删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

不可约单项式理想乘积的Castelnuovo-Mumford正则度

本站小编 Free考研考试/2021-12-25

宋娟娟, 高玉彬
陕西师范大学数学与信息科学学院, 西安 710062
2017年5月9日 收稿; 2017年9月25日 收修改稿
基金项目: 国家自然科学基金(11301315)资助
通信作者: 高玉彬, E-mail:gaoyb@snnu.edu.cn

摘要: 对于域k上多元多项式环k[x1, …, xn]中不可约单项式理想IJKL,证明reg(IJKL)≤reg(I)+reg(J)+reg(K)+reg(L).
关键词: Castelnuovo-Mumford正则度完全交理想的乘积
On the Castelnuovo-Mumford regularity of product of irreducible monomial ideals
SONG Juanjuan, GAO Yubin
College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, China


Abstract: Let I, J, K, and L be irreducible monomial ideals in a polynomial ring over a field k. In this paper, we prove reg(IJKL) ≤ reg(I)+reg(J)+reg(K)+reg(L).
Keywords: Castelnuovo-Mumford regularitycomplete intersectionproduct of ideals
S是域k上的多元多项式环, mS的极大分次理想。对于有限生成分次S-模M, 当Hmi(M)≠0时, 令ai(M)=max{μ|[Hmi(M)]μ≠0};当Hmi(M)=0时, 令ai(M)=-∞.M的Castelnuovo-Mumford正则度定义为
${\rm{reg}}\left( M \right) = \mathop {\max }\limits_{i \ge 0} \left\{ {{a_i}\left( M \right) + i} \right\}.$
reg(M)是一类重要的衡量M的复杂程度的不变量[1], 得到它的上界是引人关注的问题。对S的一个齐次理想I, IM的极小齐次生成元的最大次数不超过IM的相应极小齐次生成元的最大次数之和, 所以研究reg(IM)≤reg(I)+reg(M)是否成立是一个自然的问题。当dim(S/I)≤1时, Conca和Herzog[2]证明reg(IM)≤reg(I)+reg(M).Sturmfels[3]给出一个单项式理想I, 满足reg(I2)>2reg(I)。进一步限制理想I的范围, Conca和Herzog[2]提出这样一个问题:当I1, …, Id都是完全交单项式理想时,
${\rm{reg}}\left( {{I_1}, \cdots ,{I_d}} \right) \le {\rm{reg}}\left( {{I_1}} \right) + \cdots + {\rm{reg}}\left( {{I_d}} \right)$ (1)
是否对任意的d≥1都成立?当d=2时, Chardin等[4]证明了这一问题的正确性; 当d≥3时, 这一问题至今没有得到解决。当d=3且I1, I2I3都是由单个不定元的方幂生成的完全交理想时, Gao[5]证明了结论的正确性。当I是一个完全交且n≥1时, Tang和Gong[6]最近证明reg(In)≤nreg(I)。在本文中,对4个不可约单项式理想(由不定元的方幂生成的完全交理想)I, J, KL, 证明
$\begin{array}{*{20}{c}}{{\rm{reg}}\left( {IJKL} \right) \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + }\\{{\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).}\end{array}$
1 本研究的主要工具本研究工作所用的主要工具[5]如下。
引理1.1??设0→NMP→0是一个有限生成的分次S-模的一个短正合列, 则
$\left( {\rm{i}} \right){\rm{reg}}\left( M \right) \le \max \left\{ {{\rm{reg}}\left( N \right),{\rm{reg}}\left( P \right)} \right\}.$
$\left( {{\rm{ii}}} \right){\rm{reg}}\left( P \right) \le \max \left\{ {{\rm{reg}}\left( M \right),{\rm{reg}}\left( N \right) - 1} \right\}.$
$\left( {{\rm{iii}}} \right){\rm{reg}}\left( N \right) \le \max \left\{ {{\rm{reg}}\left( M \right),{\rm{reg}}\left( P \right) + 1} \right\}.$
$\begin{array}{l}\;\;\;\;\;\;\left( {{\rm{iv}}} \right){\rm{reg}}\left( P \right) = {\rm{reg}}\left( M \right),{\rm{如果}}{\rm{reg}}\left( N \right) < \\{\rm{reg}}\left( M \right).\end{array}$
$\begin{array}{l}\;\;\;\;\;\;\left( {\rm{v}} \right){\rm{reg}}\left( P \right) = {\rm{reg}}\left( N \right) - 1,{\rm{如果reg}}\left( M \right) < \\{\rm{reg}}\left( N \right).\end{array}$
引理1.2??设x是一个线性形式,IS的一个齐次理想, 则对所有的n≥1,
${\rm{reg}}\left( I \right) \le \max \left\{ {{\rm{reg}}\left( {I,{x^n}} \right),{\rm{reg}}\left( {I:{x^n}} \right) + n} \right\}.$
引理1.3??设u是一个次数为d的齐次多项式,I是齐次理想且uS/I-正则的,那么
${\rm{reg}}\left( {I,u} \right) = {\rm{reg}}\left( I \right) + d - 1.$
下面的引理1.4和引理1.5分别对应Gao[5]中的引理3.1和定理3.2,为便于引用,将其列出。
引理1.4??设I, J, K是域k上多元多项式环S中的3个不可约单项式理想, 则
$\begin{array}{*{20}{c}}{{\rm{reg}}\left( {\left( {IJ,IK,JK} \right)} \right) \le {\rm{reg}}\left( I \right) + }\\{{\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) - 1.}\end{array}$
引理1.5??设I, J, K是域k上多元多项式环S中的3个不可约单项式理想, 则
${\rm{reg}}\left( {IJK} \right) \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right).$
2 主要结果S的一个理想I称为一个完全交(complete intersection)单项式理想, 如果I可以由一些单项式生成,并且这些单项式之间没有公共的不定元。我们研究一类特殊的完全交单项式理想(不可约单项式理想), 即这些理想可以由单个不定元的方幂生成,例如I=(x12, x22, x56)。
引理2.1??设I, J, K, L是域k上多元多项式环S中的4个不可约单项式理想, 则
${\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right)} \right)$
$\begin{array}{l} \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.\end{array}$
证明??对l1+l2+l3+l4用归纳法, 这里l1, l2, l3, l4分别是I, J, KL的最小的单项式生成元的基数。
如果l1=l2=l3=l4=1, 设I=(xl), J=(ym), K=(zn), L=(ws), lmnsx, y, z, w两两不相等, 则(IJ, IK, IL, JK, JL, KL)=(xlym, xlzn, xlws, ymzn, ymws, znws).
根据引理1.2, 引理1.3及Gao[5]的引理3.1和Herzog[7]的推论3.2, 有
${\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right)} \right)$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{x^l}{y^m},{x^l}{z^n},{y^m}{z^n},{w^s}} \right)} \right){\rm{reg}}\left( {\left( {{x^l},{y^m},} \right.} \right.} \right.\\\left. {\;\;\;\left. {\left. {{z^n}} \right)} \right) + s} \right\}.\end{array}$
${\rm{reg}}\left( {\left( {{x^l}{y^m},{x^l}{z^n},{y^m}{z^n},{w^s}} \right)} \right)$
$ \le {\rm{reg}}\left( {{x^l}} \right) + {\rm{reg}}\left( {{y^m}} \right) + {\rm{reg}}\left( {{z^n}} \right) + s - 2$
$\begin{array}{l} = {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.\\\end{array}$
$ \;\;\;\;{\rm{reg}}\left( {\left( {{x^l},{y^m},{z^n}} \right)} \right) + s\\ \le {\rm{reg}}\left( {{x^l}} \right) + {\rm{reg}}\left( {{y^m}} \right) + {\rm{reg}}\left( {{z^n}} \right) + s - 2$
$ = {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.$
x=y, x=y=z, x=y=z=w时可以用相同的方法证明有相同的结论, 因此在这种情况下结论成立。
如果I=(I1, xm)并且xS/I1, S/J, S/K, S/L的非零因子, 也就是x的任何方幂都不在I1, J, K, L的最小单项式生成元中。则
$\left( {IJ,IK,IL,JK,JL,KL} \right)$
$ = \left( {{I_1},{x^m}} \right)J + \left( {{I_1},{x^m}} \right)K + \left( {{I_1},{x^m}} \right)L + JK + JL + KL$
$ = {I_1}J + {I_1}K + {I_1}L + JK + JL + KL + {x^m}J + {x^m}K + {x^m}L.$
根据引理1.2, 有
${\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right)} \right)$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL,{x^m}} \right)} \right)} \right.,\\\;\;\;\left. {{\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right):{x^m}} \right) + m} \right\}\end{array}$
$\begin{array}{l} = \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}J,{I_1}K,{I_1}L,JK,JL,KL,{x^m}} \right)} \right)} \right.,\\\;\;\;\left. {{\rm{reg}}\left( {\left( {J,K,L} \right)} \right) + m} \right\}\end{array}$
注意到xS/(I1J, I1K, I1L, JK, JL, KL)-正则的, 根据引理1.3和归纳假设, 有
${\rm{reg}}\left( {\left( {{I_1}J,{I_1}K,{I_1}L,JK,JL,KL,{x^m}} \right)} \right)$
$ = {\rm{reg}}\left( {\left( {{I_1}J,{I_1}K,{I_1}L,JK,JL,KL} \right)} \right) + m - 1$
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m - 3$
$ = {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.$
上式成立是因为reg(I)=reg(I1)+m-1.根据Herzog[7]的推论3.2, 有
$\begin{array}{*{20}{c}}{{\rm{reg}}\left( {\left( {J,K,L} \right)} \right) + m \le {\rm{reg}}\left( J \right) + }\\{{\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m - 2.}\end{array}$
因此在这种情况下结论成立。
如果I=(I1, xm), J=(J1, xn), mn≥1且xS/K, S/L-正则的。则
$\begin{array}{l}\left( {IJ,IK,IL,JK,JL,KL} \right) = \left( {{I_1},{x^m}} \right)\left( {{J_1},{x^n}} \right) + \\\left( {{I_1},{x^m}} \right)K + \left( {{I_1},{x^m}} \right)L + \left( {{J_1},{x^n}} \right)K + \left( {{J_1},{x^n}} \right)L + KL\\ = {I_1}{J_1} + {I_1}K + {I_1}L + {J_1}K + {J_1}L + KL + {x^n}{I_1} + \\\;\;\;{x^m}{J_1} + {x^n}K + {x^n}L + {x^{m + n}}.\end{array}$
根据引理1.2, 有
$\begin{array}{l}{\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right)} \right)\\ \le \max \{ {\rm{reg((}}{I_1}{J_1},{I_1}K,{I_1}L,{I_1}{K_1},{I_1}L,KL,{x^n}{I_1},\\\;\;{x^n}K,{x^n}L,{x^m})),{\rm{reg}}(({I_1},{J_1},K,L,{x^n})) + m\} \end{array}$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}K,{I_1}L,{J_1}K,{J_1}L,KL,{x^n}} \right)} \right)} \right.,\\\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1},K,L,{x^{m - n}}} \right)} \right) + n,{\rm{reg}}\left( {\left( {{I_1},{J_1},K,L,{x^n}} \right)} \right) + m} \right\}.\end{array}$
根据归纳假设和Herzog[7]的推论3.2, 有
${\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}K,{I_1}L,{J_1}K,{J_1}L,KL,{x^n}} \right)} \right)$
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.$
${\rm{reg}}\left( {\left( {{I_1},K,L,{x^{m - n}}} \right)} \right) + n$
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.$
${\rm{reg}}\left( {\left( {{I_1},{J_1},K,L,{x^n}} \right)} \right) + m$
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.$
上面式子的成立是因为reg(I)=reg(I1)+m-1和reg(J)=reg(J1)+n-1.
因此在这种情况下结论是成立的。
如果I=(I1, xm), J=(J1, xn), K=(K1, xs), 并且mns≥1.则有
$\left( {IJ,IK,IL,JK,JL,KL} \right)$
$\begin{array}{l} = \left( {{I_1}{J_1},{I_1}{K_1},{I_1}L,{J_1}{K_1},{J_1}L,{K_1}L,{x^s}{I_1},{x^s}{J_1},{x^n}{K_1},} \right.\\\;\;\;\left. {{x^s}L,{x^{n + s}}} \right).\end{array}$
根据引理1.2, 有
${\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right)} \right)$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}L,{J_1}{K_1},{J_1}L,{K_1}L,{x^s}{I_1},} \right.} \right.} \right.\\\;\;\;\left. {\left. {\left. {{x^s}{J_1},{x^s}L,{x^n}} \right)} \right),{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},L,{x^s}} \right)} \right) + n} \right\}\end{array}$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}L,{J_1}{K_1},{J_1}L,{K_1}L,{x^s}} \right)} \right),} \right.\\\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1},{J_1},L,{x^{n - s}}} \right)} \right) + s,{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},L,{x^s}} \right)} \right) + n} \right\}.\end{array}$
根据归纳假设和引理1.3以及Herzog[7]的推论3.2, 有
${\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}L,{J_1}{K_1},{J_1}L,{K_1}L,{x^s}} \right)} \right)$
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right) + s - 3$
$ = {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.$
${\rm{reg}}\left( {\left( {{I_1},{J_1},L,{x^{n - s}}} \right)} \right) + s$
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( L \right) - 2.$
${\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},L,{x^s}} \right)} \right) + n$
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.$
因此在这种情况下结论是成立的。
如果I=(I1, xm), J=(J1, xn), K=(K1, xs), L=(L1, xz)且mnsz≥1.则有(IJ,IK,IL,JK,JL,KL)=(I1J1,I1K1,I1L,J1K1,J1L,K1L,xsI1,xsJ1,xnK1,xsL,xn+s).
根据引理1.2, 有
${\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right)} \right)$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^z}{I_1},} \right.} \right.} \right.\\\;\;\;\left. {\left. {\left. {{x^z}{J_1},{x^z}{K_1},{x^s}} \right)} \right),{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{L_1},{x^z}} \right)} \right) + s} \right\}\end{array}$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^z}} \right)} \right),} \right.\\\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{x^{s - z}}} \right)} \right) + z,{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{L_1},{x^z}} \right)} \right) + s} \right\}.\end{array}$
根据归纳假设和引理1.3以及Herzog[7]的推论3.2, 有
${\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^z}} \right)} \right)$
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right) + z - 3$
$ = {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right) - 2.$
${\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{x^{s - z}}} \right)} \right) + z$
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) - 2.$
${\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{L_1},{x^z}} \right)} \right) + s$
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.$
因此在这种情况下结论是成立的。
综上,证明了当I, J, K, LS中的4个不可约单项式理想时, 结论是成立的。
推论2.1??设I, J, K, L是域k上多元多项式环S中的4个不可约单项式理想, 利用证明引理2.1的方法, 可以证明
${\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL} \right)} \right)$
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.$
${\rm{reg}}\left( {\left( {IJ,IK,IL,JK} \right)} \right)$
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1.$
${\rm{reg}}\left( {\left( {IJK,IJL,IKL,JKL} \right)} \right)$
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1.$
${\rm{reg}}\left( {\left( {IJ,IKL,JKL} \right)} \right)$
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1.$
${\rm{reg}}\left( {\left( {IJ,IK,JKL} \right)} \right)$
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1.$
${\rm{reg}}\left( {\left( {IJ,IK,IL,JKL} \right)} \right)$
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1.$
${\rm{reg}}\left( {\left( {IJL,IKL,JKL} \right)} \right)$
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1.$
${\rm{reg}}\left( {\left( {IL,JKL} \right)} \right)$
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1.$
${\rm{reg}}\left( {\left( {IJK,IJL,IKL} \right)} \right)$
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1.$
注意:类似(IJ, IK, IL, JK, JL)的其他几种情况, 即形如(IK, IL, JK, JL, KL), 也满足上面的不等式。
定理2.1??设I, J, K, L是域k上多元多项式环S中的4个不可约单项式理想, 则
${\rm{reg}}\left( {IJKL} \right) \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).$
证明??关于l1+l2+l3+l4用归纳法, 这里l1, l2, l3, l4分别是I, J, K, L的最小的单项式生成元的基数。如果l1=l2=l3=l4=1, 则定理的证明是显然的。因为
${\rm{reg}}\left( {IJKL} \right){\rm{ = reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).$
如果S的一个变量x只出现在I的最小的单项式生成元中, 而没有出现在J, KL的最小的单项式生成元中。设I=(I1, xm), m≥1并且xS/I1-正则的。则IJKL=I1JKL+xmJKL并且xmS/I1JKL-正则的。根据引理1.2和引理1.3。
${\rm{reg}}\left( {IJKL} \right) \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}JKL,{x^m}} \right)} \right),} \right.$
$\left. {{\rm{reg}}\left( {\left( {{I_1}JKL,{x^m}JKL} \right):{x^m}} \right) + m } \right\}$
$ = \max \left\{ {{\rm{reg}}\left( {{I_1}JKL} \right) + m - 1,{\rm{reg}}\left( {JKL} \right) + m} \right\}.$
根据归纳假设,有
${\rm{reg}}\left( {{I_1}JKL} \right) + m - 1$
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m - 1$
$ = {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).$
根据Gao[5]的定理3.2, 有
$\begin{array}{l}{\rm{reg}}\left( {JKL} \right) + m \le {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m\\ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).\end{array}$
因此定理的结论在这种情况下是成立的。
如果S的一个变量x出现在IJ的最小的单项式生成元中, 而没有出现在KL的最小的单项式生成元中。设I=(I1, xm), J=(J1, xn)且m≥n。则IJKL=I1J1KL+xnI1KL+xmJ1KL+xm+nKL
根据引理1.2
${\rm{reg}}\left( {IJKL} \right)$
$ \le \max \left\{ {{\rm{reg}}\left( {\left( {IJKL,{x^m}} \right)} \right),{\rm{reg}}\left( {\left( {IJKL:{x^m}} \right)} \right) + m} \right\}$
$\begin{array}{l} = \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}KL,{x^n}{I_1}KL,{x^m}} \right)} \right)} \right.,\\\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}KL,{J_1}KL,{x^n}KL} \right)} \right) + m} \right\}.\end{array}$
则上面最后一行的两个式子可以分写成
${\rm{reg}}\left( {\left( {{I_1}{J_1}KL,{x^n}{I_1}KL,{x^m}} \right)} \right)$
$ \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}KL,{x^n}} \right)} \right),{\rm{reg}}\left( {\left( {{I_1}KL,{x^{m - n}}} \right)} \right) + n} \right\}.$
${\rm{reg}}\left( {\left( {{I_1}KL,{J_1}KL,{x^n}KL} \right)} \right) + m$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}KL,{J_1}KL,{x^n}} \right)} \right) + m,{\rm{reg}}\left( {KL} \right) + } \right.\\\;\;\;\left. {m + n} \right\}.\end{array}$
根据归纳假设, Gao[5]的定理3.2和x的确没有出现在I1, J1, K, L的最小的单项式生成元中。有
${\rm{reg}}\left( {\left( {{I_1}{J_1}KL,{x^n}} \right)} \right)$
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + n - 1$
$ = {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).$
${\rm{reg}}\left( {\left( {{I_1}KL,{x^{m - n}}} \right)} \right) + n$
$ = {\rm{reg}}\left( {{I_1}KL} \right) + m - 1$
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m - 1$
$ = {\rm{reg}}\left( I \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).$
${\rm{reg}}\left( {KL} \right) + m + n \le {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m + n.$
注意到I1+J1也是一个不可约单项式理想, 根据Herzog[7]的推论3.2和Gao[5]的定理3.2, 有
${\rm{reg}}\left( {\left( {{I_1}KL,{J_1}KL,{x^n}} \right)} \right) + m$
$ = {\rm{reg}}\left( {\left( {{I_1},{J_1}} \right)KL} \right) + m + n - 1$
$ \le {\rm{reg}}\left( {{I_1},{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m + n - 1$
$\begin{array}{l} \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m + \\\;\;\;n - 2\end{array}$
$ = {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).$
因此定理的结论在这种情况下是成立的。
如果S的一个变量x出现在I, J, K的最小的单项式生成元中, 而没有出现在L的最小的单项式生成元中。设I=(I1, xm), J=(J1, xn), K=(K1, xs)且mns≥1。则IJKL=(I1J1K1L, xsI1J1L, xnI1K1L, xmJ1K1L, xn+sI1L, xm+sJ1L, xm+nK1L, xm+n+sL)。
首先假设mn+s, 根据引理1.2
${\rm{reg}}\left( {IJKL} \right)$
$ \le \max \left\{ {{\rm{reg}}\left( {\left( {IJKL,{x^{n + s}}} \right)} \right),{\rm{reg}}\left( {\left( {IJKL:{x^{n + s}}} \right)} \right) + n + s} \right\}$
$ = \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}L,{x^s}{I_1}{J_1}L,{x^n}{I_1}{K_1}L,{x^m}{J_1}{K_1}L,{x^{n + s}}} \right)} \right)} \right.,$ (2)
$\left. {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}L,{x^{m - n}}{J_1}L,{x^{m - s}}{K_1}L,{x^m}L} \right)} \right) + n + s} \right\}.$ (3)
对式(2), 有
${\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}L,{x^s}{I_1}{J_1}L,{x^n}{I_1}{K_1}L,{x^m}{J_1}{K_1}L,{x^{n + s}}} \right)} \right)$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}L,{x^s}{I_1}{J_1}L,{x^n}{I_1}{K_1}L,{x^m}} \right)} \right)} \right.,\\\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{J_1}{K_1}L,{x^{m + s - n}}} \right)} \right) + m} \right\}\end{array}$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}L,{x^s}{I_1}{J_1}L,{x^n}} \right)} \right)} \right.,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{x^{m - n}}} \right)} \right) + n,\\\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{J_1}{K_1}L,{x^{m + s - n}}} \right)} \right) + m} \right\}\end{array}$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}L,{x^s}} \right)} \right),{\rm{reg}}\left( {\left( {{I_1}{J_1}L,{x^{n - s}}} \right)} \right)} \right. + s,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{x^{m - n}}} \right)} \right) + n,\\\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{J_1}{K_1}L,{x^{n + s - m}}} \right)} \right) + m} \right\}.\end{array}$
类似于前面几种情况, 可以证明
reg((I1J1K1L, xs)), reg((I1J1L, xn-s))+s, reg((I1J1L, I1K1L, xm-n))+n的值不会超过reg(I)+reg(J)+reg(K)+reg(L).
根据推论2.1,有
${\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{J_1}{K_1}L,{x^{n + s - m}}} \right)} \right) + m$
$ = {\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{J_1}{K_1}L} \right)} \right) + n + s - 1$
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( {{L_1}} \right) + n + s - 2$
$ = {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right)$
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).$
对式(3), 有
${\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}L,{x^{m - n}}{J_1}L,{x^{m - s}}{K_1}L,{x^m}L} \right)} \right) + n + s$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}L,{x^{m - n}}} \right)} \right) + n + s,} \right.\\\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}L,{x^{n - s}}{K_1}L,{x^n}L} \right)} \right) + m + s} \right\}\end{array}$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}L,{x^{m - n}}} \right)} \right) + n + s} \right.,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}L,{J_1}L,{x^{n - s}}} \right)} \right) + m + s,\\\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}L,{K_1}L,{x^s}L} \right)} \right) + m + n} \right\}\end{array}$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}J,{x^{m - n}}} \right)} \right) + n + s,} \right.\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}L,{J_1}L,{x^{n - s}}} \right)} \right) + m + s,{\rm{reg}}\left( L \right) + m + n + s,\\\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}L,{K_1}L,{x^s}} \right)} \right) + m + n} \right\}.\end{array}$
类似于前面几种情况, 易证
reg(L)+m+n+s, reg((I1L, J1L, xn-s))+m+s的值不会超过reg(I)+reg(J)+reg(K)+reg(L).
根据Herzog[7]的推论3.2, 有
${\rm{reg}}\left( {\left( {{I_1}L,{J_1}L,{K_1}L,{x^s}} \right)} \right) + m + n$
$ = {\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1}} \right)L} \right) + m + n + s - 1 $
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right) + m + n + s - 3$
$ = {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).$
根据推论2.1, 有
${\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}L,{x^{m - n}}} \right)} \right) + n + s$
$ = {\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}L} \right)} \right) + m + s - 1$
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right) + m + s - 2$
$ = {\rm{reg}}\left( I \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).$
所以当mn+s时, 有reg(IJKL)≤reg(I)+reg(J)+reg(K)+reg(L)。当m > n+s时, 同理可证reg(IJKL)≤reg(I)+reg(J)+reg(K)+reg(L)成立。因此定理的结论在这种情况下是成立的。
如果S的一个变量x出现在I, J, K, L的最小的单项式生成元中, 设I=(I1, xm), J=(J1, xn), K=(K1, xs), L=(L1, xz)且mnsz≥1则
$\begin{array}{l}IJKL = \left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},} \right.\\\;\;\;\;\;\;\;\;\;\;\;\;{x^m}{J_1}{K_1}{L_1},{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}{I_1}{L_1},\\\;\;\;\;\;\;\;\;\;\;\;\;{x^{m + z}}{J_1}{K_1},{x^{m + s}}{J_1}{L_1},{x^{m + n}}{K_1}{L_1},{x^{n + s + z}}{I_1},\\\;\;\;\;\;\;\;\;\;\;\;\;\left. {{x^{m + s + z}}{J_1},{x^{m + n + z}}{K_1},{x^{m + n + s}}{L_1},{x^{m + n + s + z}}} \right).\end{array}$
首先假设ms+z, 根据引理1.2
$\begin{array}{l}{\rm{reg}}\left( {IJKL} \right) \le \max \left\{ {{\rm{reg}}\left( {\left( {IJKL,{x^{n + s + z}}} \right)} \right)} \right.,\\\;\;\;\;\;\;\left. {{\rm{reg}}\left( {\left( {IJKL:{x^{n + s + z}}} \right)} \right) + n + s + z} \right\}\end{array}$
$\begin{array}{l} = \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},} \right.} \right.} \right.\\\;\;\;{x^m}{J_1}{K_1}{L_1},{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}{I_1}{L_1},{x^{m + z}}{J_1}{K_1},\\\;\;\;\left. {\left. {{x^{m + s}}{J_1}{L_1},{x^{m + n}}{K_1}{L_1},{x^{n + s + z}}} \right)} \right),\end{array}$ (4)
$\begin{array}{l}{\rm{reg}}\left( {\left( {{I_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{m - n}}{J_1},{x^{m - s}}{K_1},{x^{m - z}}{L_1}} \right.,} \right.\\\;\;\;\;\;\left. {\left. {\left. {{x^m}} \right)} \right) + n + s + z} \right\}.\end{array}$ (5)
对式(4)假设n+sm+z, 有
${\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}{J_1}{K_1}{L_1}} \right.} \right.,$
$\left. {\left. {{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}{I_1}{L_1},{x^{m + z}}{J_1}{K_1},{x^{m + s}}{J_1}{L_1},{x^{m + n}}{K_1}{L_1},{x^{n + s + z}}} \right)} \right)$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}{J_1}{K_1}{L_1}} \right.} \right.} \right.,\\\;\;\;\left. {\left. {{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}{I_1}{L_1},{x^{m + z}}{J_1}{K_1},{x^{m + s}}{J_1}{L_1},{x^{m + n}}} \right)} \right),\\\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}\end{array}$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}{J_1}{K_1}{L_1}} \right.} \right.} \right.,\\\;\;\;\left. {\left. {{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}{I_1}{L_1},{x^{m + z}}{J_1}{K_1},{x^{m + s}}} \right)} \right),\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}\end{array}$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}{J_1}{K_1}{L_1}} \right.} \right.,} \right.\\\;\;\;\left. {\left. {{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}{I_1}{L_1},{x^{m + z}}} \right)} \right),\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}\end{array}$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}{J_1}{K_1}{L_1}} \right.} \right.,} \right.\\\;\;\;\left. {\left. {{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}} \right)} \right),\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}\end{array}$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}{J_1}{K_1}{L_1}} \right.} \right.,} \right.\\\;\;\;\left. {\left. {{x^{s + z}}{I_1}{J_1},{x^{n + z}}} \right)} \right),{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}\end{array}$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},} \right.} \right.} \right.\\\;\;\;\left. {\left. {{x^m}{J_1}{K_1}{L_1},{x^{s + z}}} \right)} \right),{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{n - s}}} \right)} \right) + s + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}\end{array}$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}} \right)} \right)} \right.,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{n - s}}} \right)} \right) + s + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}\end{array}$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}} \right)} \right)} \right.,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{x^{m - n}}} \right)} \right) + n,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{n - s}}} \right)} \right) + s + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}\end{array}$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}} \right)} \right)} \right.,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{x^{n - s}}} \right)} \right) + s,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{x^{m - n}}} \right)} \right) + n,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{n - s}}} \right)} \right) + s + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}\end{array}$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}} \right)} \right)} \right.,{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{x^{s - z}}} \right)} \right) + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{x^{n - s}}} \right)} \right) + s,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{x^{m - n}}} \right)} \right) + n,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{n - s}}} \right)} \right) + s + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}\end{array}$
根据归纳假设和Gao[5]的引理3.1和定理3.2易证reg((I1J1K1L1, xz)), reg((I1J1K1, xs-z))+z, reg((I1J1K1, I1J1L1, xn-s))+s的值不会超过reg(I)+reg(J)+reg(K)+reg(L).
根据引理2.1, 有
${\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n$
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( {{L_1}} \right) + n + s + z - 3$
$ = {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).$
根据推论2.1, 有
${\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m$
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).$
${\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{n - s}}} \right)} \right) + s + z$
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right).$
${\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z$
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( {{L_1}} \right).$
${\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s$
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right).$
${\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,$
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( {{L_1}} \right).$
${\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s$
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( {{L_1}} \right) - 1.$
${\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{x^{m - n}}} \right)} \right) + n$
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( {{L_1}} \right) - 1.$
对式(5)根据引理1.2, 有
$\begin{array}{l}{\rm{reg}}\left( {\left( {{I_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{m - n}}{J_1},{x^{m - s}}{K_1},{x^{m - z}}{L_1},{x^m}} \right)} \right) + \\\;\;\;\;\;n + s + z\end{array}$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{m - n}}{J_1},{x^{m - s}}{K_1},{x^{m - z}}} \right)} \right) + } \right.\\\;\;\;\;\;\;\left. {n + s + z,{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{L_1},{x^z}} \right)} \right) + m + n + s} \right\}\end{array}$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{m - n}}{J_1},{x^{m - s}}} \right)} \right) + } \right.\\\;\;\;\;\;\;n + s + z,\\\;\;\;\;\;\;{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{x^{s - z}}} \right)} \right) + m + n + z,\\\;\;\;\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{L_1},{x^z}} \right)} \right) + m + n + s} \right\}\end{array}$
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{m - n}}} \right)} \right) + n + s + z,} \right.\\\;\;\;\;\;\;{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1}{L_1},{x^{n - s}}} \right)} \right) + m + s + z,\\\;\;\;\;\;\;{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{x^{s - z}}} \right)} \right) + m + n + z,\\\;\;\;\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{L_1},{x^z}} \right)} \right) + m + n + s} \right\}.\end{array}$
根据Herzog[7]的推论3.2,易证
${\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1}{L_1},{x^{n - s}}} \right)} \right) + m + s + z,$
${\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{x^{s - z}}} \right)} \right) + m + n + z,$
reg((I1, J1, K1, L1, xz))+m+n+s的值不会超过
reg(I)+reg(J)+reg(K)+reg(L)。根据Gao[5]的引理3.1, 有
${\rm{reg}}\left( {\left( {{I_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{m - n}}} \right)} \right) + n + s + z$
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {\left( {{J_1}{K_1},{J_1}{L_1},{K_1}{L_1}} \right)} \right) + m + s + z - 2$
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( {{L_1}} \right) + m + s + z - 3$
$ = {\rm{reg}}\left( I \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).$
因此当n+sm+z时结论得证, 当n+s > m+z时可以用相同的方法证明有相同的结论; 因此当ms+z时定理成立, 当m > s+z时用相同的方法和完全类似的推导过程可以证明有相同的结论。
综上所述,定理被证明。
参考文献
[1] Bayer D, Mumford D.What can be computed in algebraic geoemetry?[C]//Eisenbud D, Robbiano L. Computational algebraic geometry and commutative algebra.Cambridge: Cambridge University Press, 1993: 1-48. http://arxiv.org/abs/alg-geom/9304003
[2] Conca A, Herzog J. Castelnuovo-Mumford regularity of products of ideals[J]. Collect Math, 2003, 54(2): 137-152.
[3] Sturmfels B. Four counterexamples in combinatorial algebraic geometry[J]. Journal of Algebra, 2000, 230(1): 282-294. DOI:10.1006/jabr.1999.7950
[4] Chardin M, Minh N C, Trung N V. On the regularity of products and intersections of complete intersections[J]. Proceedings of the American Mathematical Society, 2007, 135(6): 1597-1606. DOI:10.1090/S0002-9939-06-08842-3
[5] Gao Y B. On the regularity of product of pure power complete intersections[EB/OL]. 2018, Preprint.http://arxiv.org/pdf/1806.07616v1.pdf.
[6] Tang Z M, Gong C. On the regularity of operations of ideals[J]. Communications in Algebra, 2016, 44(7): 2938-2944. DOI:10.1080/00927872.2015.1065854
[7] Herzog J. A generalization of the Taylor complex const-ruction[J]. Communications in Algebra, 2007, 35(5): 1747-1756. DOI:10.1080/00927870601139500


相关话题/单项式 理想 自然 公共 过程

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 水平紧密接触品字形三圆管自然对流换热的数值模拟
    石宏岩,刘捷,卢文强中国科学院大学工程科学学院,北京1000492017年7月20日收稿;2017年10月20日收修改稿基金项目:国家自然科学基金面上项目(51576189)资助通信作者:刘捷,E-mail:nauty@ucas.ac.cn摘要:采用Bejan提出的新计算模型,模拟计算水平堆积紧密接 ...
    本站小编 Free考研考试 2021-12-25
  • 柔性夹爪收缩与扩张过程的能耗研究*
    随着全球工业的发展,工厂生产的产品急剧增加,然而对于易损物品的抓取方式及效率要求越来越高,在传统工厂的抓取作业中,目前普遍采用机械夹爪、真空吸盘等传统夹具对物品进行抓取,经常会受到产品不同形状、材质、位置的影响,导致无法顺利抓取[1]。而近年兴起的基于柔性机器人技术的柔性夹爪,可以完美攻克这一工业难 ...
    本站小编 Free考研考试 2021-12-25
  • 2024铝合金浸镍层的制备及生长过程*
    铝合金材料有着质量轻、强度高、切削性能良好等优点而被广泛应用在汽车、航空、航天、机械等领域。但是,铝合金的一些不良特性如显微硬度低、耐磨性差、耐腐蚀性差等限制了其应用,因此,表面改性对铝合金部件的制造过程至关重要。在各种表面处理工艺中,电镀与化学镀由于其独特的优势吸引了很多关注,通过在铝合金表面制备 ...
    本站小编 Free考研考试 2021-12-25
  • 过站航班地面保障过程动态预测*
    随着近年来航空运输量持续平稳增长,航班高密度运行已成为常态。地面保障过程作为过站航班运行的核心部分,传统面向时间窗的固定运行模式已无法适应未来智慧机场发展趋势,因此其过程的动态精确预测成为实现航班精细化管理的关键问题[1]。地面保障指过站航班从上轮挡到撤轮挡2个保障节点之间以旅客、货邮、航空器为核心 ...
    本站小编 Free考研考试 2021-12-25
  • 飞机波浪水面迫降过程中极限冲击载荷数值研究*
    随着跨水域飞行航线日益增多,飞机在空中遭遇事故需要执行水上紧急降落任务的可能性也随之提高。有计划的水上紧急着陆被称作水上迫降,执行预定的水上迫降程序,飞机受到的纵向和横向载荷将会落在设计范围内[1-2],同时乘客将有几分钟的准备时间以承受迫降冲击。目前,飞机水上迫降的研究主要集中在平静水面迫降,形成 ...
    本站小编 Free考研考试 2021-12-25
  • 基于改进GERT的任务过程时间特性建模分析方法*
    伴随着日渐密集的任务需求,任务间隔紧密程度越来越高,系统中各项活动间的交互耦合关系愈加突出,使得用户对系统的时间特性提出了更为严苛的要求[1]。包括飞机在内的复杂工业系统在执行任务过程中,各项活动的衔接耦合密切,执行时间紧凑,顺序要求严格,某一活动的参数发生波动,会引起与其共享同一资源的其他活动的执 ...
    本站小编 Free考研考试 2021-12-25
  • 模拟月壤铺粉过程DEM数值仿真*
    21世纪伊始,人类迎来了新一轮的探月高潮。美国国家航空航天局(NASA)提出了“重返月球,建立月球永久性基地”计划;欧洲航天局(ESA)制定了“极光”计划,其主要任务是载人登月、建立月球基地,并以月球为跳板实施载人火星探测任务。如何实现高效率、低成本的“空间制造”已经成为解决长期月面居留物资和生命保 ...
    本站小编 Free考研考试 2021-12-25
  • 翼伞充气过程的流固耦合方法数值仿真*
    冲压式翼伞相比于传统降落伞,升阻比高、滑翔稳定性能和操作性良好,广泛应用于航空航天等领域[1-3],近年来成为各国研究重点。翼伞充气成功与否决定着翼伞系统工作的成败。翼伞和常规降落伞一样,在充气展开过程中,由于本身的柔性特性,在气流作用下柔性伞衣极易变形,工作特性发生改变,涉及到的流固耦合问题具有高 ...
    本站小编 Free考研考试 2021-12-25
  • 水上飞机水面降落全过程力学特性数值研究*
    近年来,中国海洋事业在民用领域蓬勃发展,水上飞机因其有别于陆基飞机,具备在水面起降的特点,可以应对应急救援和军用领域的特殊需求,故而使中国对水上飞机开发研制的需求日渐迫切。水上飞机水面起降的能力是其最为典型的特征,性能上要求其具备水面短距起降的能力、良好的稳定性和着水性能[1],在设计过程中必须考虑 ...
    本站小编 Free考研考试 2021-12-25
  • 含内热源的多孔方腔自然对流非正交MRT-LBM模拟*
    多孔介质中的流体流动与传热在科学和工程领域有许多应用,如土木工程、地质力学、环境科学、生物工程、材料科学及再生热交换器、食品加工、电子设备冷却等其他相关领域[1-2]。因此,国内外许多****对多孔腔体内流体流动及传热特性进行了深入研究,并取得了重要成果。邱伟国等[3]采用有限元方法对左侧部分多孔介 ...
    本站小编 Free考研考试 2021-12-25