删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Iterated Hardy-Littlewood maximal function

本站小编 Free考研考试/2021-12-25

王泽群, 燕敦验
中国科学院大学数学科学学院, 北京 100049
摘要: 研究迭代的非中心型哈代-李特伍德极大函数和迭代的中心型哈代-李特伍德极大函数。证明迭代极大函数的极限是极大算子的一个不动点。作为不动点理论的一个应用,最终得到,对于非中心型哈代-李特伍德极大算子,这个不动点处处为‖f。对于中心型哈代-李特伍德极大算子,仅在n=1,2时有相同的结果。
关键词: 哈代-李特伍德极大函数不动点迭代的哈代-李特伍德极大函数
Define the centered Hardy-Littlewood maximal function by
${M_c}f\left( x \right) = \mathop {\sup }\limits_{r > 0} \frac{1}{{\left| {B\left( {x,r} \right)} \right|}}\int_{B\left( {x,r} \right)} {\left| {f\left( y \right)} \right|{\rm{d}}y} ,$ (1)
and the non-centered Hardy-Littlewood maximal function by
$Mf\left( x \right) = \mathop {\sup }\limits_{B \ni x} \frac{1}{{\left| B \right|}}\int_B {\left| {f\left( y \right)} \right|{\rm{d}}y} ,$ (2)
where B is a ball and B(x, r) is a ball with the center at the point x and the radius r. The basic real-variable construct was introduced for n=1 by Hardy and Littlewood[1] and for n≥2 by Wiener[2]. It is well-known that the Hardy-Littlewood maximal function plays an important role in many parts of analysis. It is a classical mean operator frequently used to majorize other important operators in harmonic analysis.
It is clear that
${M_c}f\left( x \right) \le Mf\left( x \right) \le {2^n}{M_c}f\left( x \right)$ (3)
holds for all x$ \mathbb{R} $n. Both M and Mc are sublinear operators and the two functions Mf and Mc f never vanish unless f=0 almost everywhere[3]. The study of the boundedness for M or Mc is fairly complete[4]. The primary purpose of this paper is to study the properties of the iterated Hardy-Littlewood maximal function.
Let M be the non-centered Hardy-Littlewood maximal function defined by (2). Define the iterated non-centered Hardy-Littlewood maximal function denoted by Mk+1 as follows:
${M^{k + 1}}f\left( x \right): = M\left( {{M^k}f} \right)\left( x \right),$ (4)
for k=1, 2, …, and x$ \mathbb{R} $n. Set M1f(x):=Mf(x).
In the same way, we can set
$M_c^{k + 1}f\left( x \right): = {M_c}\left( {M_c^kf} \right)\left( x \right).$ (5)
We all know that both operators Mc and M have the Lp-boundedness and the two maximal functions Mc f and Mf have a little difference in the pointwise sense from inequalities (3). We want to investigate the limit of the iterated Hardy-Littlewood maximal function.
Wei et al[5] studied the limit of Mkf and obtained Theorem A as follows.
Theorem A??For any fL($ \mathbb{R} $n), the equation
$\mathop {\lim }\limits_{k \to \infty } {M^k}f\left( x \right) = {\left\| f \right\|_\infty }$ (6)
holds for any x$ \mathbb{R} $n.
For Mc, we want to know whether it has the same properties as M. Unexpectedly, the limit of Mckf is essentially different from the limit of Mkf.
Now we formulate our main results as follows.
Theorem B??If fLloc1($ \mathbb{R} $n) and x$ \mathbb{R} $n, then
$\mathop {\lim }\limits_{k \to \infty } M_c^kf\left( x \right) = {\left\| f \right\|_\infty }$ (7)
holds for every x$ \mathbb{R} $n if and only if n=1, 2.
Theorem C??Let fLloc1($ \mathbb{R} $n). We have
$\mathop {\lim }\limits_{k \to \infty } {M^k}f\left( x \right) = {\left\| f \right\|_\infty },$
for every x$ \mathbb{R} $n and any nN.
We remark that the range of function f in Theorem C is wider than that in Theorem A. Furthermore in this paper we will use some novel ideas to prove Theorem C.
1 Fixed point of Hardy-Littlewood maximal operatorTo prove our main theorems, we first provide some definitions and lemmas which will be used in the follows. Some lemmas can be found in classic literatures and here we omit their proofs.
Definition 1.1??A function F is called a fixed point of a operator T, if
$TF\left( x \right) = F\left( x \right)$ (8)
holds for all x$ \mathbb{R} $n.
Obviously if F is a fixed point of the operator T, then we have
$\mathop {\lim }\limits_{k \to \infty } {T^k}F\left( x \right) = F\left( x \right).$
By the Lesbegue differentiation theorem, for almost all x$ \mathbb{R} $n, we have
${M_c}f\left( x \right) \ge \left| {f\left( x \right)} \right|$
and
$Mf\left( x \right) \ge \left| {f\left( x \right)} \right|.$
For the iterated Hardy-Littlewood maximal operator, we have the following lemma.
Lemma 1.1??For x$ \mathbb{R} $n, and k≥1, the two inequalities
${M^{k + 1}}f\left( x \right) \ge {M^k}f\left( x \right)$ (9)
and
$M_c^{k + 1}f\left( x \right) \ge M_c^kf\left( x \right)$ (10)
hold for all fLloc1($ \mathbb{R} $n).
Proof??Set E={x:x is not the Lesbegue point of |f|}. It follows from the Lesbegue differentiation theorem that m(E)=0. Actually we merely need to prove
${M^2}f\left( x \right) \ge Mf\left( x \right)$
for all x$ \mathbb{R} $n.
We conclude that
$\begin{array}{l}Mf\left( x \right) = \mathop {\sup }\limits_{B \ni x} \frac{1}{{\left| B \right|}}\int_B {\left| {f\left( y \right)} \right|{\rm{d}}y} \\ = \mathop {\sup }\limits_{B \ni x} \frac{1}{{\left| B \right|}}\int_{B\backslash E} {\left| {f\left( y \right)} \right|{\rm{d}}y} \\ = \mathop {\sup }\limits_{B \ni x} \frac{1}{{\left| B \right|}}\int_{B\backslash E} {\left\{ {\mathop {\lim }\limits_{k \to 0} \frac{1}{{\left| {B\left( {y,r} \right)} \right|}}\int_{B\left( {y,r} \right)} {\left| {f\left( u \right)} \right|{\rm{d}}u} } \right\}{\rm{d}}y} \\ \le \mathop {\sup }\limits_{B \ni x} \frac{1}{{\left| B \right|}}\int_{B\backslash E} {Mf\left( y \right){\rm{d}}y} = \mathop {\sup }\limits_{B \ni x} \frac{1}{{\left| B \right|}}\int_B {Mf\left( y \right){\rm{d}}y} \\ = {M^2}f\left( x \right).\end{array}$ (11)
Using the completely same method, we can obtain that Mc2 f(x)≥Mc f(x).
By Lemma 1.1, since Mkf monotonously increases, the limit of Mkf(x) exists for all x$ \mathbb{R} $n.
Lemma 1.2??If fLloc1($ \mathbb{R} $n) is a fixed point of Mc, then there exists another function ftC($ \mathbb{R} $n)∩Lloc1($ \mathbb{R} $n) such that ft is a fixed point of Mc as well.
Proof??Set ?Cc($ \mathbb{R} $n) such that
$\int_{{\mathbb{R}^n}} {\phi \left( x \right){\text{d}}x} = 1.$
For t > 0, set
${f_t} = f * {\phi _t},$
where ?t(x)=t-n?(x/t), for all x$ \mathbb{R} $n. Obviously we have
${f_t} \in {C^\infty }\left( {{\mathbb{R}^n}} \right) \cap L_{{\text{loc}}}^1\left( {{\mathbb{R}^n}} \right).$
Put
${{\chi }_{r}}=\frac{1}{\left| {{B}_{r}} \right|}{{\chi }_{{{B}_{r}}}}.$
The centered Hardy-Littlewood maximal function is written by
${M_c}\left( f \right)\left( x \right) = \mathop {\sup }\limits_{r > 0} {\chi _r} * \left| f \right|\left( x \right).$ (12)
Note f is a fixed point of Mc. This implies f≥0. We have that
$\begin{array}{*{20}{c}} {{\chi _r} * \left| {{\phi _t} * f} \right|\left( x \right) = \int_{{\mathbb{R}^n}} {{\phi _t}\left( y \right)\left( {{\chi _r} * {\tau _y}f} \right)\left( x \right){\text{d}}y} } \\ { \leqslant \int_{{\mathbb{R}^n}} {{\phi _t}\left( y \right){M_c}\left( {{\tau _y}f} \right)\left( x \right){\text{d}}y} = {\phi _t} * {M_c}\left( f \right)\left( x \right)} \\ { = {f_t}\left( x \right).} \end{array}$ (13)
On the other hand, it follows from (12) and (13) that Mc(ft)(x)=Mc(?t*f)(x)=$ \underset{r>0}{\mathop{\text{sup}}}\, {{\chi }_{r}} $*|?t*f|(x)≤ft(x).Since ft is smooth function, it follows from the definition of Mcf that
${M_c}\left( {{f_t}} \right)\left( x \right) \ge {f_t}\left( x \right).$
Thus we obtain that ft is a fixed point of Mc.
Using the similar method, we can easily prove that ft is a fixed point of M if f is a fixed point of M.
Lemma 1.3??There is a non-constant fixed point of Mc in Lloc1($ \mathbb{R} $n) if and only if there exists a non-negative upper-harmonic function.
There is a non-constant fixed point of M in Lloc1($ \mathbb{R} $n) if and only if there exists a non-negative function f$ \mathbb{C} $($ \mathbb{R} $n)∩Lloc1($ \mathbb{R} $n) such that f(x)≥Mf(x) for all x$ \mathbb{R} $n.
Lemma 1.3 is due to that for a smooth function, every point in $ \mathbb{R} $n is its Lesbegue point. We only need that f(x)≥Mf(x) to guarantee that the function is a fixed point.
Lemma 1.4??If f is a non-constant and smooth function, and f is a fixed point of M, then, in any closed ball, the minimum value of f is gotten only in the sphere.
Lemma 1.4 has the same proof as the proof of extremism principle of harmonic function. For the details please see Ref.[6].
Lemma 1.5??Suppose that f is a fixed point of M. If fLloc1($ \mathbb{R} $n), then we have f=C≤∞; if f?Lloc1($ \mathbb{R} $n), then we have f(x)=∞.
Proof. Since f is a fixed point of M, it follows from Lemma 1.2 that there exists ft$ \mathbb{C} $($ \mathbb{R} $n)∩Lloc1($ \mathbb{R} $n) such that ft is a fixed point of M as well.
Suppose that B is a ball in $ \mathbb{R} $n and ft$ \mathbb{C} $($ \mathbb{R} $n)∩Lloc1($ \mathbb{R} $n) such that Mft(x)=ft(x) for all x$ \mathbb{R} $n. We use the proof by contradiction.
If ft is not a constant, then, by Lemma 1.4, there is at least one point x?B such that ft(y) > ft(x) holds for all yB°.
Note that ft is a fixed point of M. Thus we have that
$\begin{array}{*{20}{c}}{{f_t}\left( x \right) < \frac{1}{{m\left( {{B^ \circ }} \right)}}\int_{{B^ \circ }} {\left| {{f_t}\left( y \right)} \right|{\rm{d}}y} }\\={\frac{1}{{m\left( B \right)}}\int_B {\left| {{f_t}\left( y \right)} \right|{\rm{d}}y} \le M{f_t}\left( x \right) = {f_t}\left( x \right).}\end{array}$ (14)
This is impossible. Consequently it implies that ft(x)=C for all x$ \mathbb{R} $n.
Next we will prove that f(x)=C for all x$ \mathbb{R} $n.
Choose a radial nonnegative function ?Cc($ \mathbb{R} $n) such that
$ \mathbb{R} $n?(x)dx=1, supp ??{x$ \mathbb{R} $n:|x|≤1} and ?(x)≥?(x′) for 0≤|x|≤|x′|.
For each t > 0, we have ft(x)=C.
Set BR={x$ \mathbb{R} $n:|x| < R}, for R > 0. We conclude from Lemma 1.2 that
$\begin{gathered} C={{f}_{t}}\left( x \right)=\int_{{{\mathbb{R}}^{n}}}{\left( f{{\chi }_{{{B}_{R}}}}+f{{\chi }_{{{\mathbb{R}}^{n}}\backslash {{B}_{R}}}} \right)\left( x-y \right){{\phi }_{t}}\left( y \right)\text{d}y} \hfill \\ = f{\chi _{{B_R}}} * {\phi _t}\left( x \right) + f{\chi _{{\mathbb{R}^n}\backslash {B_R}}} * {\phi _t}\left( x \right). \hfill \\ \end{gathered} $ (15)
It follows from (15) that
$\mathop {\lim }\limits_{t \to 0} f{\chi _{{B_R}}} * {\phi _t}\left( x \right) + \mathop {\lim }\limits_{t \to 0} f{\chi _{{\mathbb{R}^n}\backslash {B_R}}} * {\phi _t}\left( x \right) = C.$ (16)
Note that fLloc1($ \mathbb{R} $n). Thus we have BRL1($ \mathbb{R} $n). This implies that
$\mathop {\lim }\limits_{t \to 0} f{\chi _{{B_R}}} * {\phi _t}\left( x \right) = f{\chi _{{B_R}}}\left( x \right)$ (17)
for almost every x$ \mathbb{R} $n. By the property of convolution, we get that
${\text{supp}}f{\chi _{{\mathbb{R}^n}\backslash {B_R}}} * {\phi _t} \subset \left\{ {x \in {\mathbb{R}^n}:\left| x \right| \geqslant R - t} \right\}.$ (18)
Combing (16), (17) with (18) yields that
$f{\chi _{{B_R}}}\left( x \right) + \mathop {\lim }\limits_{t \to 0} f{\chi _{{\mathbb{R}^n}\backslash {B_R}}} * {\phi _t}\left( y \right) = C$
holds for almost every x$ \mathbb{R} $n. This is equivalent to that
$f{\chi _{{B_R}}}\left( x \right) = C$
holds for almost every x$ \mathbb{R} $n. Let R→∞, then we have
$f\left( x \right) = C$
for almost every x$ \mathbb{R} $n. This implies that Mf(x)=C for every x$ \mathbb{R} $n. Note that f is a fixed point of M, that is,
$Mf\left( x \right) = f\left( x \right).$
Thus we must obtain that
$f\left( x \right) = C$
for every x$ \mathbb{R} $n.
If f?Lloc1($ \mathbb{R} $n), then there is a ball B such that
$\int_B {\left| {f\left( x \right)} \right|{\rm{d}}x} = \infty .$
We have Mf(x)=∞. So we have f(x)=∞ for every x$ \mathbb{R} $n.
We remark that Mc has essential difference with M with respect to the fixed point. We all know that when n≥3, the function f(x)=|x|2-n is a harmonic function in $ \mathbb{R} $n\{0}. In fact, we can easily check that f(x)=|x|2-n is a fixed point of Mc.
Korry[7] obtained the following lemma 1.6.
Lemma 1.6??For the Mc, if fLloc1($ \mathbb{R} $n) with n=1, 2 and Mcf=f, then we have f=C≥0.
2 Main theoremsIn the section, for any local integral function, the limit of the iterated Hardy-Littlewood maximal function is a fixed point of Hardy-Littlewood maximal operator.
Theorem 2.1??Write
$\mathop {\lim }\limits_{k \to \infty } {M^k}f\left( x \right) = F\left( x \right).$
We have
$MF\left( x \right) = F\left( x \right).$
That is, F a fixed point of M.
In the same way, write
$\mathop {\lim }\limits_{k \to \infty } M_c^kf\left( x \right) = {F_c}\left( x \right),$
then McFc(x)=Fc(x). That is, Fc a fixed point of Mc.
Proof??We only prove the first part of Theorem 2.1. It follows that
$\begin{array}{*{20}{c}}{MF\left( x \right) = M\mathop {\lim }\limits_{k \to \infty } {M^k}f\left( x \right) = }\\{\mathop {\sup }\limits_{B \ni x} \frac{1}{{m\left( B \right)}}\int_B {\mathop {\lim }\limits_{k \to \infty } {M^k}f\left( y \right){\rm{d}}y} .}\end{array}$ (19)
Associate to an arbitrary ε > 0 Bε?x such that
$\begin{array}{l}MF\left( x \right) - \varepsilon \le \frac{1}{{m\left( {{B_\varepsilon }} \right)}}\int_{{B_\varepsilon }} {\mathop {\lim }\limits_{k \to \infty } {M^k}f\left( y \right){\rm{d}}y} \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \le \mathop {\lim }\limits_{k \to \infty } \frac{1}{{m\left( {{B_\varepsilon }} \right)}}\int_{{B_\varepsilon }} {{M^k}f\left( y \right){\rm{d}}y} \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \le \mathop {\lim }\limits_{k \to \infty } {M^{k + 1}}f\left( x \right) = F\left( x \right)\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \le MF\left( x \right).\end{array}$ (20)
That is
$MF\left( x \right) = F\left( x \right).$ (21)
Lemma 2.1??Write
$\mathop {\lim }\limits_{k \to \infty } {M^k}f\left( x \right) = F\left( x \right).$
If F(x)=C for all x$ \mathbb{R} $n, then we have C=‖f.
Proof??Since F(x)=C, it implies from the definition of Hardy-Littlewood maximal function that C≤‖f. By the definition of essential supremum of function, associate to an arbitrary ε > 0, a set E?$ \mathbb{R} $n with m(E) > 0, such that
$\left| {f\left( x \right)} \right| > {\left\| f \right\|_\infty } - \varepsilon ,$
for xE. When xE is the lebesgue point of f, we have that
$C = F\left( x \right) \ge Mf\left( x \right) \ge \left| {f\left( x \right)} \right| > {\left\| f \right\|_\infty } - \varepsilon .$
By the arbitrary property of ε, we immediately have
$C \ge {\left\| f \right\|_\infty }.$
Consequently we have C=‖f
Next we will prove our main theorems.
The proof of Theorem B
Proof??It follows from Theorem 2.1 that
${F_c}\left( x \right) = \mathop {\lim }\limits_{k \to \infty } M_c^kf\left( x \right)$ (22)
is a fixed point of Mc.
By Lemm 1.6, if FcLloc1($ \mathbb{R} $n) with n=1, 2, then Fc=C.
Since Fc(x)=C, it implies from the definition of center Hardy-Littlewood maximal function that C≤‖f.
By the definition of essential supremum of function, associate to an arbitrary ε > 0 a set E?$ \mathbb{R} $n with m(E) > 0, such that
$\left| {f\left( x \right)} \right| > {\left\| f \right\|_\infty } - \varepsilon ,$
for xE. Since fLloc1($ \mathbb{R} $n), almost every points in $ \mathbb{R} $n is the lebesgue point of f. Choose xE is the lebesgue point of f. We have that
$C = F\left( x \right) \ge {M_c}f\left( x \right) \ge \left| {f\left( x \right)} \right| > {\left\| f \right\|_\infty } - \varepsilon .$
By the arbitrary property of ε, we immediately have
$C \ge {\left\| f \right\|_\infty }.$
Consequently we have Fc=‖f.
If Fc?Lloc1($ \mathbb{R} $n), we can easily have F=∞=‖f.
The proof of Theorem C
Proof??It follows from Theorem 2.1 that
$F\left( x \right) = \mathop {\lim }\limits_{k \to \infty } {M^k}f\left( x \right)$ (23)
is a fixed point of M.
By Lemma 1.5, if FLloc1($ \mathbb{R} $n), then we have F=C.
It follows from Lemma 2.1 that F=‖f.
If F?Lloc1($ \mathbb{R} $n), then we have ‖f=∞, and there exists a ball B(0, R) such that
$\int_{B\left( {0,R} \right)} {\left| {F\left( x \right)} \right|{\rm{d}}x} = \infty .$
Note that F a fixed point of M. We have
$F\left( x \right) = MF\left( x \right) = \infty .$
Consequently, we have F=‖f.
References
[1] Hardy G H, Littlewood J E. A maximal theorem with function-theoretic applications[J].Acta Math, 1930, 54:81–116.DOI:10.1007/BF02547518
[2] Wiener N. The ergodic theorem[J].Duke Math J, 1939, 5:1–18.DOI:10.1215/S0012-7094-39-00501-6
[3] Rudin W. Real and complex analysis[M].New York: McGraw-Hill Publishing Co, 1987.
[4] Stein E M. Harmonic analysis, real variable methods, orthogonality, and osciallatory integrals[M].New Jersey: Princeton University Press, 1993.
[5] Wei M, Nei X, Wu D, et al. A note on Hardy-Littlewood maximal operators[J].J Inequal Appl, 2016, 21:1–13.
[6] Ding Y. Foundations of modern analysis[M].Beijing: Beijing Normal University Publishing Group, 2008.
[7] Korry S. Fixed points of the Hardy-Littlewood maximal operator[J].Collect Math, 2001, 52:289–294.


相关话题/北京 科学学院 数学 中国科学院大学 函数

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于投入产出模型的北京市生产性服务业与制造业互动关系
    王红杰1,2,3,鲍超1,2,3,郭嘉颖3,41.中国科学院地理科学与资源研究所,北京100101;2.中国科学院区域可持续发展分析与模拟重点实验室,北京100101;3.中国科学院大学资源与环境学院,北京100049;4.中国科学院南京地理与湖泊研究所,南京2100082017年08月08日收稿; ...
    本站小编 Free考研考试 2021-12-25
  • 北京张坊地区中上元古界中岩溶发育与构造作用
    刘建明1,张玉修1,曾璐1,琚宜文1,芮小平2,乔小娟11.中国科学院大学地球与行星科学学院,北京100049;2.中国科学院大学资源与环境学院,北京1000492017年11月3日收稿;2018年3月23日收修改稿基金项目:北京岩溶水资源勘查评价工程项目(BJYRS-ZT-03)和中国科学院大学校 ...
    本站小编 Free考研考试 2021-12-25
  • 函数传递法求解悬链线问题*
    悬链线问题是比较经典的力学问题,指的是匀质索链在重力作用下自然下垂变形所呈现曲线的求解问题。由于悬链曲线构形使结构不承受弯矩只承受拉压,能有效增强其抗变形和承载能力,悬链曲线构形是悬索桥和拱桥常用的构形,该问题在桥梁工程等领域中有着广泛的应用和研究。经典悬链曲线常采用解析方法[1]求解,具有弹性的悬 ...
    本站小编 Free考研考试 2021-12-25
  • 函数调用网络的结构属性及其静态鲁棒性*
    自然界有许多复杂系统都可以用复杂网络来描述[1],如蛋白质网[2]、铁路网[3]、航空网[4]等。复杂网络为研究软件系统的结构提供了一种有力的工具[5]。2002年,Valverde等[6]首次将复杂网络理论应用到软件系统的拓扑结构中。Valverde[7]和Myers[8]等分析了开源软件,用有向 ...
    本站小编 Free考研考试 2021-12-25
  • 热力耦合问题数学均匀化方法的物理意义*
    复合材料具有比强度高、比刚度大等优点,广泛应用于航天、航空工业领域。众所周知,对于很多复合材料的宏观解,如低阶频率和模态,可以使用等应变模型或等应力模型[1]及其他均匀化方法[2]求解,但相对于宏观应力分析,细观结构分析要复杂很多。为了在计算精度和效率之间达到平衡,各种多尺度方法相继被提出,如数学均 ...
    本站小编 Free考研考试 2021-12-25
  • 含函数型自变量回归模型中的变量选择*
    在目前的大数据时代,数据采集的途径越来越多样化,数据量越来越大,采集到的数据类型也日益丰富。在对这些数据进行分析的过程中,不可避免地会遇到混合类型的数据,无法直接使用已有方法进行分析处理。在已有方法的基础上,构建新方法对混合类型的数据进行统计分析具有理论和现实意义。例如,图像数据、音频数据和矩阵数据 ...
    本站小编 Free考研考试 2021-12-25
  • 基于波动光学的显微光场成像点扩散函数*
    航空航天发动机由于换热量大,且内部结构复杂,传统换热器已经不能满足其对空间及换热性能的双重需求,而微通道换热器因换热性能强、结构紧凑、质量轻、体积小等优点成为研究热点。目前,微通道换热器仍处于发展阶段,研究其流动特性可指导微通道的构型优化,且流动特性的研究有助于换热特性的研究。因此,流动特性是微通道 ...
    本站小编 Free考研考试 2021-12-25
  • 基于薄板样条函数的电磁定位系统位姿校正方法*
    电磁定位系统(Electromagnetictrackingsystem,EM)是利用电磁感应原理测量位姿的空间定位装置,由磁场发生器、信号接收器和数据处理模块组成。EM具有精度高、反应灵活、操作简便、价格便宜以及无遮挡效应等优点,被广泛应用于医学领域手术器械的跟踪定位[1-4]。将EM与计算机断层 ...
    本站小编 Free考研考试 2021-12-25
  • 基于仿射变换S盒的轻量级杂凑函数*
    杂凑函数(hashfunction)是一种单向密码体制,可以将任意长度的输入经变换后得到固定长度的输出。由于具有单向性、抗碰撞性及运算速度快等优势,杂凑函数被广泛应用于数据完整性认证、数字签名及嵌入式安全检测等领域[1]。嵌入式系统与传统的台式机和高性能计算机相比,在运算能力、内存及能耗等方面有着严 ...
    本站小编 Free考研考试 2021-12-25
  • 多模函数优化的改进花朵授粉算法*
    花朵授粉算法(FlowerPollinationAlgorithm,FPA)是由英国剑桥大学****Yang于2012年提出的,其基本思想来源于对自然界花朵自花授粉、异花授粉的模拟,是一种新的元启发式群智能随机优化技术[1]。之后,Yang等[2-3]在FPA的基础上模拟花朵多配子的形式提出了多目标 ...
    本站小编 Free考研考试 2021-12-25