentum 4μB per unit cell along the zigzag direction at different correlation energy values

3 DiscussionIn summary, based on the first-principle calculations, we propose that the 2D monolayer VCl3 and VBr3 are QAH insulators without considering correlation effect, and they transform into Mott insulators after turning on the correlation effect U. At the mean-field theory level, VCl3 and VBr3 exhibit QAH insulating states with Chern numbers of 3 and 1, respectively, thus giving rise to chiral gapless edge states. If the correlation U is larger than about 0.45 (0.35)eV for VCl3 (VBr3), it will cause a topological phase transition and the monolayer turns into a Mott insulator. These topological properties can be detected by electrical transport experiment, which has been carried out in detecting the QAHE in V-doped (Bi, Sb)2Te3 thin film [37], Cr/V-codoped (Bi, Sb)2Te3 system[38], and other doped TIs [39].
The authors thank YOU Jingyang for helpful discussion.
References
[1] Hall E H. On a new action of the magnet on electric currents[J]. American Journal of Mathematics, 1879, 2(3): 287. DOI:10.2307/2369245
[2] Haldane F D M. Model for a quantum hall effect without landau levels:condensed-matter realization of the "parity anomaly"[J]. Physical Review Letters, 1988, 61(18): 2015-2018.
[3] Weng H M, Yu R, Hu X, et al. Quantum anomalous hall effect and related topological electronic states[J]. Advances in Physics, 2015, 64(3): 227-282. DOI:10.1080/00018732.2015.1068524
[4] Liu C X, Zhang S C, Qi X L. The quantum anomalous Hall effect:theory and experiment[J]. Annual Review of Condensed Matter Physics, 2016, 7(1): 301-321. DOI:10.1146/annurev-conmatphys-031115-011417
[5] Ren Y F, Qiao Z H, Niu Q. Topological phases in two-dimensional materials:a review[J]. Reports on Progress in Physics, 2016, 79(6): 066501. DOI:10.1088/0034-4885/79/6/066501
[6] Nagaosa N, Sinova J, Shigeki O, et al. Anomalous Hall effect[J]. Reviews of Modern Physics, 2010, 82(2): 1539-1592. DOI:10.1103/RevModPhys.82.1539
[7] Kane C L, Mele E J. Quantum spin Hall effect in graphene[J]. Physical Review Letters, 2005, 95(22): 226801. DOI:10.1103/PhysRevLett.95.226801
[8] Kou X F, Fan Y B, Lang M R, et al. Magnetic topological insulators and quantum anomalous Hall effect[J]. Solid State Communications, 2015, 215-216: 34-53. DOI:10.1016/j.ssc.2014.10.022
[9] Chun S H, Chai Y S, Yoon S O, et al. Realization of giant magnetoelectricity in helimagnets[J]. Physical Review Letters, 2010, 104(03): 037204. DOI:10.1103/PhysRevLett.104.037204
[10] Qiao Z H, Yang S Y, Feng W X, et al. Quantum anomalous Hall effect in graphene from Rashba and exchange effects[J]. Physical Review B, 2010, 82(16): 161414. DOI:10.1103/PhysRevB.82.161414
[11] Tse W K, Qiao Z H, Yao Y G, et al. Quantum anomalous Hall effect in single-layer and bilayer graphene[J]. Physical Review B, 2011, 83(15): 155447. DOI:10.1103/PhysRevB.83.155447
[12] Xu G, Weng H M, Wang Z J, et al. Chern semimetal amd the quantized amomalous Hall effect in HgCr2Se4[J]. Physical Review Letters, 2011, 107(18): 186806. DOI:10.1103/PhysRevLett.107.186806
[13] Yu R, Zhang W, Zhang J H, et al. Quantized anomalous Hall effect in magnetic topological insulators[J]. Science, 2010, 329(5987): 61-64. DOI:10.1126/science.1187485
[14] Chang C Z, Zhang J S, Feng X, et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator[J]. Science, 2013, 340(6129): 167-170. DOI:10.1126/science.1234414
[15] Jancu J M, Girard J C, Nestoklon M, et al. STM images of subsurface Mn atoms in GaAs:evidence of hybridization of surface and impurity states[J]. Physical Review Letters, 2008, 101(19): 196801. DOI:10.1103/PhysRevLett.101.196801
[16] Liu X, Hsu H C, Liu C X. In-plane magnetization-induced quantum anomalous Hall Effect[J]. Physical Review Letters, 2013, 111(08): 086802. DOI:10.1103/PhysRevLett.111.086802
[17] Ren Y F, Zeng J J, Deng X Z, et al. Quantum anomalous Hall effect in atomic crystal layers from in-plane magnetization[J]. Physical Review B, 2016, 94(8): 085411. DOI:10.1103/PhysRevB.94.085411
[18] Zhong P C, Ren Y F, Han Y L, et al. In-plane magnetization-induced quantum anomalous Hall effect in atomic crystals of group-V elements[J]. Physical Review B, 2017, 96(24): 241103. DOI:10.1103/PhysRevB.96.241103
[19] Sheng X L, Nikolic B K. Monolayer of the 5d transition metal trichloride OsCl3:a playground for two-dimensional magnetism, room-temperature quantum anomalous Hall effect, and topological phase transitions[J]. Physical Review B, 2017, 95(20): 201402. DOI:10.1103/PhysRevB.95.201402
[20] Liu Z, Zhao G, Liu B, et al. Intrinsic quantum anomalous Hall effect with in-plane magnetization:searching rule and material prediction[J]. Physical Review Letters, 2018, 121(24): 246401. DOI:10.1103/PhysRevLett.121.246401
[21] Kong X R, Li L Y, Ortwin L, et al. New group-V elemental bilayers:a tunable structure model with four-, six-, and eight-atom rings[J]. Physical Review B, 2017, 96(3): 035123. DOI:10.1103/PhysRevB.96.035123
[22] Klemm W, Krose E Z. Die Kristallstrukturen von ScCl3, TiCl3 and VCl3[J]. Anorg Allg Chem, 1947, 253(3/4): 218-225.
[23] Feldmann D, Kirchmayr H, Schmolz A, et al. Magnetic materials analyses by nuclear spectrometry:a joint approach to M?ssbauer effect and nuclear magnetic resonance[J]. IEEE Transactions on Magnetics, 1971, 7(1): 61-91. DOI:10.1109/TMAG.1971.1067012
[24] Hillebrecht H, Schmidt P J, Rotter H W, et al. Structural and scanning microscopy studies of layered compounds MCl3 (M=Mo, Ru, Cr) and MOCl2 (M=V, Nb, Mo, Ru, Os)[J]. Journal of Alloys and Compounds, 1997, 246(1/2): 70-79.
[25] Bengel H, Cantow H J, Magonov S., et al. Tip-force induced surface corrugation in layered transition-metal trichlorides MCl3 (M=Ru, Mo, Rh, Ir)[J]. Sur Sci, 1995, 343: 95-103. DOI:10.1016/0039-6028(95)00733-4
[26] Kresse G, Hafner J. Ab initio molecular dynamics for open-shell transition metals[J]. Physical Review B, 1993, 48(17): 13115-13118. DOI:10.1103/PhysRevB.48.13115
[27] Kresse G, Furthmller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186. DOI:10.1103/PhysRevB.54.11169
[28] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. DOI:10.1103/PhysRevB.59.1758
[29] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. DOI:10.1103/PhysRevLett.77.3865
[30] Pierre V. VCl3 crystal structure. PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database)[DB/OL]. (2016-10-01)[2019-04-15]. https://materials.springer.com/isp/crystallographic/docs/sd_1902637.
[31] Mostofi A A, Yates B, Jonathan R, et al. An updated version of wannier90:a tool for obtaining maximally-localised wannier functions[J]. Computer Physics Communications, 2014, 185(8): 2309-2310. DOI:10.1016/j.cpc.2014.05.003
[32] Lopez Sancho M P, Lopez Sancho J M, Sancho J M L, et al. Highly convergent schemes for the calculation of bulk and surface green functions[J]. Journal of Physics F:Metal Physics, 1985, 15(4): 851-858. DOI:10.1088/0305-4608/15/4/009
[33] Wu Q S, Zhang S N, Song H F, et al. WannierTools:an open-source software package for novel topological materials[J]. Computer Physics Communications, 2018, 224: 405-416. DOI:10.1016/j.cpc.2017.09.033
[34] Khaliji K, Fallahi A, Luis M M, et al. Tunable plasmon-enhanced birefringence in ribbon array of anisotropic two-dimensional materials[J]. Physical Review B, 2017, 95(20): 201401. DOI:10.1103/PhysRevB.95.201401
[35] You J Y, Chen C, Zhang Z, et al. Two-dimensional Weyl half semimetal and tunable quantum anomalous Hall effect in monolayer PtCl3[J/OL]. arXiv: 2019, 1903.08373[2019-04-15]. https://arxiv.org/abs/1903.08373v1.
[36] Hatsugai Y. Chern number and edge states in the integer quantum Hall effect[J]. Physical Review Letters, 1993, 71(22): 3697-3700. DOI:10.1103/PhysRevLett.71.3697
[37] Chang C Z. Realization of high-precision realization of robust quantum anomalous Hall state in a hard ferrimagnetic topological insulator[J]. Nature Material, 2015, 14(5): 473-477. DOI:10.1038/nmat4204
[38] Ou Y, Liu C, Jiang G, et al. Enhancing the quantum anomalous Hall effect by magnetic co doping in a topological insulator[J]. Advanced Material, 2017, 30(1): 1703062.
[39] He K, Wang Y, Xue Q K. Topological materials:quantum anomalous hall system[J]. Annu Rev Condens Matter Phys, 2018, 9(1): 329-344. DOI:10.1146/annurev-conmatphys-033117-054144


相关话题/图片 半导体 北京 原文 物理

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 城市河岸带的斑块组成和空间分布对小气候的影响——以北京永定河河岸带为例
    王昕1,张娜1,2,乐荣武1,郑潇柔1,31.中国科学院大学资源与环境学院,北京101408;2.燕山地球关键带与地表通量观测研究站,北京101408;3.中国科学院深圳先进技术研究院空间信息研究中心,广东深圳5180552019年3月22日收稿;2019年5月8日收修改稿基金项目:北京市自然科学基 ...
    本站小编 Free考研考试 2021-12-25
  • 2015年田径锦标赛和大阅兵活动期间北京市NOx浓度特征
    程念亮1,2,3,张大伟1,李云婷1,陈添4,孙峰1,李令军1,程兵芬2,31.北京市环境保护监测中心大气颗粒物监测技术北京市重点实验室,北京100048;2.北京师范大学水科学研究院,北京100875;3.中国环境科学研究院,北京100012;4.北京市环境保护局,北京1000482016年01月 ...
    本站小编 Free考研考试 2021-12-25
  • 机动车燃油质量及尾气排放与北京市大气污染的相关性
    杨昆昊1,夏赞宇1,何芃2,吴丽1,龚玲玲1,钱越英3,侯琰霖1,何裕建11.中国科学院大学化学与化工学院,北京101408;2.同济大学化学系,上海200092;3.中国科学院理化技术研究所,北京1001902016年05月31日收稿;2016年12月01日收修改稿基金项目:国家自然科学基金(21 ...
    本站小编 Free考研考试 2021-12-25
  • 基于投入产出模型的北京市生产性服务业与制造业互动关系
    王红杰1,2,3,鲍超1,2,3,郭嘉颖3,41.中国科学院地理科学与资源研究所,北京100101;2.中国科学院区域可持续发展分析与模拟重点实验室,北京100101;3.中国科学院大学资源与环境学院,北京100049;4.中国科学院南京地理与湖泊研究所,南京2100082017年08月08日收稿; ...
    本站小编 Free考研考试 2021-12-25
  • 增强型地热系统的多区域多物理场耦合三维数值模拟
    丁军锋,王世民中国科学院大学地球与行星科学学院,北京100049;中国科学院计算地球动力学重点实验室,北京1000492018年4月13日收稿;2018年4月27日收修改稿基金项目:国家自然科学基金(41374090,41674086)和中国科学院“****”项目资助通信作者:王世民,E-mail: ...
    本站小编 Free考研考试 2021-12-25
  • 北京张坊地区中上元古界中岩溶发育与构造作用
    刘建明1,张玉修1,曾璐1,琚宜文1,芮小平2,乔小娟11.中国科学院大学地球与行星科学学院,北京100049;2.中国科学院大学资源与环境学院,北京1000492017年11月3日收稿;2018年3月23日收修改稿基金项目:北京岩溶水资源勘查评价工程项目(BJYRS-ZT-03)和中国科学院大学校 ...
    本站小编 Free考研考试 2021-12-25
  • AUV自航对接的类物理数值模拟*
    自主水下机器人(AutonomousUnderwaterVehicle,AUV)水下对接能解决AUV能源受限问题,延长其水下作业时间,使AUV在全生命周期内智能化,在军民海洋网络中发挥重要的远程作战和协同作业能力。这促进了AUV水下对接系统[1]的发展。分析对接系统的结构和后期的试验结果表明:对接过 ...
    本站小编 Free考研考试 2021-12-25
  • 热力耦合问题数学均匀化方法的物理意义*
    复合材料具有比强度高、比刚度大等优点,广泛应用于航天、航空工业领域。众所周知,对于很多复合材料的宏观解,如低阶频率和模态,可以使用等应变模型或等应力模型[1]及其他均匀化方法[2]求解,但相对于宏观应力分析,细观结构分析要复杂很多。为了在计算精度和效率之间达到平衡,各种多尺度方法相继被提出,如数学均 ...
    本站小编 Free考研考试 2021-12-25
  • 六相永磁容错轮毂电机多物理场综合设计方法*
    电动装甲车兴起于20世纪60年代,相比于传统装甲车辆,电驱动装甲车省去了传动轴等机械部件,对车的牵引力控制可直接通过电机控制器完成,极大地提高了整车机动性[1-2]。轮毂电机作为电驱动系统的核心部件,其性能优劣对整车系统的可靠性有直接影响。装甲车工况复杂多变,恶劣的工作环境导致电机更容易出现故障[3 ...
    本站小编 Free考研考试 2021-12-25
  • 窄线宽半导体激光器的热设计及优化*
    半导体激光器作为原子陀螺仪中的激光泵浦光源,其热特性对仪器整体具有较大影响。伴随着半导体激光器其相关集成芯片的广泛研究与应用,其热问题一直是人们关注的焦点之一。虽然半导体激光管具有较高的光电转换效率,但工作时仍然有相当部分的电能转换为了热能,尤其是近年来,半导体可调谐激光器的设计与封装朝尺寸轻薄短小 ...
    本站小编 Free考研考试 2021-12-25