删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Sympathetic cooling of Rb+ ions by cold Rb atoms in an ion-neutral hybrid trap

本站小编 Free考研考试/2021-12-25

吕双飞1, 贾凤东1, 李晓康1, 刘晋允1, 许翔源2,3, 薛平2, 钟志萍1
1. 中国科学院大学物理科学学院, 北京 100049;
2. 清华大学物理系低维量子物理国家重点实验室, 量子物质科学协同创新中心, 北京 100084;
3. 首都师范大学物理系, 北京 100037
摘要: 研究在离子-原子混合阱中冷Rb原子对Rb+离子的协同冷却效应。通过对与原子相互作用之后离子温度和数目的测量研究离子阱参数q1,2对协同冷却的影响。发现在0.3≤q1,2≤0.8时冷原子对离子具有明显的协同冷却效果。选取|q1,2|=0.32,测量到离子可以从初始温度(2 010±380)K冷却至(325±35)K,寿命从7s延长至15s。这对于冷却原子离子或者分子离子,尤其是没有合适光学通道的离子将是非常有意义的。
关键词: 协同冷却离子-原子碰撞离子-原子混合阱
Sympathetic cooling provides an efficient cooling of particles that are difficult to cool, especially for those particles which do not have optically accessible transitions[1-3]. Sympathetic cooling has achieved great success in many fields. In neutral-neutral sympathetic cooling, sympathetic cooling of an atomic Fermi gas by a Bose gas is a standard technology to study degenerate atomic Fermi gases and Boson-Fermion mixtures in many laboratories[4-6]. In ion-ion sympathetic cooling, usually one of the ionic species is directly laser cooled first and then cools the other ionic species by elastic collisions. Due to the strong Coulomb interaction V∝1/r, this is a highly effective method for cooling ions to cold and ultracold temperatures[7-9]. Recently, ion-ion sympathetic cooling was used to cool the molecular ion external degrees of freedom to ultracold temperature[10-11]. However, the long range ion-ion interaction does not couple to the molecular ion internal degrees of freedom and therefore the rovibrational temperature is unmodified by the ion-ion sympathetic cooling. Precise control over the internal motion of the molecular ions is required and useful in the study of ultrahigh-precision molecular spectroscopy[12], quantum control reactions[13], and ultracold chemistry[14-15].
Since the ion-neutral hybrid trap was originally proposed[3], which consists of two separate but spatially concentric traps (a magneto-optical trap (MOT) for the neutral species and a mass-selective linear Paul trap (LPT) for the ionic species), it becomes an ideal apparatus for ion-neutral sympathetic cooling[16-20]. In ion-neutral sympathetic cooling, collisions are dominated by the long range polarization potential, which can be described by -C4/r4, where C4=αe2/(8πε0), with α the static electric polarizability of the neutral spices and r the ion-neutral separation. Such long-range polarization forces between ions and neutral atoms result in large elastic scattering cross sections, as well as inelastic collision sections. Therefore, the ion-neutral sympathetic cooling offers a unique advantage to simultaneously cool both the internal and external degrees of freedom for molecular ions[21].
Before the invention of MOT, the ion-neutral sympathetic cooling was widely studied in the neutral buffer gas[22-24], in which the neutral buffer gas is usually dispersed throughout the whole experimental chamber. In those cases, the technique works best for ions (with mass mi) and neutral atoms (with mass mn) whose masses meet the criterion mi/mn>1, or else the ion trap's inherent atom-ion rf heating mechanism overwhelms the collisional cooling[22-24]. Unlike the buffer gas cooling, the cold neutral species is directly laser cooled and localized in a small volume compared to the volume of ions cloud in a LPT. Goodman et al.[19] have theoretically studied the ion-neutral sympathetic cooling in an ion-neutral hybrid trap, and shown that a MOT efficiently cools ions. Very recently, equal mass ion-neutral sympathetic cooling was observed experimentally within ion-neutral hybrid traps (See Refs.[17, 20]). They first reported evidence of sympathetic cooling of Rb+ by a Rb MOT and Na+ by a Na MOT, respectively.
In this paper, sympathetic cooling of Rb+ by cold Rb atoms is investigated in an ion-neutral hybrid trap. By directly mesruing the temperature of ions, the effect of LPT parameter q1, 2 on the sympathetic cooling of Rb+ is studied. Then an appropriate q1, 2 value is selected for further study of sympathetic cooling.
1 Experimental methodThe dynamic of a LPT will be introduced firstly to help us understanding the ion-atom collisions in the ion-neutral hybrid trap. The confining potential of a LPT is not conservative as it is based on oscillating electric fields, the trapped ions can be heated due to trap imperfections and rf heating caused by ion-ion repulsion[17, 19]. Even in a mixed systems of co-trapped ions and cold atoms, the collisions between ions and cold atoms can cause atom-ion rf heating mechanism[17-19]. The only available cooling channel for Rb+ ions in such an ion-neutral hybrid trap is collisions with cold Rb atoms. The heating and cooling of ions are simultaneous and competitive, therefore appropriate parameters of LPT must be selected to make sure that the collisional cooling can overwhelm many heating mechanisms[18-22].
The potential of the LPT is of the form
$\begin{array}{c}\Phi \left( {x, y, z, t} \right) \approx \frac{{{V_{{\rm{rf}}}}}}{{r_{_0}^{^2}}}{\rm{cos}}\left( {\mathit{\Omega} t} \right)({x^2}- {y^2}) + \\\frac{{\eta {V_{{\rm{ec}}}}}}{{z_{_0}^{^2}}}[{z^2}-\frac{1}{2}({x^2} + {y^2})], \end{array}$ (1)
where Vrf and Ω is amplitude and frequency of the rf voltage respectively, Vec the electrostatic voltage on the end-cap, r0 the radial distance of the rf electrode from the centre of the LPT, and η the efficiency factor depends on the geometry of the end-cap electrode. The equation of motion for a single ion in the LPT can be described by the well-known Mathieu equation.
For a single ion with charge e and mass mi, the ranges of the so-called stability parameters ai and qi in which the ion can be trapped in the LPT are a1 < 0 and 0 < q1 < 0.9[8, 22]. The parameters ai and qi are defined as
$\begin{array}{l}{a_1} = {a_2} =-\frac{{{a_3}}}{2} = \frac{{-4e\eta {V_{{\rm{ec}}}}}}{{{m_{\rm{i}}}z_{_0}^{^2}{\mathit{\Omega} ^2}}}, \\{q_1} =-{q_2} = \frac{{4e{V_{{\rm{rf}}}}}}{{{m_{\rm{f}}}r_{_0}^{^2}{\mathit{\Omega} ^2}}}, ({q_3} = 0), \end{array}$ (2)
And the total time-averaged kinetic energy 〈Ek〉 of the ion is defined as
$\left\langle {{E_k}} \right\rangle = \frac{1}{2}{m_{\rm{i}}}\left\langle {v_{_i}^{^2}} \right\rangle = \frac{{{m_{\rm{i}}}x_{_{0i}}^{^2}}}{4}(\omega _{_i}^{^2} + \frac{{q_{_i}^{^2}{\mathit{\Omega} ^2}}}{8}), $ (3)
where $ {\omega _i} \approx \frac{\mathit{\Omega} }{2}\sqrt {{a_i} + \frac{{q_{_i}^{^2}}}{2}} $ is the secular motion frequency.
Our ion-neutral hybrid trap and processes of sympathetic cooling will be described as following. The detail description of our ion-neutral hybrid apparatus can be found in our previous work[25]. Here we will briefly describe the apparatus and experiments processes for the convenience of the reader. Figure 1 shows the schematic of our ion-neutral hybrid trap. The typical MOT is used to cool and trap cold 87Rb atoms with a maximum atom density up to na~1×1010 cm-3, with atom temperature 100~1 000 μK. Note that, the total number and the temperature of the cold atoms are directly measured by the time-of-flight (TOF) method[26]. The 87Rb+ ions are generated by two-step photoionization of cold 87Rb atoms and then trapped by a LPT, which is comprised of four radio frequency (rf) central parallel rods arranged in a quadrupole configuration and two dc hollow end-cap ring electrodes along the cylindrical axis. The microchannel plate (MCP) is used to detect the trapped ions by appropriately switching off the voltage on the hollow end-cap electrode closer to the MCP. The maximum number of ions is calculated by an equation $ N_{_i}^{^0} = {N_a}\zeta \frac{1}{{{\gamma _{{\rm{ia}}}}\kappa }} $, where Na is the number of cold atoms, $ \zeta = \frac{{{\sigma _{PI}}{\lambda _{PI}}{f_e}}}{{hc}} $, γia the loss rate of atoms due to ion-atom collisions, and κ the intensity-loss coefficient with units of inverse intensity due to the finite potential depth of the ion trap[25]. Then the ion signals from microchannel plate MCP can be calculated by Ni0 to obtain the Ni in each experimental cycle. In this paper, the initial ion number is deduced approximately 2×104. The temperature of ion Ti can be obtained by fitting of the ion TOF signal detected by MCP to the Maxwell-Boltzmann distribution. Although some Refs. have shown that the measured ion's energy distribution deviates obviously from the Maxwell-Boltzmann distribution with a single ion in the hybrid traps[27], the TOF signal of a large number of ions basically meets the Maxwell-Boltzmann distribution[17, 20, 25].
Fig. 1
Download: JPG
larger image


Fig. 1 Schematic of the ion-neutral hybrid trap in this work

Both the cold atom cloud and ion cloud are located at center represented by the red sphere and blue cigar shape, respectively. The MCP is used to detect the ions. The MOT fluorescence is detected by a homemade photodetector.
The sympathetic cooling of Rb+ ions is studied by measuring the changes of ion number Ni and temperature Ti after interaction with cold Rb atoms. Figure 2(a) shows the temporal sequence for one experimental cycle. In the first step, from 0 to T1, the MOT is turned on and loaded for as long as 42 s until saturation. In the second step, a blue diode continuous-wave laser at 473 nm is introduced to photoionize a small fraction of the cold atoms, and the LPT is turned on simultaneously to trap the ions. The duration of the ionizing laser is 500 ms from T1 to T2, with the laser intensity IPI=6.2 mW/cm2. Then, the LPT is kept on and the MOT is kept on for a durati on Tsc from T2 to T3 (MOT on) or turned off at T2 (MOT off), i.e., the ions collide with the MOT atoms in the hybrid trap or freely evolve in the LPT. At last the ions are released by switching off the electrostatic voltage Vec2 on the end-cap electrode close to the MCP rapidly at T3 (the MOT is turned off simultaneously if it works during Tsc). The rf voltage and electrostatic voltage on the other end-cap electrode Vec1 lag a little while (~5 ms) for the fully export of the ions. Figure 2(b) is a typical loading curve of the cold atoms with MOT on (dark line) and MOT off (grey line) from T2 to T3.
Fig. 2
Download: JPG
larger image


Fig. 2 Temporal sequence for one experimental cycle (a) and corresponding cold atom number in one experimental cycle (b)

2 Experimental results and analysisGoodman et al.[19] have theoretically studied the ion-neutral sympathetic cooling in an ion-neutral hybrid trap, and shown that sympathetic cooling effect is related to the ion-atom mass ratio and the parameters q1, 2 of the LPT. Here, we experimentally studied the effect of q1, 2 on the sympathetic cooling of Rb+ by cold Rb atoms in our ion-neutral hybrid trap. We fixed Ω=470 kHz and Vec1=Vec2=60 V, and changed |q1, 2| in the range of 0.18 to 0.90 by changing the Vrf based on equation (2), and the effect of q1, 2 on sympathetic cooling is studied by measuring the changes of Ti with MOT on and MOT off. Figure 3 shows that with MOT off a relationship of Tiq1, 22 which is expected by the equation (3). Such relationship is broken with MOT on and shows Ti with MOT on is lower than MOT off when 0.3≤|q1, 2|≤0.8. For further study, |q1, 2|=0.32 is selected with an lower initial Ti by setting the experimental parameters of the LPT as Ω=470 kHz, Vrf=70 V and Vec1=Vec2=60 V.
Fig. 3
Download: JPG
larger image


Fig. 3 Ion temperatures at different |q1, 2| values in the presence and absence of an overlapping MOT

The solid squares are obtained with sympathetic cooling time of 20 s, and the hollow circles are obtained by only hold LPT 20 s. The LPT parameters are as following: Ω=470 kHz, Vec1=Vec2=60 V.
Figure 4 shows two typical TOF of ion signals with different sympathetic cooling time Tsc=5.20 s, respectively. Ti is estimated by fitting the TOF signal with a Maxwell-Boltzmann distribution as Ti≈(1 380±135) K and (598±55) K, correspondingly. Figure 4 also shows that the TOF signal follows a more well Maxwell-Boltzmann distribution with longer sympathetic cooling time Tsc, and this behavior indicates that the combined ion-atom system is intrinsically stable with longer sympathetic cooling time Tsc.
Fig. 4
Download: JPG
larger image


Fig. 4 Measured TOF profiles of ions with different sympathetic cooling time of 5 s and 20 s, and the corresponding fitting results by the Maxwell-Boltzmann distribution

Figure 5 shows the number of ions Ni with different hold time of LPT with MOT off and MOT on, and the Ni decay curves shows the difference in trap loss with MOT on and MOT off. The lifetime of ions in LPT is extended via sympathetic cooling from 7 s to 15 s. Note that, the TOF ion signal becomes very weak after LPT hold 15 s with MOT off, we can not get exact the value of Ni and Ti. The error bar of Ni becomes smaller after LPT hold 15 s with MOT on and also indicates that the combined ion-atom system becomes more stable. This is very important for future cold chemistry experiments.
Fig. 5
Download: JPG
larger image


Fig. 5 Number of ions Ni vs.the hold time of LPT with MOT off and MOT on

Figure 6 shows the temperature of ions Ti with different hold time in the LPT with MOT off and MOT on. The experimental results with MOT off show that Ti decreases with hold time of LPT in the first 12.5 s, and then does not decrease until the ion signal is too weak to be measured. In the case of MOT on, Ti decreases with hold time of LPT after the first 12.5 s which confirmed that ions are sympathetically cooled by cold atoms. More interestingly, Ti can be obtained as lower as Ti=(325±35) K with a relatively large number N≈1 500.
Fig. 6
Download: JPG
larger image


Fig. 6 Temperature of ions Ti vs. the hold time of LPT with MOT off and MOT on

3 ConclusionIn summary, we studied the effect of LPT parameter q1, 2 on the sympathetic cooling of Rb+ ions by cold Rb atoms in an ion-neutral hybrid trap. By directly measuring the changes in ion number Ni and temperature Ti after interaction with cold atoms, we found obvious sympathetic cooling behavior with 0.3≤|q1, 2|≤0.8. At the |q1, 2| value of 0.32, sympathetic cooling was further investigated by two methods. The temperature of ions was cooled from the initial (2010±380)K to (325±35)K and the lifetime of ions in LPT was extended from 7 s to 15 s via sympathetic cooling. These findings are very useful for sympathetic cooling of atomic and molecular ions, especially for the ions without available optical channels.
References
[1] Raizen M G, Gilligan J M, Bergquist J C, et al. Ionic crystals in a linear Paul trap[J].Phys Rev A, 1992, 45(9):6493–6501.DOI:10.1103/PhysRevA.45.6493
[2] Birkl G, Kassner S, Walther H. Multiple-shell structures of laser-cooled 24Mg+ ions in a quadrupole storage ring[J].Nature (London), 1992, 357:310–313.DOI:10.1038/357310a0
[3] Smith W W, Makarov O P, Lin J. Cold ion-neutral collisions in a hybrid trap[J].J Mod Opt, 2005, 52(16):2253–2260.DOI:10.1080/09500340500275850
[4] Geist W, You L, Kennedy T A B. Sympathetic cooling of an atomic Bose-Fermi gas mixture[J].Phys Rev A, 1999, 59(2):1500–1508.DOI:10.1103/PhysRevA.59.1500
[5] Schreck F, Ferrari G, Corwin K, et al. Sympathetic cooling of bosonic and fermionic lithium gases towards quantum degeneracy[J].Phys Rev A, 2001, 64(1):011402.DOI:10.1103/PhysRevA.64.011402
[6] Brown-Hayes M, Wei Q, Presilla C, et al. Discrepancies in the resonance-fluorescence spectrum calculated with two methods[J].Phys Rev A, 2008, 78(1):013617.DOI:10.1103/PhysRevA.78.013617
[7] Larson D J, Bergquist J C, Bollinger J J, et al. Sympathetic cooling of trapped ions:a laser-cooled two-species nonneutral ion plasma[J].Phys Rev Lett, 1986, 57(1):70–73.DOI:10.1103/PhysRevLett.57.70
[8] Harmon T J, Moazzan-Ahmadi N, Thompson R I. Perpendicular dissociation of D2+ in intense Ti:sapphire laser pulses[J].Phys Rev A, 2003, 67(1):013415.DOI:10.1103/PhysRevA.67.013415
[9] Zhang C B, Offenberg D, Roth B, et al. Comparative study of elastic electron collisions on the isoelectronic SiN2, SiCO, and CSiO radicals[J].Phys Rev A, 2007, 76(1):012719.DOI:10.1103/PhysRevA.76.012719
[10] Schneider T, Roth B, Duncker H, et al. All-optical preparation of molecular ions in the rovibrational ground state[J].Nat Phys, 2010, 6:275–278.DOI:10.1038/nphys1605
[11] Tong X, Winney A H, S Willitsch. Sympathetic cooling of molecular ions in selected rotational and vibrational states produced by threshold photoionization[J].Phys Rev Lett, 2010, 105(14):143001.DOI:10.1103/PhysRevLett.105.143001
[12] Schiller S, Korobov V. Tests of time independence of the electron and nuclear masses with ultracold molecules[J].Phys Rev A, 2005, 71(3):032505.DOI:10.1103/PhysRevA.71.032505
[13] Lamb H D L, McCann J F, McLaughlin B M, et al. Structure and interactions of ultracold Yb ions and Rb atoms[J].Phys Rev A, 2012, 86(2):022716.DOI:10.1103/PhysRevA.86.022716
[14] Willitsch S, Bell M T. Chemical applications of laser-and sympathetically-cooled ions in ion traps[J].Phys Chem Chem Phys, 2008, 10:7200–7210.DOI:10.1039/b813408c
[15] Tacconi M, Gianturco F A, Belyaev A K. Computing charge-exchange cross sections for Ca+ collisions with Rb at low and ultralow energies[J].Phys Chem Chem Phys, 2011, 13:19156–19164.DOI:10.1039/c1cp20916g
[16] Schmid S, Harter A, Denschlag J H. Dynamics of a cold trapped ion in a Bose-Einstein condensate[J].Phys Rev Lett, 2010, 105(13):133202.DOI:10.1103/PhysRevLett.105.133202
[17] Ravi K, Lee S, Sharma A, et al. Cooling and stabilization by collisions in a mixed ion-atom system[J].Nat Commun, 2012, 3:1126.DOI:10.1038/ncomms2131
[18] Lee S, Ravi K, S .A. Rangwala. Measurement of collisions between rubidium atoms and optically dark rubidium ions in trapped mixtures[J].Phys Rev A, 2013, 87(5):052701.DOI:10.1103/PhysRevA.87.052701
[19] Goodman D S, Sivarajah I, Wells J E, et al. Ion-neutral-atom sympathetic cooling in a hybrid linear rf Paul and magneto-optical trap[J].Phys Rev A, 2012, 86(3):033408.DOI:10.1103/PhysRevA.86.033408
[20] Sivarajah I, Goodman D S, Wells J E, et al. Evidence of sympathetic cooling of Na+ ions by a Na magneto-optical trap in a hybrid trap[J].Phys Rev A, 2012, 86(6):063419.DOI:10.1103/PhysRevA.86.063419
[21] Hudson E R. Method for producing ultracold molecular ions[J].Phys Rev A, 2009, 79(3):032716.DOI:10.1103/PhysRevA.79.032716
[22] Major F G, Dehmelt H G. Exchange-collision technique for the rf Spectroscopy of Stored Ions[J].Phys Rev, 1968, 170(1):91.DOI:10.1103/PhysRev.170.91
[23] Flatt B, Green M, Wodin J, et al. A linear RFQ ion trap for the enriched xenon observatory[J].Nucl Instrum Methods Phys Res Sect A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 578(2):399–408.DOI:10.1016/j.nima.2007.05.123
[24] DeVoe R G. Power-law distributions for a trapped ion interacting with a classical buffer gas[J].Phys Rev Lett, 2009, 102(6):063001.DOI:10.1103/PhysRevLett.102.063001
[25] Lv S F, Jia F D, Liu J Y, et al. Measurement of the low-energy Rb+-Rb total collision rate in an ion-neutral hybrid trap[J].Chin Phys Lett, 2017, 34(1):013401.DOI:10.1088/0256-307X/34/1/013401
[26] Paul W. Electromagnetic traps for charged and neutral particles[J].Rev Mod Phys, 1990, 62(3):531.DOI:10.1103/RevModPhys.62.531
[27] Meir Z, Sikorsky T, Ben-shlomi R, et al. Dynamics of a ground-state cooled ion colliding with ultracold atoms[J].Phys Rev Lett, 2016, 117(24):243401.DOI:10.1103/PhysRevLett.117.243401


相关话题/图片 北京 测量 物理系 原文

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 工具变量辅助的变系数测量误差模型的估计
    刘智凡1,王妙妙2,谢田法2,孙志华1,31.中国科学院大学数学科学学院,北京100049;2.北京工业大学应用数理学院,北京100124;3.中国科学院大数据挖掘与知识管理重点实验室,北京1000492016年10月11日收稿;2017年02月28日收修改稿基金项目:国家自然科学基金(112310 ...
    本站小编 Free考研考试 2021-12-25
  • 太湖富营养化水体比辐射率测量及MODIS水体温度反演应用
    阎福礼1,林亚森1,2,王世新1,周艺11.中国科学院遥感与数字地球研究所,北京100101;2.中国科学院大学,北京1000492018年3月16日收稿;2018年5月17日收修改稿基金项目:国家自然科学基金(41371363,40701126)资助通信作者:周艺,E-mail:zhouyi@ra ...
    本站小编 Free考研考试 2021-12-25
  • 北京张坊地区中上元古界中岩溶发育与构造作用
    刘建明1,张玉修1,曾璐1,琚宜文1,芮小平2,乔小娟11.中国科学院大学地球与行星科学学院,北京100049;2.中国科学院大学资源与环境学院,北京1000492017年11月3日收稿;2018年3月23日收修改稿基金项目:北京岩溶水资源勘查评价工程项目(BJYRS-ZT-03)和中国科学院大学校 ...
    本站小编 Free考研考试 2021-12-25
  • 腹主动脉瘤形态学二维断面和三维立体测量的误差分析
    尉驰俊1,邱越1,袁丁2,郑庭辉11.四川大学建筑与环境学院力学系,成都610207;2.四川大学华西医院血管外科,成都6100002018年5月14日收稿;2018年7月10日收修改稿基金项目:国家自然基金(81500370)资助通信作者:郑庭辉,E-mail:tinghuizh@scu.edu. ...
    本站小编 Free考研考试 2021-12-25
  • 传感器安装对平板气动热测量精度的影响*
    高超声速飞行器在大气层中高速飞行时,飞行器前方的空气会受到强烈的压缩而产生弓形激波,被压缩后的气体会与飞行器的表面产生巨大的摩擦力,由摩擦力作用而产生的动能损失大部分会转化为热能,热能的作用致使飞行器周围空气温度急剧上升,部分热能通过边界层传递至飞行器表面,从而使壁面产生高温,这种现象被称为“气动加 ...
    本站小编 Free考研考试 2021-12-25
  • 基于结构分区与应变电桥解耦的支柱式主起落架载荷测量*
    飞机在起降和地面运行过程中,飞行员需适时实施滑行、转弯、回转、刹车、滑跑起飞、着陆等各种操作和动作,加上跑道不平度、道面突风及飞机离地或接地姿态变化等因素,综合导致飞机起落架的受载和传载复杂多变,对飞机起落架的实际受载进行测量具有极其重要的工程意义。应变电测法是国内外飞行实测飞机载荷的常用方法[1- ...
    本站小编 Free考研考试 2021-12-25
  • 基于GNSS测量的天宫二号质心确定*
    对基于全球导航卫星系统(GNSS)观测的低轨航天器精密定轨来说,目前普遍采用的是简化动力学精密定轨方法[1],其通过引入随机经验加速度模型以吸收非保守力建模误差,并与GNSS高精度测量数据进行匹配进而实现精密轨道确定。海洋测高类和测地类卫星的定轨精度较高,最高甚至可以达到1~2cm(如测高卫星Jas ...
    本站小编 Free考研考试 2021-12-25
  • 基于机器视觉的轻型梁三维振动测量方法*
    随着科学技术的飞速发展,机械设备在各行各业的应用日趋广泛。机械设备的状态监测与故障诊断是保障设备正常运行的重要工作。设备在高速运转时,不可避免会产生振动现象。通过振动测量获取的位移、频率等参数能反映出设备的状态信息。国内外已有很多研究者们进行了振动测量的相关研究,并将其广泛应用于工程领域。振动测量方 ...
    本站小编 Free考研考试 2021-12-25
  • 基于CLYC闪烁体的中子能谱测量及反演方法*
    空间中的中子是威胁航天器和航天员安全的重要因素。中子与航天器发生作用可引起物质晶格损伤,材料变性,甚至引起单粒子效应危害航天器安全;中子对含氢丰富的人体有很高的生物学损伤,威胁航天员的生命安全[1]。相较于带电粒子,空间中子的测量更复杂。首先是中子探测器的优化设计,目前国际上的中子探测器设计复杂,资 ...
    本站小编 Free考研考试 2021-12-25
  • 激光雷达复材型面测量精度分析方法*
    复合材料(以下简称复材)因其高比强度、低密度、易于实现设计制造一体化等优点在航空、航天、汽车、电子电气等领域的得到了广泛应用[1]。与钣金成型及机加工零件相比,复材零件在制造过程中一旦固化成型后,其型面的变形误差将无法再次进行校正,只能从设计角度进行结构优化,因此需要准确地获取脱模后复材零件的型面信 ...
    本站小编 Free考研考试 2021-12-25