宋娟娟, 高玉彬
陕西师范大学数学与信息科学学院, 西安 710062
2017年5月9日 收稿; 2017年9月25日 收修改稿
基金项目: 国家自然科学基金(11301315)资助
通信作者: 高玉彬, E-mail:
gaoyb@snnu.edu.cn摘要: 对于域
k上多元多项式环
k[
x1, …,
xn]中不可约单项式理想
I、
J、
K和
L,证明reg(
IJKL)≤reg(
I)+reg(
J)+reg(
K)+reg(
L).
关键词: Castelnuovo-Mumford正则度完全交理想的乘积
On the Castelnuovo-Mumford regularity of product of irreducible monomial ideals
SONG Juanjuan, GAO Yubin
College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, China
Abstract: Let
I,
J,
K, and
L be irreducible monomial ideals in a polynomial ring over a field
k. In this paper, we prove reg(
IJKL) ≤ reg(
I)+reg(
J)+reg(
K)+reg(
L).
Keywords: Castelnuovo-Mumford regularitycomplete intersectionproduct of ideals
设
S是域
k上的多元多项式环,
m是
S的极大分次理想。对于有限生成分次
S-模
M, 当
Hmi(
M)≠0时, 令
ai(
M)=max{
μ|[
Hmi(
M)]
μ≠0};当
Hmi(
M)=0时, 令
ai(
M)=-∞.
M的Castelnuovo-Mumford正则度定义为
${\rm{reg}}\left( M \right) = \mathop {\max }\limits_{i \ge 0} \left\{ {{a_i}\left( M \right) + i} \right\}.$ |
reg(
M)是一类重要的衡量
M的复杂程度的不变量
[1], 得到它的上界是引人关注的问题。对
S的一个齐次理想
I,
IM的极小齐次生成元的最大次数不超过
I和
M的相应极小齐次生成元的最大次数之和, 所以研究reg(
IM)≤reg(
I)+reg(
M)是否成立是一个自然的问题。当dim(
S/
I)≤1时, Conca和Herzog
[2]证明reg(
IM)≤reg(
I)+reg(
M).Sturmfels
[3]给出一个单项式理想
I, 满足reg(
I2)>2reg(
I)。进一步限制理想
I的范围, Conca和Herzog
[2]提出这样一个问题:当
I1, …,
Id都是完全交单项式理想时,
${\rm{reg}}\left( {{I_1}, \cdots ,{I_d}} \right) \le {\rm{reg}}\left( {{I_1}} \right) + \cdots + {\rm{reg}}\left( {{I_d}} \right)$ | (1) |
是否对任意的
d≥1都成立?当
d=2时, Chardin等
[4]证明了这一问题的正确性; 当
d≥3时, 这一问题至今没有得到解决。当
d=3且
I1,
I2和
I3都是由单个不定元的方幂生成的完全交理想时, Gao
[5]证明了结论的正确性。当
I是一个完全交且
n≥1时, Tang和Gong
[6]最近证明reg(
In)≤
nreg(
I)。在本文中,对4个不可约单项式理想(由不定元的方幂生成的完全交理想)
I,
J,
K和
L, 证明
$\begin{array}{*{20}{c}}{{\rm{reg}}\left( {IJKL} \right) \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + }\\{{\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).}\end{array}$ |
1 本研究的主要工具本研究工作所用的主要工具
[5]如下。
引理1.1??设0→
N→
M→
P→0是一个有限生成的分次
S-模的一个短正合列, 则
$\left( {\rm{i}} \right){\rm{reg}}\left( M \right) \le \max \left\{ {{\rm{reg}}\left( N \right),{\rm{reg}}\left( P \right)} \right\}.$ |
$\left( {{\rm{ii}}} \right){\rm{reg}}\left( P \right) \le \max \left\{ {{\rm{reg}}\left( M \right),{\rm{reg}}\left( N \right) - 1} \right\}.$ |
$\left( {{\rm{iii}}} \right){\rm{reg}}\left( N \right) \le \max \left\{ {{\rm{reg}}\left( M \right),{\rm{reg}}\left( P \right) + 1} \right\}.$ |
$\begin{array}{l}\;\;\;\;\;\;\left( {{\rm{iv}}} \right){\rm{reg}}\left( P \right) = {\rm{reg}}\left( M \right),{\rm{如果}}{\rm{reg}}\left( N \right) < \\{\rm{reg}}\left( M \right).\end{array}$ |
$\begin{array}{l}\;\;\;\;\;\;\left( {\rm{v}} \right){\rm{reg}}\left( P \right) = {\rm{reg}}\left( N \right) - 1,{\rm{如果reg}}\left( M \right) < \\{\rm{reg}}\left( N \right).\end{array}$ |
引理1.2??设
x是一个线性形式,
I是
S的一个齐次理想, 则对所有的
n≥1,
${\rm{reg}}\left( I \right) \le \max \left\{ {{\rm{reg}}\left( {I,{x^n}} \right),{\rm{reg}}\left( {I:{x^n}} \right) + n} \right\}.$ |
引理1.3??设
u是一个次数为
d的齐次多项式,
I是齐次理想且
u是
S/
I-正则的,那么
${\rm{reg}}\left( {I,u} \right) = {\rm{reg}}\left( I \right) + d - 1.$ |
下面的引理1.4和引理1.5分别对应Gao
[5]中的引理3.1和定理3.2,为便于引用,将其列出。
引理1.4??设
I,
J,
K是域
k上多元多项式环
S中的3个不可约单项式理想, 则
$\begin{array}{*{20}{c}}{{\rm{reg}}\left( {\left( {IJ,IK,JK} \right)} \right) \le {\rm{reg}}\left( I \right) + }\\{{\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) - 1.}\end{array}$ |
引理1.5??设
I,
J,
K是域
k上多元多项式环
S中的3个不可约单项式理想, 则
${\rm{reg}}\left( {IJK} \right) \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right).$ |
2 主要结果
S的一个理想
I称为一个完全交(complete intersection)单项式理想, 如果
I可以由一些单项式生成,并且这些单项式之间没有公共的不定元。我们研究一类特殊的完全交单项式理想(不可约单项式理想), 即这些理想可以由单个不定元的方幂生成,例如
I=(
x12,
x22,
x56)。
引理2.1??设
I,
J,
K,
L是域
k上多元多项式环
S中的4个不可约单项式理想, 则
${\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right)} \right)$ |
$\begin{array}{l} \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.\end{array}$ |
证明??对
l1+
l2+
l3+
l4用归纳法, 这里
l1,
l2,
l3,
l4分别是
I,
J,
K和
L的最小的单项式生成元的基数。
如果
l1=
l2=
l3=
l4=1, 设
I=(
xl),
J=(
ym),
K=(
zn),
L=(
ws),
l≥
m≥
n≥
s且
x,
y,
z,
w两两不相等, 则(
IJ,
IK,
IL,
JK,
JL,
KL)=(
xlym,
xlzn,
xlws,
ymzn,
ymws,
znws).
根据引理1.2, 引理1.3及Gao
[5]的引理3.1和Herzog
[7]的推论3.2, 有
${\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right)} \right)$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{x^l}{y^m},{x^l}{z^n},{y^m}{z^n},{w^s}} \right)} \right){\rm{reg}}\left( {\left( {{x^l},{y^m},} \right.} \right.} \right.\\\left. {\;\;\;\left. {\left. {{z^n}} \right)} \right) + s} \right\}.\end{array}$ |
${\rm{reg}}\left( {\left( {{x^l}{y^m},{x^l}{z^n},{y^m}{z^n},{w^s}} \right)} \right)$ |
$ \le {\rm{reg}}\left( {{x^l}} \right) + {\rm{reg}}\left( {{y^m}} \right) + {\rm{reg}}\left( {{z^n}} \right) + s - 2$ |
$\begin{array}{l} = {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.\\\end{array}$ |
$ \;\;\;\;{\rm{reg}}\left( {\left( {{x^l},{y^m},{z^n}} \right)} \right) + s\\ \le {\rm{reg}}\left( {{x^l}} \right) + {\rm{reg}}\left( {{y^m}} \right) + {\rm{reg}}\left( {{z^n}} \right) + s - 2$ |
$ = {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.$ |
当
x=
y,
x=
y=
z,
x=
y=
z=
w时可以用相同的方法证明有相同的结论, 因此在这种情况下结论成立。
如果
I=(
I1,
xm)并且
x是
S/
I1,
S/
J,
S/
K,
S/
L的非零因子, 也就是
x的任何方幂都不在
I1,
J,
K,
L的最小单项式生成元中。则
$\left( {IJ,IK,IL,JK,JL,KL} \right)$ |
$ = \left( {{I_1},{x^m}} \right)J + \left( {{I_1},{x^m}} \right)K + \left( {{I_1},{x^m}} \right)L + JK + JL + KL$ |
$ = {I_1}J + {I_1}K + {I_1}L + JK + JL + KL + {x^m}J + {x^m}K + {x^m}L.$ |
根据引理1.2, 有
${\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right)} \right)$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL,{x^m}} \right)} \right)} \right.,\\\;\;\;\left. {{\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right):{x^m}} \right) + m} \right\}\end{array}$ |
$\begin{array}{l} = \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}J,{I_1}K,{I_1}L,JK,JL,KL,{x^m}} \right)} \right)} \right.,\\\;\;\;\left. {{\rm{reg}}\left( {\left( {J,K,L} \right)} \right) + m} \right\}\end{array}$ |
注意到
x是
S/(
I1J,
I1K,
I1L,
JK,
JL,
KL)-正则的, 根据引理1.3和归纳假设, 有
${\rm{reg}}\left( {\left( {{I_1}J,{I_1}K,{I_1}L,JK,JL,KL,{x^m}} \right)} \right)$ |
$ = {\rm{reg}}\left( {\left( {{I_1}J,{I_1}K,{I_1}L,JK,JL,KL} \right)} \right) + m - 1$ |
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m - 3$ |
$ = {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.$ |
上式成立是因为reg(
I)=reg(
I1)+
m-1.根据Herzog
[7]的推论3.2, 有
$\begin{array}{*{20}{c}}{{\rm{reg}}\left( {\left( {J,K,L} \right)} \right) + m \le {\rm{reg}}\left( J \right) + }\\{{\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m - 2.}\end{array}$ |
因此在这种情况下结论成立。
如果
I=(
I1,
xm),
J=(
J1,
xn),
m≥
n≥1且
x是
S/
K,
S/
L-正则的。则
$\begin{array}{l}\left( {IJ,IK,IL,JK,JL,KL} \right) = \left( {{I_1},{x^m}} \right)\left( {{J_1},{x^n}} \right) + \\\left( {{I_1},{x^m}} \right)K + \left( {{I_1},{x^m}} \right)L + \left( {{J_1},{x^n}} \right)K + \left( {{J_1},{x^n}} \right)L + KL\\ = {I_1}{J_1} + {I_1}K + {I_1}L + {J_1}K + {J_1}L + KL + {x^n}{I_1} + \\\;\;\;{x^m}{J_1} + {x^n}K + {x^n}L + {x^{m + n}}.\end{array}$ |
根据引理1.2, 有
$\begin{array}{l}{\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right)} \right)\\ \le \max \{ {\rm{reg((}}{I_1}{J_1},{I_1}K,{I_1}L,{I_1}{K_1},{I_1}L,KL,{x^n}{I_1},\\\;\;{x^n}K,{x^n}L,{x^m})),{\rm{reg}}(({I_1},{J_1},K,L,{x^n})) + m\} \end{array}$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}K,{I_1}L,{J_1}K,{J_1}L,KL,{x^n}} \right)} \right)} \right.,\\\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1},K,L,{x^{m - n}}} \right)} \right) + n,{\rm{reg}}\left( {\left( {{I_1},{J_1},K,L,{x^n}} \right)} \right) + m} \right\}.\end{array}$ |
根据归纳假设和Herzog
[7]的推论3.2, 有
${\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}K,{I_1}L,{J_1}K,{J_1}L,KL,{x^n}} \right)} \right)$ |
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.$ |
${\rm{reg}}\left( {\left( {{I_1},K,L,{x^{m - n}}} \right)} \right) + n$ |
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.$ |
${\rm{reg}}\left( {\left( {{I_1},{J_1},K,L,{x^n}} \right)} \right) + m$ |
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.$ |
上面式子的成立是因为reg(
I)=reg(
I1)+
m-1和reg(
J)=reg(
J1)+
n-1.
因此在这种情况下结论是成立的。
如果
I=(
I1,
xm),
J=(
J1,
xn),
K=(
K1,
xs), 并且
m≥
n≥
s≥1.则有
$\left( {IJ,IK,IL,JK,JL,KL} \right)$ |
$\begin{array}{l} = \left( {{I_1}{J_1},{I_1}{K_1},{I_1}L,{J_1}{K_1},{J_1}L,{K_1}L,{x^s}{I_1},{x^s}{J_1},{x^n}{K_1},} \right.\\\;\;\;\left. {{x^s}L,{x^{n + s}}} \right).\end{array}$ |
根据引理1.2, 有
${\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right)} \right)$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}L,{J_1}{K_1},{J_1}L,{K_1}L,{x^s}{I_1},} \right.} \right.} \right.\\\;\;\;\left. {\left. {\left. {{x^s}{J_1},{x^s}L,{x^n}} \right)} \right),{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},L,{x^s}} \right)} \right) + n} \right\}\end{array}$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}L,{J_1}{K_1},{J_1}L,{K_1}L,{x^s}} \right)} \right),} \right.\\\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1},{J_1},L,{x^{n - s}}} \right)} \right) + s,{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},L,{x^s}} \right)} \right) + n} \right\}.\end{array}$ |
根据归纳假设和引理1.3以及Herzog
[7]的推论3.2, 有
${\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}L,{J_1}{K_1},{J_1}L,{K_1}L,{x^s}} \right)} \right)$ |
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right) + s - 3$ |
$ = {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.$ |
${\rm{reg}}\left( {\left( {{I_1},{J_1},L,{x^{n - s}}} \right)} \right) + s$ |
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( L \right) - 2.$ |
${\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},L,{x^s}} \right)} \right) + n$ |
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.$ |
因此在这种情况下结论是成立的。
如果
I=(
I1,
xm),
J=(
J1,
xn),
K=(
K1,
xs),
L=(
L1,
xz)且
m≥
n≥
s≥
z≥1.则有(
IJ,
IK,
IL,
JK,
JL,
KL)=(
I1J1,
I1K1,
I1L,
J1K1,
J1L,
K1L
,
xsI1,
xsJ1,
xnK1,
xsL,
xn+s).
根据引理1.2, 有
${\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right)} \right)$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^z}{I_1},} \right.} \right.} \right.\\\;\;\;\left. {\left. {\left. {{x^z}{J_1},{x^z}{K_1},{x^s}} \right)} \right),{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{L_1},{x^z}} \right)} \right) + s} \right\}\end{array}$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^z}} \right)} \right),} \right.\\\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{x^{s - z}}} \right)} \right) + z,{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{L_1},{x^z}} \right)} \right) + s} \right\}.\end{array}$ |
根据归纳假设和引理1.3以及Herzog
[7]的推论3.2, 有
${\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^z}} \right)} \right)$ |
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right) + z - 3$ |
$ = {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right) - 2.$ |
${\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{x^{s - z}}} \right)} \right) + z$ |
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) - 2.$ |
${\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{L_1},{x^z}} \right)} \right) + s$ |
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.$ |
因此在这种情况下结论是成立的。
综上,证明了当
I,
J,
K,
L是
S中的4个不可约单项式理想时, 结论是成立的。
推论2.1??设
I,
J,
K,
L是域
k上多元多项式环
S中的4个不可约单项式理想, 利用证明引理2.1的方法, 可以证明
${\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL} \right)} \right)$ |
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.$ |
${\rm{reg}}\left( {\left( {IJ,IK,IL,JK} \right)} \right)$ |
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1.$ |
${\rm{reg}}\left( {\left( {IJK,IJL,IKL,JKL} \right)} \right)$ |
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1.$ |
${\rm{reg}}\left( {\left( {IJ,IKL,JKL} \right)} \right)$ |
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1.$ |
${\rm{reg}}\left( {\left( {IJ,IK,JKL} \right)} \right)$ |
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1.$ |
${\rm{reg}}\left( {\left( {IJ,IK,IL,JKL} \right)} \right)$ |
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1.$ |
${\rm{reg}}\left( {\left( {IJL,IKL,JKL} \right)} \right)$ |
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1.$ |
${\rm{reg}}\left( {\left( {IL,JKL} \right)} \right)$ |
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1.$ |
${\rm{reg}}\left( {\left( {IJK,IJL,IKL} \right)} \right)$ |
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1.$ |
注意:类似(
IJ,
IK,
IL,
JK,
JL)的其他几种情况, 即形如(
IK,
IL,
JK,
JL,
KL), 也满足上面的不等式。
定理2.1??设
I,
J,
K,
L是域
k上多元多项式环
S中的4个不可约单项式理想, 则
${\rm{reg}}\left( {IJKL} \right) \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).$ |
证明??关于
l1+
l2+
l3+
l4用归纳法, 这里
l1,
l2,
l3,
l4分别是
I,
J,
K,
L的最小的单项式生成元的基数。如果
l1=
l2=
l3=
l4=1, 则定理的证明是显然的。因为
${\rm{reg}}\left( {IJKL} \right){\rm{ = reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).$ |
如果
S的一个变量
x只出现在
I的最小的单项式生成元中, 而没有出现在
J,
K和
L的最小的单项式生成元中。设
I=(
I1,
xm),
m≥1并且
x是
S/
I1-正则的。则
IJKL=
I1JKL+
xmJKL并且
xm是
S/
I1JKL-正则的。根据引理1.2和引理1.3。
${\rm{reg}}\left( {IJKL} \right) \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}JKL,{x^m}} \right)} \right),} \right.$ |
$\left. {{\rm{reg}}\left( {\left( {{I_1}JKL,{x^m}JKL} \right):{x^m}} \right) + m } \right\}$ |
$ = \max \left\{ {{\rm{reg}}\left( {{I_1}JKL} \right) + m - 1,{\rm{reg}}\left( {JKL} \right) + m} \right\}.$ |
根据归纳假设,有
${\rm{reg}}\left( {{I_1}JKL} \right) + m - 1$ |
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m - 1$ |
$ = {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).$ |
根据Gao
[5]的定理3.2, 有
$\begin{array}{l}{\rm{reg}}\left( {JKL} \right) + m \le {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m\\ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).\end{array}$ |
因此定理的结论在这种情况下是成立的。
如果
S的一个变量
x出现在
I和
J的最小的单项式生成元中, 而没有出现在
K和
L的最小的单项式生成元中。设
I=(
I1,
xm),
J=(
J1,
xn)且m≥n。则
IJKL=
I1J1KL+
xnI1KL+
xmJ1KL+
xm+nKL。
根据引理1.2
${\rm{reg}}\left( {IJKL} \right)$ |
$ \le \max \left\{ {{\rm{reg}}\left( {\left( {IJKL,{x^m}} \right)} \right),{\rm{reg}}\left( {\left( {IJKL:{x^m}} \right)} \right) + m} \right\}$ |
$\begin{array}{l} = \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}KL,{x^n}{I_1}KL,{x^m}} \right)} \right)} \right.,\\\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}KL,{J_1}KL,{x^n}KL} \right)} \right) + m} \right\}.\end{array}$ |
则上面最后一行的两个式子可以分写成
${\rm{reg}}\left( {\left( {{I_1}{J_1}KL,{x^n}{I_1}KL,{x^m}} \right)} \right)$ |
$ \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}KL,{x^n}} \right)} \right),{\rm{reg}}\left( {\left( {{I_1}KL,{x^{m - n}}} \right)} \right) + n} \right\}.$ |
${\rm{reg}}\left( {\left( {{I_1}KL,{J_1}KL,{x^n}KL} \right)} \right) + m$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}KL,{J_1}KL,{x^n}} \right)} \right) + m,{\rm{reg}}\left( {KL} \right) + } \right.\\\;\;\;\left. {m + n} \right\}.\end{array}$ |
根据归纳假设, Gao
[5]的定理3.2和
x的确没有出现在
I1,
J1,
K,
L的最小的单项式生成元中。有
${\rm{reg}}\left( {\left( {{I_1}{J_1}KL,{x^n}} \right)} \right)$ |
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + n - 1$ |
$ = {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).$ |
${\rm{reg}}\left( {\left( {{I_1}KL,{x^{m - n}}} \right)} \right) + n$ |
$ = {\rm{reg}}\left( {{I_1}KL} \right) + m - 1$ |
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m - 1$ |
$ = {\rm{reg}}\left( I \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).$ |
${\rm{reg}}\left( {KL} \right) + m + n \le {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m + n.$ |
注意到
I1+
J1也是一个不可约单项式理想, 根据Herzog
[7]的推论3.2和Gao
[5]的定理3.2, 有
${\rm{reg}}\left( {\left( {{I_1}KL,{J_1}KL,{x^n}} \right)} \right) + m$ |
$ = {\rm{reg}}\left( {\left( {{I_1},{J_1}} \right)KL} \right) + m + n - 1$ |
$ \le {\rm{reg}}\left( {{I_1},{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m + n - 1$ |
$\begin{array}{l} \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m + \\\;\;\;n - 2\end{array}$ |
$ = {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).$ |
因此定理的结论在这种情况下是成立的。
如果
S的一个变量
x出现在
I,
J,
K的最小的单项式生成元中, 而没有出现在
L的最小的单项式生成元中。设
I=(
I1,
xm),
J=(
J1,
xn),
K=(
K1,
xs)且
m≥
n≥
s≥1。则
IJKL=(
I1J1K1L,
xsI1J1L,
xnI1K1L,
xmJ1K1L,
xn+sI1L,
xm+sJ1L,
xm+nK1L,
xm+n+sL)。
首先假设
m≤
n+
s, 根据引理1.2
${\rm{reg}}\left( {IJKL} \right)$ |
$ \le \max \left\{ {{\rm{reg}}\left( {\left( {IJKL,{x^{n + s}}} \right)} \right),{\rm{reg}}\left( {\left( {IJKL:{x^{n + s}}} \right)} \right) + n + s} \right\}$ |
$ = \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}L,{x^s}{I_1}{J_1}L,{x^n}{I_1}{K_1}L,{x^m}{J_1}{K_1}L,{x^{n + s}}} \right)} \right)} \right.,$ | (2) |
$\left. {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}L,{x^{m - n}}{J_1}L,{x^{m - s}}{K_1}L,{x^m}L} \right)} \right) + n + s} \right\}.$ | (3) |
对式(2), 有
${\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}L,{x^s}{I_1}{J_1}L,{x^n}{I_1}{K_1}L,{x^m}{J_1}{K_1}L,{x^{n + s}}} \right)} \right)$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}L,{x^s}{I_1}{J_1}L,{x^n}{I_1}{K_1}L,{x^m}} \right)} \right)} \right.,\\\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{J_1}{K_1}L,{x^{m + s - n}}} \right)} \right) + m} \right\}\end{array}$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}L,{x^s}{I_1}{J_1}L,{x^n}} \right)} \right)} \right.,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{x^{m - n}}} \right)} \right) + n,\\\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{J_1}{K_1}L,{x^{m + s - n}}} \right)} \right) + m} \right\}\end{array}$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}L,{x^s}} \right)} \right),{\rm{reg}}\left( {\left( {{I_1}{J_1}L,{x^{n - s}}} \right)} \right)} \right. + s,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{x^{m - n}}} \right)} \right) + n,\\\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{J_1}{K_1}L,{x^{n + s - m}}} \right)} \right) + m} \right\}.\end{array}$ |
类似于前面几种情况, 可以证明
reg((
I1J1K1L,
xs)), reg((
I1J1L,
xn-s))+
s, reg((
I1J1L,
I1K1L,
xm-n))+
n的值不会超过reg(
I)+reg(
J)+reg(
K)+reg(
L).
根据推论2.1,有
${\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{J_1}{K_1}L,{x^{n + s - m}}} \right)} \right) + m$ |
$ = {\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{J_1}{K_1}L} \right)} \right) + n + s - 1$ |
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( {{L_1}} \right) + n + s - 2$ |
$ = {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right)$ |
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).$ |
对式(3), 有
${\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}L,{x^{m - n}}{J_1}L,{x^{m - s}}{K_1}L,{x^m}L} \right)} \right) + n + s$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}L,{x^{m - n}}} \right)} \right) + n + s,} \right.\\\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}L,{x^{n - s}}{K_1}L,{x^n}L} \right)} \right) + m + s} \right\}\end{array}$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}L,{x^{m - n}}} \right)} \right) + n + s} \right.,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}L,{J_1}L,{x^{n - s}}} \right)} \right) + m + s,\\\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}L,{K_1}L,{x^s}L} \right)} \right) + m + n} \right\}\end{array}$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}J,{x^{m - n}}} \right)} \right) + n + s,} \right.\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}L,{J_1}L,{x^{n - s}}} \right)} \right) + m + s,{\rm{reg}}\left( L \right) + m + n + s,\\\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}L,{K_1}L,{x^s}} \right)} \right) + m + n} \right\}.\end{array}$ |
类似于前面几种情况, 易证
reg(
L)+
m+
n+
s, reg((
I1L,
J1L,
xn-s))+
m+
s的值不会超过reg(
I)+reg(
J)+reg(
K)+reg(
L).
根据Herzog
[7]的推论3.2, 有
${\rm{reg}}\left( {\left( {{I_1}L,{J_1}L,{K_1}L,{x^s}} \right)} \right) + m + n$ |
$ = {\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1}} \right)L} \right) + m + n + s - 1 $ |
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right) + m + n + s - 3$ |
$ = {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).$ |
根据推论2.1, 有
${\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}L,{x^{m - n}}} \right)} \right) + n + s$ |
$ = {\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}L} \right)} \right) + m + s - 1$ |
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right) + m + s - 2$ |
$ = {\rm{reg}}\left( I \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).$ |
所以当
m≤
n+
s时, 有reg(
IJKL)≤reg(
I)+reg(
J)+reg(
K)+reg(
L)。当
m >
n+
s时, 同理可证reg(
IJKL)≤reg(
I)+reg(
J)+reg(
K)+reg(
L)成立。因此定理的结论在这种情况下是成立的。
如果
S的一个变量
x出现在
I,
J,
K,
L的最小的单项式生成元中, 设
I=(
I1,
xm),
J=(
J1,
xn),
K=(
K1,
xs),
L=(
L1,
xz)且
m≥
n≥
s≥
z≥1则
$\begin{array}{l}IJKL = \left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},} \right.\\\;\;\;\;\;\;\;\;\;\;\;\;{x^m}{J_1}{K_1}{L_1},{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}{I_1}{L_1},\\\;\;\;\;\;\;\;\;\;\;\;\;{x^{m + z}}{J_1}{K_1},{x^{m + s}}{J_1}{L_1},{x^{m + n}}{K_1}{L_1},{x^{n + s + z}}{I_1},\\\;\;\;\;\;\;\;\;\;\;\;\;\left. {{x^{m + s + z}}{J_1},{x^{m + n + z}}{K_1},{x^{m + n + s}}{L_1},{x^{m + n + s + z}}} \right).\end{array}$ |
首先假设
m≤
s+
z, 根据引理1.2
$\begin{array}{l}{\rm{reg}}\left( {IJKL} \right) \le \max \left\{ {{\rm{reg}}\left( {\left( {IJKL,{x^{n + s + z}}} \right)} \right)} \right.,\\\;\;\;\;\;\;\left. {{\rm{reg}}\left( {\left( {IJKL:{x^{n + s + z}}} \right)} \right) + n + s + z} \right\}\end{array}$ |
$\begin{array}{l} = \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},} \right.} \right.} \right.\\\;\;\;{x^m}{J_1}{K_1}{L_1},{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}{I_1}{L_1},{x^{m + z}}{J_1}{K_1},\\\;\;\;\left. {\left. {{x^{m + s}}{J_1}{L_1},{x^{m + n}}{K_1}{L_1},{x^{n + s + z}}} \right)} \right),\end{array}$ | (4) |
$\begin{array}{l}{\rm{reg}}\left( {\left( {{I_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{m - n}}{J_1},{x^{m - s}}{K_1},{x^{m - z}}{L_1}} \right.,} \right.\\\;\;\;\;\;\left. {\left. {\left. {{x^m}} \right)} \right) + n + s + z} \right\}.\end{array}$ | (5) |
对式(4)假设
n+
s≤
m+
z, 有
${\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}{J_1}{K_1}{L_1}} \right.} \right.,$ |
$\left. {\left. {{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}{I_1}{L_1},{x^{m + z}}{J_1}{K_1},{x^{m + s}}{J_1}{L_1},{x^{m + n}}{K_1}{L_1},{x^{n + s + z}}} \right)} \right)$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}{J_1}{K_1}{L_1}} \right.} \right.} \right.,\\\;\;\;\left. {\left. {{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}{I_1}{L_1},{x^{m + z}}{J_1}{K_1},{x^{m + s}}{J_1}{L_1},{x^{m + n}}} \right)} \right),\\\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}\end{array}$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}{J_1}{K_1}{L_1}} \right.} \right.} \right.,\\\;\;\;\left. {\left. {{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}{I_1}{L_1},{x^{m + z}}{J_1}{K_1},{x^{m + s}}} \right)} \right),\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}\end{array}$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}{J_1}{K_1}{L_1}} \right.} \right.,} \right.\\\;\;\;\left. {\left. {{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}{I_1}{L_1},{x^{m + z}}} \right)} \right),\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}\end{array}$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}{J_1}{K_1}{L_1}} \right.} \right.,} \right.\\\;\;\;\left. {\left. {{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}} \right)} \right),\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}\end{array}$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}{J_1}{K_1}{L_1}} \right.} \right.,} \right.\\\;\;\;\left. {\left. {{x^{s + z}}{I_1}{J_1},{x^{n + z}}} \right)} \right),{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}\end{array}$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},} \right.} \right.} \right.\\\;\;\;\left. {\left. {{x^m}{J_1}{K_1}{L_1},{x^{s + z}}} \right)} \right),{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{n - s}}} \right)} \right) + s + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}\end{array}$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}} \right)} \right)} \right.,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{n - s}}} \right)} \right) + s + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}\end{array}$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}} \right)} \right)} \right.,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{x^{m - n}}} \right)} \right) + n,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{n - s}}} \right)} \right) + s + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}\end{array}$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}} \right)} \right)} \right.,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{x^{n - s}}} \right)} \right) + s,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{x^{m - n}}} \right)} \right) + n,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{n - s}}} \right)} \right) + s + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}\end{array}$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}} \right)} \right)} \right.,{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{x^{s - z}}} \right)} \right) + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{x^{n - s}}} \right)} \right) + s,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{x^{m - n}}} \right)} \right) + n,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{n - s}}} \right)} \right) + s + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}\end{array}$ |
根据归纳假设和Gao
[5]的引理3.1和定理3.2易证reg((
I1J1K1L1,
xz)), reg((
I1J1K1,
xs-z))+
z, reg((
I1J1K1,
I1J1L1,
xn-s))+
s的值不会超过reg(
I)+reg(
J)+reg(
K)+reg(
L).
根据引理2.1, 有
${\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n$ |
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( {{L_1}} \right) + n + s + z - 3$ |
$ = {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).$ |
根据推论2.1, 有
${\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m$ |
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).$ |
${\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{n - s}}} \right)} \right) + s + z$ |
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right).$ |
${\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z$ |
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( {{L_1}} \right).$ |
${\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s$ |
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right).$ |
${\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,$ |
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( {{L_1}} \right).$ |
${\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s$ |
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( {{L_1}} \right) - 1.$ |
${\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{x^{m - n}}} \right)} \right) + n$ |
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( {{L_1}} \right) - 1.$ |
对式(5)根据引理1.2, 有
$\begin{array}{l}{\rm{reg}}\left( {\left( {{I_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{m - n}}{J_1},{x^{m - s}}{K_1},{x^{m - z}}{L_1},{x^m}} \right)} \right) + \\\;\;\;\;\;n + s + z\end{array}$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{m - n}}{J_1},{x^{m - s}}{K_1},{x^{m - z}}} \right)} \right) + } \right.\\\;\;\;\;\;\;\left. {n + s + z,{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{L_1},{x^z}} \right)} \right) + m + n + s} \right\}\end{array}$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{m - n}}{J_1},{x^{m - s}}} \right)} \right) + } \right.\\\;\;\;\;\;\;n + s + z,\\\;\;\;\;\;\;{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{x^{s - z}}} \right)} \right) + m + n + z,\\\;\;\;\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{L_1},{x^z}} \right)} \right) + m + n + s} \right\}\end{array}$ |
$\begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{m - n}}} \right)} \right) + n + s + z,} \right.\\\;\;\;\;\;\;{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1}{L_1},{x^{n - s}}} \right)} \right) + m + s + z,\\\;\;\;\;\;\;{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{x^{s - z}}} \right)} \right) + m + n + z,\\\;\;\;\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{L_1},{x^z}} \right)} \right) + m + n + s} \right\}.\end{array}$ |
根据Herzog
[7]的推论3.2,易证
${\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1}{L_1},{x^{n - s}}} \right)} \right) + m + s + z,$ |
${\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{x^{s - z}}} \right)} \right) + m + n + z,$ |
reg((
I1,
J1,
K1,
L1,
xz))+
m+
n+
s的值不会超过
reg(
I)+reg(
J)+reg(
K)+reg(
L)。根据Gao
[5]的引理3.1, 有
${\rm{reg}}\left( {\left( {{I_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{m - n}}} \right)} \right) + n + s + z$ |
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {\left( {{J_1}{K_1},{J_1}{L_1},{K_1}{L_1}} \right)} \right) + m + s + z - 2$ |
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( {{L_1}} \right) + m + s + z - 3$ |
$ = {\rm{reg}}\left( I \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).$ |
因此当
n+
s≤
m+
z时结论得证, 当
n+
s >
m+
z时可以用相同的方法证明有相同的结论; 因此当
m≤
s+
z时定理成立, 当
m >
s+
z时用相同的方法和完全类似的推导过程可以证明有相同的结论。
综上所述,定理被证明。
参考文献 [1] | Bayer D, Mumford D.What can be computed in algebraic geoemetry?[C]//Eisenbud D, Robbiano L. Computational algebraic geometry and commutative algebra.Cambridge: Cambridge University Press, 1993: 1-48. http://arxiv.org/abs/alg-geom/9304003
|
[2] | Conca A, Herzog J. Castelnuovo-Mumford regularity of products of ideals[J]. Collect Math, 2003, 54(2): 137-152.
|
[3] | Sturmfels B. Four counterexamples in combinatorial algebraic geometry[J]. Journal of Algebra, 2000, 230(1): 282-294. DOI:10.1006/jabr.1999.7950
|
[4] | Chardin M, Minh N C, Trung N V. On the regularity of products and intersections of complete intersections[J]. Proceedings of the American Mathematical Society, 2007, 135(6): 1597-1606. DOI:10.1090/S0002-9939-06-08842-3
|
[5] | Gao Y B. On the regularity of product of pure power complete intersections[EB/OL]. 2018, Preprint.http://arxiv.org/pdf/1806.07616v1.pdf.
|
[6] | Tang Z M, Gong C. On the regularity of operations of ideals[J]. Communications in Algebra, 2016, 44(7): 2938-2944. DOI:10.1080/00927872.2015.1065854
|
[7] | Herzog J. A generalization of the Taylor complex const-ruction[J]. Communications in Algebra, 2007, 35(5): 1747-1756. DOI:10.1080/00927870601139500
|