删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

根系局部NaCl处理对葡萄植株伤害度、Na +积累和碳氮分配的影响

本站小编 Free考研考试/2021-12-26

孙红, 姜亦文, 于昕, 相广庆, 姚玉新,山东农业大学园艺科学与工程学院/作物生物学国家重点实验室/农业部黄淮地区园艺作物生物学与种质创制重点实验室,山东泰安 271018

Effects of Local Root Zone Salinity on Grapevine Injury, Na + Accumulation and Allocation of Carbon and Nitrogen

SUN Hong, JIANG YiWen, YU Xin, XIANG GuangQing, YAO YuXin,College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture, Tai’an 271018, Shandong

通讯作者: 姚玉新,Tel:0538-8246258;E-mail: yaoyx@sdau.edu.cn

收稿日期:2018-07-18接受日期:2018-10-20网络出版日期:2019-04-01
基金资助:国家自然科学基金.31872068
国家葡萄产业技术体系建设专项.CARS-29
山东省自然科学基金.ZR2018MC021


Received:2018-07-18Accepted:2018-10-20Online:2019-04-01
作者简介 About authors
孙红,E-mail: 1250462609@qq.com







摘要
【目的】盐胁迫严重影响果树作物产量及品质。自然条件下,土壤中盐分浓度不均一,同一植株根系不同部位所处的盐环境不同。本文旨在测定根系局部盐处理对葡萄植株的伤害程度,并从Na +积累特性和碳氮分配角度揭示非处理侧根系缓解盐伤害的机理。【方法】利用分根栽培控制根系盐环境,根系两侧NaCl浓度(mmol·L -1)设置为0/0、0/50、50/50、0/100、100 /100 5种处理。通过测定叶绿素、丙二醛(MDA)和叶绿素荧光参数来反应植株伤害程度;通过测定Na +含量、离子流和根域介质电导率来检测Na +体内运转特性;通过测定氮肥利用率和碳氮分配率分析不同盐处理下各组织碳、氮水平。【结果】处理15 d和30 d时,双侧均匀盐处理显著降低叶绿素含量,提高叶片和根系MDA水平;同浓度单侧盐处理能有效缓解叶绿素下降和MDA积累。Fv/Fm、ETR等叶绿素荧光参数测定表明了相似的结果。以上结果表明,单侧盐处理下,非处理侧根系能有效减轻盐对葡萄植株的伤害。处理15 d时,各种方式的NaCl处理均不同程度增加了根系和叶片Na +含量;尤其是在单侧盐处理下,非处理侧根系Na +含量显著增加;与同浓度双侧均匀盐处理相比,单侧盐处理显著降低了叶片Na +水平,100 mmol·L -1单侧盐处理显著降低了处理侧根系Na +浓度。非盐处理对照根系Na +流为内运;处理24 h时,双侧盐处理的根系外排Na +,100 mmol·L -1单侧盐处理下非处理侧根系Na +流转变为外运。此外,单侧盐处理下,非处理侧根系周围栽培介质电导率较对照显著提高。以上结果表明,处理侧根系吸收的Na +能从非处理侧根系排出体外,避免处理侧根系和叶片Na +大量积累。根系双侧NaCl处理显著降低了氮肥利用率,且与处理浓度有关;单侧盐处理能减缓氮肥利用率的下降,并且0/100 mmol·L -1处理下,非处理侧根系氮肥利用率较对照显著提高。双侧盐处理尤其是100 mmol·L -1重度盐胁迫不利于氮向叶片和根中分配,而促进了氮向多年生蔓中分配,利于氮的储存。而单侧盐处理降低了多年生蔓中氮的储藏,同时缓解了叶片和根系中氮分配率的下降。双侧盐处理降低了叶片和根中碳分配率,单侧盐处理能缓解叶片碳分配率的下降,提高盐处理下根系碳分配率。50和100 mmol·L -1盐处理对一年生蔓和多年生蔓碳的分配率具有不同的影响,50 mmol·L -1单、双侧盐处理提高了多年生蔓的碳分配率,而100 mmol·L -1单、双侧处理降低了多年生蔓的碳分配率。【结论】与均匀盐处理相比,同浓度单侧盐处理对葡萄植株的伤害程度较轻。盐处理侧根系吸收的Na +可运输到非处理侧根系,进而排出体外,降低叶片Na +积累水平。非处理侧根系能缓解盐胁迫导致的叶片和根系碳、氮分配率的下降。
关键词: 葡萄;局部盐处理;伤害程度;Na +离子流 ;碳氮分配

Abstract
【Objective】 Salt stress seriously affects yield and fruit quality of fruit crops. Soil salinity is often heterogeneous in saline fields, and within the different root zones of single plant the salinity of the soil solution might vary widely. This paper was aimed to determine the injury extent of grapevine under the non-uniform salt treatment, and to disclose the corresponding mechanism through the determination of Na + flux and allocation of carbon and nitrogen in grapevine. 【Method】 Saline environment of vine roots was controlled through split-root system and five treatments with different NaCl concentration (mmol·L -1) were set: 0/0, 0/50, 50/50, 0/100, and 100/100. Grapevine injury was evaluated via determining content of chlorophyll and malondialdehyde (MDA) as well as the changes of chlorophyll fluorescence parameters. Na + transport was analyzed by the determination of Na + content, Na + flux and electrical conductivity of culture medium around roots. Nitrogen utilization efficiency and distribution rate of carbon and nitrogen were used to detect the changes of carbon and nitrogen in different tissues under different treatments.【Result】The uniform salt treatment of bilateral roots significantly reduced the content of chlorophyll and enhanced the MDA levels in roots and leaves at 15 and 30 days after treatment. In contrast, salt treatment of local roots alleviated the chlorophyll decrease and the MDA accumulation. Additionally, the determination of chlorophyll fluorescence parameters, such as Fv/Fm and ERT, showed the similar results. Therefore, the roots in the non-saline side could alleviate the grapevine injury in comparison to the uniform salt treatments. All of salt treatments increased Na + content in roots and leaves to varying extents at 15 days after treatment; particularly, the Na + content of the roots in the non-saline side was also enhanced; additionally, local root zone salinity significantly decreased the Na + content in leaves, and local treatment of 100 mmol·L -1NaCl significantly reduced the Na + content in saline side roots, compared to the uniform NaCl treatment. The Na + efflux was observed in non-treated roots, however, the Na + flux was reversed to influx in the non-saline side roots under non-uniform salt treatment. Additionally, the electrical conductivity of the culture medium around the roots in the non-saline side was significantly enhanced. Therefore, the Na + absorbed from the salt-treated side could be transported to the non-saline side roots and thereby expelled out of the roots. Nitrogen utilization efficiency was significantly reduced by the uniform salt treatment and the decline was associated with salt treatment concentration. In contrast, the non-uniform salt treatment alleviated the declines in nitrogen utilization efficiency and particularly, which was significantly enhanced in the non-saline side roots under the 0/100 mmol·L -1treatment. The uniform salt treatments and particularly 100 mmol·L -1NaCl decreased the distribution rate of nitrogen in roots and leaves and increased the values in the two-year-old shoots, favoring the storage of nitrogen. In contrast, the non-saline side roots alleviated the declines of nitrogen distribution rate in roots and leaves. The uniform salt treatment decreased carbon distribution rate in leaves and roots; in contrast, the non-saline side roots not only alleviated the declines of carbon distribution rate in leaves but also elevated carbon distribution rate in roots. It was noteworthy that 50 and 100 mmol·L -1 NaCl treatments imparted different effects on carbon distribution in new shoots and two-year-old shoots, i.e., the uniform and non-uniform treatments of 50 mmol·L -1 NaCl enhanced carbon distribution in the two-year-old shoots while the treatments of 100 mmol·L -1 NaCl produced the contrary results.【Conclusion】Compared with the uniform salt treatment, NaCl treatment of local roots produced the lesser injury for grapevines. Na + absorbed from the salt-treated side was transported to the non-treated side, expelled them from the roots, and thereby reduced Na + accumulation in leaves. The non-saline side roots alleviated the declines in carbon and nitrogen distribution rate of leaves and roots.
Keywords:grapevine;salt treatment of local roots;injury extent;Na + flux ;allocation of carbon and nitrogen


PDF (736KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
孙红, 姜亦文, 于昕, 相广庆, 姚玉新. 根系局部NaCl处理对葡萄植株伤害度、Na +积累和碳氮分配的影响 [J]. 中国农业科学, 2019, 52(7): 1173-1182 doi:10.3864/j.issn.0578-1752.2019.07.005
SUN Hong, JIANG YiWen, YU Xin, XIANG GuangQing, YAO YuXin. Effects of Local Root Zone Salinity on Grapevine Injury, Na + Accumulation and Allocation of Carbon and Nitrogen [J]. Scientia Agricultura Sinica, 2019, 52(7): 1173-1182 doi:10.3864/j.issn.0578-1752.2019.07.005


0 引言

【研究意义】盐胁迫是最主要的非生物胁迫之一,严重影响作物的生长、产量和品质。植物盐胁迫响应及代谢改变依赖于所处的土壤盐环境。自然条件下,由于降水、灌溉、蒸腾等因素的影响,多数土壤盐分浓度不均一,同一植株不同根区所处的盐环境不同。研究不均匀盐环境下低盐或非盐区根系在缓解盐胁迫伤害中的作用及机理,对于揭示作物对不均一盐环境的响应机制和丰富抗盐机理具有重要意义,同时也为通过局部土壤改良开展盐碱地葡萄种植提供理论依据。【前人研究进展】土壤盐分主要导致渗透胁迫和离子毒害。盐胁迫首先产生渗透胁迫,影响水分吸收,导致细胞膨压损失;随着Na+和Cl-过度积累,在渗透的基础上产生离子毒害[1]。植物通过渗透调节来缓解渗透胁迫,其中最主要的方式是通过吸收无机离子来提高渗透势[2]。此外,大量研究表明,Na+液泡区隔化是防止叶片Na+毒害的重要保护措施[3]。再者,将Na+排到质外体或直接排出体外也是降低Na+过度积累的重要方式;在这个过程中,质膜H+-ATPase和Na+/H+运输载体起到关键作用[4]。碳、氮代谢是植物体内最主要的两大代谢过程。氮素是土壤营养元素的重要组分,是构成植物体内蛋白质及核酸的重要元素,氮素水平影响植物生长[5]。并且氮素对作物抗逆性具有重要的调节作用,供氮有利于减缓叶片光合作用的下降,提高耐盐能力[6]。光合是受盐影响的主要代谢过程之一[7];光合组织对胁迫高度敏感,各种胁迫均能影响光能捕获和碳固定及产生氧化胁迫[8]。碳代谢调节是植物适应胁迫的重要防御机制;比如,盐胁迫激活的黄瓜核心抗逆机制包括过度激发能的无害耗散和PSII光化学反应最适化等[9]。【研究切入点】根系对不均一盐胁迫的响应和调控已成为研究耐盐机制的重要方面[10],不均匀盐处理不仅对植株伤害较小,而且能通过提高水分吸收来促进植物生长[11]。目前关于植物对不均匀盐胁迫响应的研究相对较少,急需在不同作物上进一步评价和探讨机制。【拟解决的关键问题】本研究通过根系分根控制来评价不均匀盐胁迫对葡萄植株的伤害程度,并从Na+含量及碳、氮分配角度来研究不均匀盐处理缓解胁迫伤害的机制,以期为全面、深入认识不均匀盐胁迫对作物代谢的影响提供理论支撑。

1 材料与方法

试验于2017年在山东农业大学南校区实验基地进行。

1.1 试验材料及处理

本试验在温室大棚进行,试验材料为二年生‘克瑞森无核’葡萄扦插苗。移栽入盆前,首先修剪根系,使每个植株根系量基本相近,然后将每一株扦插苗的根系等量分成两部分,分别放入直径20 cm的黑色软塑料营养钵里,再将两个营养钵一并放入直径35 cm的塑料花盆内(图1);营养钵内栽培介质为田间1—10 cm表层土,pH 6.4,有机质含量10.85 g·kg-1, 氮、磷、钾含量分别为0.31、0.35、13.24 g·kg-1。待植株生长到6—8片叶时,选择长势相近的盆栽苗进行处理。

图1

新窗口打开|下载原图ZIP|生成PPT
图1分根栽培效果图

Fig. 1Split-root system used in this study



分区NaCl处理浓度(mmol·L-1)为0/0、0/50、50/50、0/100、100/100。0/50表示根系两侧NaCl浓度分别为0和50 mmol·L-1,其他依次类推。每个处理10盆,每2 d处理一次;首次盐处理后24 h测根尖离子流,处理7次(15 d)后,测定叶绿素荧光、叶绿素、叶片和根系MDA、碳氮分配等指标,处理14次(30 d)后,测定叶片叶绿素和MDA含量。

1.2 叶绿素含量、电导率、MDA含量测定

叶绿素、MDA含量以及电导率测定方法参照赵世杰等[12]

1.3 叶绿素荧光参数测定

利用Dual-PAM 100便携式脉冲调制式荧光仪(Walz,德国)测定叶绿素荧光参数:选取植株中部功能叶,暗适应15 min,打开测量光,测得荧光F0;打开单饱和白光脉冲,测定最大荧光Fm;照射PAR为611 μmol·m-2·s-1的作用光及饱和脉冲光,仪器自动读取F0、F0′、Fm、Fm′、qP和ETR等参数。

1.4 Na+含量测定

根系(包含主根顶部及侧根)、功能叶于70℃干燥48 h,研磨后与硝酸和硫酸(4﹕1,V/V)混合提取,过滤,稀释,Na+含量用原子吸收分光光度计(Perkin Elmer AA300,PerkinElmer Inc.,Waltham,MA,USA)测定。

1.5 根尖Na+离子流测定

采用非损伤微测技术测定根系离子流速:在首次盐处理后24 h取根系顶端幼嫩部位,固定于灭菌的小培养皿中,加入4 mL离子流速基本测试液,没过测试根系0.1 mm,平衡根系10 min,然后将培养皿放在防震台的电极固定支架上,将电极放置于待测根系根尖近根表的位置,调整好最佳测试位置,直到在电脑显示屏上能看到清晰图像,并把参比电极放入培养皿测试液中,用屏蔽罩隔离防震台,启动软件,记录测试过程。利用旭月科技有限公司提供的ASET软件(ASET2.O Sciencewares,Fal-mouth, MA02540,USA)进行数据显示、图像获取、数据的预处理、电极三维位置调试和显微镜精细聚焦的步进控制等操作。

1.6 碳、氮分配率测定

13C脉冲标记在一个由透明农用塑料薄膜做成的标记室内进行,标记前检查标记室的封闭性。用注射器向装有0.2 g Ba2CO3的离心管中加入1 mL浓度为1 mol·L-1的HCl溶液。此后每隔0.5 h向其中注入一次HCl溶液,以维持CO2浓度,保持环境CO2浓度为360 μmol·L-1,标记时间持续4 h。15N标记用含15N的尿素溶液根施标记,将50 mL 0.4%的15N尿素溶液分别施入根系两侧栽培介质中。处理15 d后,样品经清水、洗涤剂、清水、1%盐酸、3次去离子水冲洗后,105℃杀青30 min,随后在80℃下烘干至恒重,粉碎后过0.25 mm筛,混匀后备用。13C和15N丰度用CNOHS同位素质谱仪(Thermo Fish,USA)测定。计算公式如下:

氮肥利用率(%)=Ndff×器官全氮量/施氮量;其中Ndff(%)=(植物中15N丰度-自然丰度)/(肥料中15N丰度-自然丰度)×100;

氮肥分配率(%)=各器官中从氮肥中吸收的氮量/总吸收氮量×100;

13C在各器官的分配率:13Ci(%)=13Ci/13C净吸收×100。

2 结果

2.1 根系局部NaCl处理对葡萄植株伤害程度评价

叶片叶绿素和MDA含量测定结果表明,处理30 d时,50和100 mmol·L-1 NaCl双侧处理显著降低了叶绿素含量,增加了MDA含量。尤其是100 mmol·L-1双侧盐处理导致叶片叶绿素含量下降56.05%,MDA为对照1.12倍(图2-A、B),表明植株受到严重伤害。相比之下,同浓度的单侧盐处理能有效缓解叶绿素下降和MDA积累(图2-A、B)。此外,叶绿素荧光参数表明,处理后15 d,各种盐处理均未显著影响Fv/Fm和ETR,但100 mmol·L-1双侧盐处理下该值显著低于单侧盐处理(图2-C)。与对照相比,100 mmol·L-1双侧盐处理显著提高Wk值;双侧盐处理均显著降低qP值,单侧盐处理提高了qP值,但未达到显著水平(图2-D)。再者,单侧盐处理下,非处理侧根系MDA含量显著低于处理侧根系,与非处理对照无显著差异;并且单侧处理较双侧处理降低了处理侧MDA积累(图2-E)。以上数据表明,单侧盐处理能有效缓解NaCl对葡萄植株的伤害。

图2

新窗口打开|下载原图ZIP|生成PPT
图2根系盐处理对叶绿素含量、MDA和叶绿素荧光参数的影响

不同字母表示差异显著(P<0.05)。下同
Fig. 2Effects of NaCl treatments on chlorophyll, MDA and chlorophyll fluorescence parameter

Values indicated by the different letters are significant at P<0.05. The same as below


2.2 根系局部NaCl处理对Na+含量、Na+流及根际栽培介质电导率的影响

为了研究单侧盐处理缓解盐胁迫的机制,首先检测了不同处理对葡萄植株Na+含量的影响。与对照相比,不同方式的NaCl处理均不同程度增加了根系Na+含量(图3-A)。50和100 mmol·L-1 NaCl双侧处理导致根系Na+浓度分别为对照的0.75和2.10倍。50和100 mmol·L-1 NaCl单侧处理下,处理侧根系(0/50-50、0/100-100,表示方法下同)Na+浓度分别为对照的1.21和1.77倍,非盐处理侧Na+浓度也得到增加,尤其是0/100-0侧根系Na+浓度显著高于对照;表明Na+能从处理侧运输到非处理侧。并且,0/50-50侧Na+浓度显著高于50/50处理,表明中度盐处理下Na+向非处理侧的运输促进了处理侧Na+的吸收。相比之下,0/100-100侧根系Na+浓度显著低于100/100处理,表明高盐处理下Na+向非处理侧的运输缓解了处理侧Na+过度积累。此外,与双侧盐处理相比,单侧盐处理显著降低叶片Na+含量(图3-B)。

图3

新窗口打开|下载原图ZIP|生成PPT
图3根系盐处理对葡萄根系(A)和叶片(B)中Na+含量的影响

Fig. 3Effects of the non-uniform or uniform salt treatment on the content of Na+ in grape roots (A) and leaves (B)



为了进一步分析单侧盐处理对根系Na+吸收、运输特性的影响,检测了不同处理后24 h根尖Na+离子流(图4-A)。非盐处理条件下,离子流为负值,表明根系吸收Na+。双侧盐处理下,根系外排Na+,并且外排速率与处理浓度相关。单侧盐处理下,处理侧根系外排Na+,0/50-0侧根系仍然吸收Na+,但吸收速率显著低于对照;0/100-0侧根系转变为外排Na+ 图4-A)。此外,非处理侧根系周围栽培介质电导率显著提高,表明更多的离子被排到介质中(图4-B)。以上表明当处理侧根系吸收过量的Na+后,部分Na+运输到非处理侧,进而被排出根系。

图4

新窗口打开|下载原图ZIP|生成PPT
图4根系分区盐处理对葡萄根尖Na+离子流的影响

Fig. 4Effect of split-root salt treatment on the Na+ flux in grape root tip



2.3 根系局部NaCl处理对葡萄氮肥利用率和分配率的影响

根系双侧NaCl处理显著降低了氮肥利用率,且浓度越高氮肥利用率越低;100 mmol·L-1双侧处理下,植株氮肥利用率仅为对照的56.19%(图5)。50 mmol·L-1 NaCl单侧处理下,根系两侧氮肥利用率与对照均无显著性差异;而100 mmol·L-1单侧处理显著提高了非处理侧氮肥利用率,并且处理侧根系氮肥利用率显著高于同浓度双侧处理(图5)。

图5

新窗口打开|下载原图ZIP|生成PPT
图5根系局部NaCl处理对葡萄植株氮肥利用率的影响

Fig. 5Effect of split-root salt treatment on nitrogen utilization efficiency of grapevines



与对照相比,50 mmol·L-1双侧盐处理对叶片氮分配率未产生影响,而100 mmol·L-1双侧处理则显著降低叶片氮分配率,为对照的81.42%;相比之下,单侧盐处理提高叶片氮分配率,但未达到显著水平。单、双侧盐处理不同程度提高了一年生蔓N分配率,50 mmol·L-1/50 mmol·L-1和0/100 mmol·L-1处理下差异达到显著水平。双侧盐处理促进氮向多年生蔓中分配,100 mmol·L-1处理下多年生蔓中氮分配率达到对照的1.89倍;相反,单侧盐处理降低多年生蔓氮分配率。所有盐处理均显著降低根系氮分配率。就单侧盐处理而言,非处理侧根系比处理侧具有相对较高的氮分配率;100 mmol·L-1单侧处理下,非处理侧为处理侧的2.01倍(表1)。

Table 1
表1
表1根系局部盐处理对葡萄植株15N分配率(%)的影响
Table 1Effects of split-root salt treatment on 15N distribution ratio (%) in grapevines
处理
Treatment
叶片
Leaf
一年生蔓
Shoot
多年生蔓
Two-year-old shoot
根系
Root
非处理侧根系
Non-treated side
处理侧根系
Salt-treated side
0/050.22±2.52a11.06±0.35b10.46±1.64b23.07±0.92a
0/5052.68±0.74a11.80± 0.33ab9.50±1.35bc20.59±0.74b10.88±1.199.70±1.56
50/5050.12±1.26a12.71±0.77a12.35±1.42b19.39±1.01b
0/10052.00±0.83a12.55±0.56a8.83±0.74c19.29±1.01b12.90±0.49**6.39±0.38
100/10040.88±2.83b12.03±0.28ab19.80±2.28a18.24±0.49b
Small letter corresponds to the comparison of the same tissues with different treatments, and values indicated by the different letters are significant at P<0.05. ** indicates the highly significant difference between the salt-treated and non-treated sides of roots. The same as below
字母标记用于纵向比较同一组织不同处理的差异显著性,不同字母表示显著差异。**表示处理侧和非处理侧的差异极显著。下同

新窗口打开|下载CSV

以上数据表明,双侧盐处理尤其是100 mmol·L-1重度盐胁迫不利于氮向叶片和根中分配,而促进了氮向多年生蔓中分配,利于氮的储存。而单侧盐处理降低了多年生蔓氮的储藏,同时缓解了叶片和根系中氮分配率的下降。

2.4 根系局部NaCl处理对葡萄碳分配率的影响

与对照相比,双侧盐处理大幅度降低了碳向叶片分配,50和100 mmol·L-1处理下叶片碳分配率仅为对照的85%左右;单侧盐处理缓解叶片碳分配率的下降。盐处理对一年生蔓的碳分配率无显著影响,但在50和100 mmol·L-1处理间差异显著。50 mmol·L-1单、双侧盐处理提高了多年生蔓的碳分配率,而100 mmol·L-1单、双侧处理降低了多年生蔓碳分配率。50和100 mmol·L-1双侧盐处理不同程度降低了根系碳分配率,尤其是100 mmol·L-1双侧盐处理下根系碳分配率仅为对照的58.69%;相比之下,100 mmol·L-1单侧盐处理显著提高了根系碳分配率,处理侧和非处理侧碳分配率差异不显著(表2)。以上数据表明,单侧盐处理能缓解叶片碳分配率的下降,提高盐处理下根系碳分配率;50和100 mmol·L-1盐处理对一年生蔓和多年生蔓碳分配率具有不同的影响。

Table 2
表2
表2局部盐处理对葡萄植株13C分配率(%)的影响
Table 2Effects of split-root salt treatment on 13C distribution ratio (%) of vines
处理
Treatment
叶片
Leaf
一年生蔓
Shoot
多年生蔓
Two-year-old shoot
根系
Root
非处理侧根系
Non-treated side
处理侧根系
Salt-treated side
0/048.04±1.84a17.18±0.87ab18.37±0.90b15.08±0.42b
0/5043.74±1.07b16.09±1.04b19.22±2.29b15.95±0.29ab8.41±0.387.54±0.59
50/5041.38±1.64c16.14±0.34b23.43±1.92a13.78±0.51c
0/10043.53±1.16b17.26±0.50a16.48±0.91c16.35±1.08a8.35±0.348.00±0.54
100/10041.52±1.81c18.13±0.45a15.70±1.45c8.85±1.51d

新窗口打开|下载CSV

3 讨论

目前关于不均匀盐胁迫对作物伤害的研究很少,本文通过测定MDA、叶绿素和叶绿素荧光参数评价了单、双侧盐处理对葡萄植株的伤害程度。盐离子过度积累导致植株伤害,生物膜生理功能受损,致使植物生物膜透性增大和膜脂过氧化,产生MDA,电导率增大,叶绿素加速降解[13,14]。叶绿素荧光参数能反应光合组织受伤害部位及程度[15]。比如,Fv/Fm反映PSⅡ反应中心最大光能转换效率;Wk表示放氧复合体受伤害程度,其数值越高表示供体侧受伤害程度越严重;ETR(II)、qP分别代表了PSⅡ的电子传递效率和PSⅡ反应中心的开放程度。根据以上参数,在处理后15 d,单侧盐处理降低了盐对植株的伤害。尤其是在处理后30 d,100 mmol·L-1 NaCl双侧处理对植株产生较大伤害,部分植株频临枯萎死亡;相比之下,100 mmol·L-1单侧盐处理能有效降低伤害程度。以上研究表明在不均一盐环境下,非盐区或低盐区根系能有效缓解高盐对植株的伤害。相关机理可能在于以下几个方面。

首先,本研究揭示了非盐区根系Na+外排能有效缓解高盐区根系和叶片Na+过度积累。在棉花和A. nummularia等作物[10,16-17]上也证实,根系在高盐区吸收的Na+可以通过低盐或非盐区根系排出体外,并降低叶片Na+积累,暗示不同作物对不均匀盐胁迫具有相似的响应机制。与根系相比,叶片更容易受Na+毒害[18]。非/低盐区根系降低叶片Na+积累的原因可能在于非/低盐区Na+外排降低了Na+上运,同时不均匀盐环境促进了Na+由茎向非处理根的再分配[3,16]。此外,在棉花等作物上发现,IAA、H2O2和ABA是低盐和高盐区根系交流的重要信号转导物质,在调节植株生长和调控Na+吸收、运输和外排上起重要作用[10]。葡萄根系施用ABA能改变根、茎等组织中Na+、Cl-等离子分配[19],暗示ABA调控盐胁迫下离子运输和外排。并且,抗逆响应不是由单一的信号物质控制,而是受ABA、H2O2等信号分子的互作调控[20];因此,推测非盐区和盐区间信号交流包含了不同信号物质间的交叉对话。

其次,盐胁迫严重影响根区氮等营养物质的转化、吸收和利用及水分吸收[21,22];本研究表明100 mmol·L-1 NaCl单侧处理下,非处理根系具有较高的氮肥利用率。相似的,在盐浓度不均匀的环境下,棉花根系可从低盐区吸收水分和养分以供生长需要[16];在苹果等作物上研究也发现,一侧根系的水肥供应可不同程度地弥补盐区根系吸收功能下降导致的水肥亏缺[11,23]。因此,非处理侧根系的水肥供应可能是缓解葡萄盐伤害的重要保障。

本研究发现非处理侧根系能缓解叶片和根系碳、氮分配率的下降。胁迫下足量的碳、氮供应是提高植物抗逆和正常生长的重要保障,盐胁迫下氮素可用于合成更多的氨基酸,作为渗透调节物质提高抗性水平[24]。氮素是Rubisco和硝酸还原酶所必须的,足够的氮供应是胁迫条件下维持光合性能,防止氧化胁迫,增强植株抗性所必须的[25,26]。在盐胁迫下芥菜对氮的需求增加,足够的氮可以提高乙烯水平,调节脯氨酸含量,恢复光合性能,提高抗盐性[27]。本研究发现高盐胁迫下非处理侧氮肥利用率较对照显著提高,暗示了植株对氮的需求增加。另一方面,叶片糖代谢是盐影响的主要途径之一,包括各种糖分在内的碳水化合物积累是盐胁迫适应的重要措施[28]。可溶性糖本身可作为渗透调节物质,并且也能通过提高脯氨酸含量来提高盐抗性[29]。并且,碳、氮代谢紧密相连,氮代谢需要碳源和能量,同时为植物光合提供酶蛋白和光合色素[30]。尽管目前在其他作物上未见不均匀盐处理对作物碳、氮分配影响的研究,但碳、氮在抗逆过程中的重要作用足以表明非处理侧根系缓解根和叶碳、氮分配下降是提高葡萄抗盐能力的重要原因。

4 结论

与均匀盐处理相比,非处理侧根系能有效缓解NaCl对葡萄植株的伤害。盐区根系吸收的Na+可运输到非处理侧根系,改变根系离子流,进而排出体外,降低高盐区根系和叶片的Na+含量。非处理测根系能缓解盐胁迫导致的叶片和根系碳、氮分配率的下降,为生长器官提供足够养分或渗透调节物质。

(责任编辑 赵伶俐)

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

MUNNS R, TESTER M . Mechanisms of salinity tolerance
Annual Review of Plant Biology, 2008,59:651-681.

DOI:10.1146/annurev.arplant.59.032607.092911URL [本文引用: 1]

HARIADI Y, MARANDON K, TIAN Y, JACOBSEN S E, SHABALA S . Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels.
Journal of Experimental Botany, 2011,62:185-193.

DOI:10.1093/jxb/erq257URLPMID:20732880 [本文引用: 1]
Abstract Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) were studied by exposing plants to six salinity levels (0-500090009mM NaCl range) for 70090009d. Salt stress was administered either by pre-mixing of the calculated amount of NaCl with the potting mix before seeds were planted or by the gradual increase of NaCl levels in the irrigation water. For both methods, the optimal plant growth and biomass was achieved between 100090009mM and 200090009mM NaCl, suggesting that quinoa possess a very efficient system to adjust osmotically for abrupt increases in NaCl stress. Up to 95% of osmotic adjustment in old leaves and between 80% and 85% of osmotic adjustment in young leaves was achieved by means of accumulation of inorganic ions (Na(+), K(+), and Cl(-)) at these NaCl levels, whilst the contribution of organic osmolytes was very limited. Consistently higher K(+) and lower Na(+) levels were found in young, as compared with old leaves, for all salinity treatments. The shoot sap K(+) progressively increased with increased salinity in old leaves; this is interpreted as evidence for the important role of free K(+) in leaf osmotic adjustment under saline conditions. A 5-fold increase in salinity level (from 100090009mM to 500090009mM) resulted in only a 50% increase in the sap Na(+) content, suggesting either a very strict control of xylem Na(+) loading or an efficient Na(+) removal from leaves. A very strong correlation between NaCl-induced K(+) and H(+) fluxes was observed in quinoa root, suggesting that a rapid NaCl-induced activation of H(+)-ATPase is needed to restore otherwise depolarized membrane potential and prevent further K(+) leak from the cytosol. Taken together, this work emphasizes the role of inorganic ions for osmotic adjustment in halophytes and calls for more in-depth studies of the mechanisms of vacuolar Na(+) sequestration, control of Na(+) and K(+) xylem loading, and their transport to the shoot.

BERTHOMIEU P, CONéJéRO G, NUBLAT A, BRACKENBURY W J, LAMBERT C, SAVIO C, UOZUMI N, OIKI S, TAMADA K, CELLIER F, GOSTI F, SIMONNEAU T, ESSAH P A, TESTER M, VéRY A, SENTENAC H, CASSE F . Functional analysis of AtHKT1 in Arabidopsis shows that Na + recirculation by the phloem is crucial for salt tolerance
EMBO Journal, 2003,22:2004-2014.

DOI:10.1093/emboj/cdg207URL [本文引用: 2]

SUN J, CHEN S L, DAI S X, WANG R G, LI N Y, SHEN X, ZHOU X Y, LU K F, ZHENG S J, HU Z M, ZHANG Z K, SONG J, XU Y . NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt resistant and salt-sensitive poplar species
Plant Physiology, 2009,149:1141-1153.

[本文引用: 1]

SULLIVAN P F . Evidence of soil nutrient availability as the proximate constraint on growth of treeline trees in northwest Alaska: Reply
Ecology, 2016,97(3):803-808.

DOI:10.1890/14-0626.1URLPMID:26236868 [本文引用: 1]
The position of the Arctic treeline, which is a key regulator of surface energy exchange and carbon cycling, is widely thought to be controlled by temperature. Here, we present evidence that soil nutrient availability, rather than temperature, may be the proximate control on growth of treeline trees at our study site in northwest Alaska. We examined constraints on growth and allocation of white spruce in three contrasting habitats. The habitats had similar aboveground climates, but soil temperature declined from the riverside terrace to the forest to the treeline. We identified six lines of evidence that conflict with the hypothesis of direct temperature control and/or point to the importance of soil nutrient availability. First, the magnitude of aboveground growth declined from the terrace to the forest to the treeline, along gradients of diminishing soil nitrogen (N) availability and needle N concentration. Second, peak rates of branch extension, main stem radial and fine-root growth were generally not coincident with seasonal air and soil temperature maxima. At the treeline, in particular, rates of aboveground and fine-root growth declined well before air and soil temperatures reached their seasonal peaks. Third, in contrast with the hypothesis of temperature-limited growth, growing season average net photosynthesis was positively related to the sum of normalized branch extension, main stem radial and fine-root growth across trees and sites. Fourth, needle nonstructural carbohydrate concentration was significantly higher on the terrace, where growth was greatest. Fifth, annual branch extension growth was positively related to snow depth, consistent with the hypothesis that deeper snow promotes microbial activity and greater soil nutrient availability. Finally, the tree ring record revealed a large growth increase during late 20th-century climate warming on the terrace, where soil N availability is relatively high. Meanwhile, trees in the forest and at the treeline showed progressively smaller growth increases. Our results suggest temperature effects on tree growth at our study sites may be mediated by soil nutrient availability, making responses to climate change more complex and our ability to interpret the tree ring record more challenging than previously thought.

徐晨, 刘晓龙, 李前, 凌凤楼, 武志海, 张志安 . 供氮水平对盐胁迫下水稻叶片光合及叶绿素荧光特性的影响
植物学报, 2018,53(2):185-195.

DOI:10.11983/CBB17063 [本文引用: 1]
为了解供氮水平对不同时期盐胁迫下水稻(Oryza sativa)叶片光合及叶绿素荧光特性的影响, 以2个北方常规粳稻 (Oryza sativa subsp. japonica)品种为材料, 在5个氮水平下进行培养, 于分蘖期,孕穗期和抽穗期分别进行盐胁迫处理, 测 定分析了水稻叶片光合及叶绿素荧光参数的变化.结果表明, 与对照相比, 盐胁迫下水稻叶片的净光合速率(Pn),蒸腾速率 (Tr),气孔导度(Gs)和表观叶肉导度(AMC)均显著降低, 在分蘖期,孕穗期和抽穗期分别以2N,1N和1/2N水平下降低的百 分率最小; 气孔限制值(Ls)则显著增加, 分别以2N,1N和1/2N水平下增加的百分率最大.盐胁迫下, 与对照相比, PSII的实 际光合效率(ΦPSII),表观光合量子传递效率(ETR)和光化学淬灭(qP)均显著降低, 在分蘖期,孕穗期和抽穗期分别以2N, 1N和1/2N水平下降低的百分率最小; 非光化学淬灭(NPQ)呈增加的变化趋势, 与对照相比, 分别以2N,1N和1/2N水平下增 加的百分率最小.以上结果说明盐胁迫下水稻孕穗后, 供氮水平适量降低有利于减缓叶片光合作用的下降, 提高其抵御盐 害能力.
XU C, LIU X L, LI Q, LING F L, WU Z H, ZHANG Z A . Effect of salt stress on photosynthesis and chlorophyll fluorescence characteristics of rice leaf for nitrogen levels
Chinese Bulletin of Botany, 2018,53(2):185-195. (in Chinese)

DOI:10.11983/CBB17063 [本文引用: 1]
为了解供氮水平对不同时期盐胁迫下水稻(Oryza sativa)叶片光合及叶绿素荧光特性的影响, 以2个北方常规粳稻 (Oryza sativa subsp. japonica)品种为材料, 在5个氮水平下进行培养, 于分蘖期,孕穗期和抽穗期分别进行盐胁迫处理, 测 定分析了水稻叶片光合及叶绿素荧光参数的变化.结果表明, 与对照相比, 盐胁迫下水稻叶片的净光合速率(Pn),蒸腾速率 (Tr),气孔导度(Gs)和表观叶肉导度(AMC)均显著降低, 在分蘖期,孕穗期和抽穗期分别以2N,1N和1/2N水平下降低的百 分率最小; 气孔限制值(Ls)则显著增加, 分别以2N,1N和1/2N水平下增加的百分率最大.盐胁迫下, 与对照相比, PSII的实 际光合效率(ΦPSII),表观光合量子传递效率(ETR)和光化学淬灭(qP)均显著降低, 在分蘖期,孕穗期和抽穗期分别以2N, 1N和1/2N水平下降低的百分率最小; 非光化学淬灭(NPQ)呈增加的变化趋势, 与对照相比, 分别以2N,1N和1/2N水平下增 加的百分率最小.以上结果说明盐胁迫下水稻孕穗后, 供氮水平适量降低有利于减缓叶片光合作用的下降, 提高其抵御盐 害能力.

MUNNS R, JAMES R A, LAUCHLI A . Approaches to increasing the salt tolerance of wheat and other cereals
Journal of Experimental Botany, 2006,57:1025-1043.

DOI:10.1093/jxb/erj100URLPMID:16510517 [本文引用: 1]
Abstract This review describes physiological mechanisms and selectable indicators of gene action, with the aim of promoting new screening methods to identify genetic variation for increasing the salt tolerance of cereal crops. Physiological mechanisms that underlie traits for salt tolerance could be used to identify new genetic sources of salt tolerance. Important mechanisms of tolerance involve Na+ exclusion from the transpiration stream, sequestration of Na+ and Cl- in the vacuoles of root and leaf cells, and other processes that promote fast growth despite the osmotic stress of the salt outside the roots. Screening methods for these traits are discussed in relation to their use in breeding, particularly with respect to wheat. Precise phenotyping is the key to finding and introducing new genes for salt tolerance into crop plants.

KU?NIAK E, KORNAS A, GABARA B, ULLRICH C, SKLODOWSKA M, MISZALSKI Z . Interaction of Botrytis cinerea with the intermediate C3-CAM plant Mesembryanthemum crystallinum.
Environmental and Experimental Botany, 2010,69:137-147.

[本文引用: 1]

CHOJAK-KO?NIEWSKA J, KU?NIAK E, LINKIEWICZ A, SOWA S . Primary carbon metabolism-related changes in cucumber exposed to single and sequential treatments with salt stress and bacterial infection
Plant Physiology and Biochemistry, 2018,123:160-169.

DOI:10.1016/j.plaphy.2017.12.015URL [本文引用: 1]

KONG X Q, LUO Z, DONG HZ, ENEJI A E, LI W J . H2O2 and ABA signaling are responsible for the increased Na + efflux and water uptake in Gossypium hirsutum L. roots in the non-saline side under non-uniform root zone salinity.
Journal of Experimental Botany, 2016,67(8):2247-2261.

[本文引用: 3]

BAZIHIZINA N, BARRETT-LENNARD E G, COLMER T D . Plant responses to heterogeneous salinity: Growth of the halophyte Atriplex nummularia is determined by the root-weighted mean salinity of the root zone.
Journal of Experimental Botany, 2012,63:6347-6358.

DOI:10.1093/jxb/ers302URLPMID:3504498 [本文引用: 2]
Soil salinity is generally spatially heterogeneous, but our understanding of halophyte physiology under such conditions is limited. The growth and physiology of the dicotyledonous halophyteAtriplex nummulariawas evaluated in split-root experiments to test whether growth is determined by: (i) the lowest; (ii) the highest; or (iii) the mean salinity of the root zone. In two experiments, plants were grown with uniform salinities or horizontally heterogeneous salinities (10–450mM NaCl in the low-salt side and 670mM in the high-salt side, or 10mM NaCl in the low-salt side and 500–1500mM in the high-salt side). The combined data showed that growth and gas exchange parameters responded most closely to the root-weighted mean salinity rather than to the lowest, mean, or highest salinity in the root zone. In contrast, midday shoot water potentials were determined by the lowest salinity in the root zone, consistent with most water being taken from the least negative water potential source. With uniform salinity, maximum shoot growth was at 120–230mM NaCl; ~90% of maximum growth occurred at 10mM and 450mM NaCl. Exposure of part of the roots to 1500mM NaCl resulted in an enhanced (+40%) root growth on the low-salt side, which lowered root-weighted mean salinity and enabled the maintenance of shoot growth.Atriplex nummulariagrew even with extreme salinity in part of the roots, as long as the root-weighted mean salinity of the root zone was within the 10–450mM range.

赵世杰, 史国安, 董新纯 . 植物生理实验学指导. 北京: 中国农业科学技术出版社, 2002.
[本文引用: 1]

ZHAO S J, SHI G A, DONG X C. Techniques of Plant Physiological Experiment. Beijing: China Agricultural Science and Technology Press, 2002. (in Chinese)
[本文引用: 1]

彭春雪, 耿贵, 砖丽华, 杨云, 邱植, 孙菲, 孙学伟, 赵慧杰 . 不同浓度钠对甜菜生长及生理特性的影响
植物营养与肥料学报, 2014,20(2):459-465.

URLMagsci [本文引用: 1]
采用1/2Hoagland营养液室内培养试验,研究不同浓度Na+对甜菜幼苗生理生化指标和对营养元素吸收的影响。结果表明,0.75~9mmol/L Na+可提高甜菜幼苗体内Na+含量和幼苗高度,增加叶面积(除了9 mmol/L Na+)和干物质量,降低叶片水势,提高叶片的相对含水量、GPX和CAT的活性,促进甜菜幼苗叶片的吸水及保水能力。3mmol/L Na+对甜菜幼苗的生长促进作用最明显,可提高CAT、GPX活性并维持较高的SOD活性,降低MDA含量和相对电导率,未明显降低甜菜体内N、P和K含量,是甜菜幼苗生长的最佳Na+浓度。
PENG C X, GENG G, ZHUAN L H, YANG Y, QIU Z, SUN F, SUN X W, ZHAO H J . Effects of different Na + concentrations on growth and physiological traits of sugar beet
Journal of Plant Nutrition and Fertilizers, 2014,20(2):459-465. (in Chinese)

URLMagsci [本文引用: 1]
采用1/2Hoagland营养液室内培养试验,研究不同浓度Na+对甜菜幼苗生理生化指标和对营养元素吸收的影响。结果表明,0.75~9mmol/L Na+可提高甜菜幼苗体内Na+含量和幼苗高度,增加叶面积(除了9 mmol/L Na+)和干物质量,降低叶片水势,提高叶片的相对含水量、GPX和CAT的活性,促进甜菜幼苗叶片的吸水及保水能力。3mmol/L Na+对甜菜幼苗的生长促进作用最明显,可提高CAT、GPX活性并维持较高的SOD活性,降低MDA含量和相对电导率,未明显降低甜菜体内N、P和K含量,是甜菜幼苗生长的最佳Na+浓度。

孙璐, 周宇飞, 李丰先, 肖木辑, 陶冶, 许文娟, 黄瑞冬 . 盐胁迫对高粱幼苗光合作用和荧光特性的影响
中国农业科学, 2012,45(16):3265-3272.

DOI:10.3864/j.issn.0578-1752.2012.16.005URLMagsci [本文引用: 1]
【目的】研究盐胁迫对不同高粱品种幼苗光合作用及叶绿素荧光参数的影响,为高粱栽培管理、耐盐品种的选育及耐盐胁迫人工调控提供理论依据。【方法】以高粱耐盐品种(辽杂15号)和盐敏感品种(龙杂11号)为材料,人工气候箱内营养液培养,湿度60%,光照/黑暗为12 h/12 h,光照强度为134 &mu;mol&bull;m-2&bull;s-1,昼/夜温度为28℃/25℃。从3叶期开始进行NaCl处理(NaCl浓度为0、50、100、150、200 mmol&bull;L-1),研究盐胁迫下高粱幼苗光合作用和叶绿素荧光参数的变化。【结果】低浓度NaCl(50 mmol&bull;L-1)胁迫可以增加叶绿素含量,但是高浓度NaCl(100&mdash;200 mmol&bull;L-1)胁迫明显降低叶绿素含量;盐胁迫使净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、最大荧光(Fm)、Fv/Fo、Fv/Fm、Fv&prime;/Fm&prime;、光化学猝灭系数(qP)下降,初始荧光(Fo)和非光化学猝灭系数(NPQ)提高,低浓度盐胁迫(50 mmol&bull;L-1 NaCl)使胞间CO2浓度(Ci)降低,高浓度则相反。辽杂15号受盐胁迫的影响程度小于龙杂11号,表现出较好的耐盐性。【结论】50 mmol&bull;L-1浓度的低盐胁迫对高粱幼苗的影响不明显,光合速率下降的主要原因是气孔限制;100&mdash;200 mmol&bull;L-1浓度的高盐胁迫对高粱幼苗有很大影响,引起光合速率下降的主要原因是非气孔限制。盐胁迫下,耐盐品种能有效保护内部的光合机构,增强对盐胁迫的适应性。
SUN L, ZHOU Y F, LI F X, XIAO M J, TAO Y, XU W J, HUANG R D . Impacts of salt stress on characteristics of photosynthesis and chlorophyll fluorescence of sorghum seedlings
Scientia Agricultura Sinica, 2012,45(16):3265-3272. (in Chinese)

DOI:10.3864/j.issn.0578-1752.2012.16.005URLMagsci [本文引用: 1]
【目的】研究盐胁迫对不同高粱品种幼苗光合作用及叶绿素荧光参数的影响,为高粱栽培管理、耐盐品种的选育及耐盐胁迫人工调控提供理论依据。【方法】以高粱耐盐品种(辽杂15号)和盐敏感品种(龙杂11号)为材料,人工气候箱内营养液培养,湿度60%,光照/黑暗为12 h/12 h,光照强度为134 &mu;mol&bull;m-2&bull;s-1,昼/夜温度为28℃/25℃。从3叶期开始进行NaCl处理(NaCl浓度为0、50、100、150、200 mmol&bull;L-1),研究盐胁迫下高粱幼苗光合作用和叶绿素荧光参数的变化。【结果】低浓度NaCl(50 mmol&bull;L-1)胁迫可以增加叶绿素含量,但是高浓度NaCl(100&mdash;200 mmol&bull;L-1)胁迫明显降低叶绿素含量;盐胁迫使净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、最大荧光(Fm)、Fv/Fo、Fv/Fm、Fv&prime;/Fm&prime;、光化学猝灭系数(qP)下降,初始荧光(Fo)和非光化学猝灭系数(NPQ)提高,低浓度盐胁迫(50 mmol&bull;L-1 NaCl)使胞间CO2浓度(Ci)降低,高浓度则相反。辽杂15号受盐胁迫的影响程度小于龙杂11号,表现出较好的耐盐性。【结论】50 mmol&bull;L-1浓度的低盐胁迫对高粱幼苗的影响不明显,光合速率下降的主要原因是气孔限制;100&mdash;200 mmol&bull;L-1浓度的高盐胁迫对高粱幼苗有很大影响,引起光合速率下降的主要原因是非气孔限制。盐胁迫下,耐盐品种能有效保护内部的光合机构,增强对盐胁迫的适应性。

胡文海, 喻景权 . 低温弱光对番茄叶片光合作用和叶绿素荧光参数的影响
园艺学报, 2001,28(1):41-46.

DOI:10.3321/j.issn:0513-353X.2001.01.008URLMagsci [本文引用: 1]
低温弱光(温度5、10 ℃和光强60 μmol·m<SUP>-2</SUP>·s<SUP>-1</SUP>) 导致番茄植株生长停滞, 叶绿素含量、净光合速率、气孔导度和胞间CO2 浓度下降, 但经5 ℃处理的植株下位叶的胞间CO<SUB>2</SUB>浓度与对照无显著差异。经10 ℃处理的植株在正常生长条件下净光合速率能迅速恢复到对照水平, 而5 ℃处理的植株则恢复缓慢。10 ℃处理对光系统Ⅱ的光化学效率Fv/ Fm并无显著影响, 光系统Ⅱ光合电子传递量子效率ΦPS Ⅱ在低温处理后期略有下降并能迅速恢复; 5 ℃处<BR>理下Fv/ Fm和ΦPS Ⅱ均随处理时间的延长而降低, 且需恢复4 d 后才回升至对照水平。
HU W H, YU J Q . Effects of chilling under low light on photosynthesis and chlorophyll fluorescence characteristic in tomato leaves
Acta Horticulturae Sinica, 2001,28(1):41-46. (in Chinese)

DOI:10.3321/j.issn:0513-353X.2001.01.008URLMagsci [本文引用: 1]
低温弱光(温度5、10 ℃和光强60 μmol·m<SUP>-2</SUP>·s<SUP>-1</SUP>) 导致番茄植株生长停滞, 叶绿素含量、净光合速率、气孔导度和胞间CO2 浓度下降, 但经5 ℃处理的植株下位叶的胞间CO<SUB>2</SUB>浓度与对照无显著差异。经10 ℃处理的植株在正常生长条件下净光合速率能迅速恢复到对照水平, 而5 ℃处理的植株则恢复缓慢。10 ℃处理对光系统Ⅱ的光化学效率Fv/ Fm并无显著影响, 光系统Ⅱ光合电子传递量子效率ΦPS Ⅱ在低温处理后期略有下降并能迅速恢复; 5 ℃处<BR>理下Fv/ Fm和ΦPS Ⅱ均随处理时间的延长而降低, 且需恢复4 d 后才回升至对照水平。

KONG X Q, LUO Z, DONG H Z, ENEJI A E, LI W J . Effects of non-uniform root zone salinity on water use, Na + recirculation, and Na + and H + flux in cotton
Journal of Experimental Botany, 2012,63:2105-2116.

DOI:10.1093/jxb/err420URLPMID:22200663 [本文引用: 3]
A new split-root system was established through grafting to study cotton response to non-uniform salinity. Each root half was treated with either uniform (100/10065mM) or non-uniform NaCl concentrations (0/200 and 50/15065mM). In contrast to uniform control, non-uniform salinity treatment improved plant growth and water use, with more water absorbed from the non- and low salinity side. Non-uniform treatments decreased Na+concentrations in leaves. The [Na+] in the ‘0’ side roots of the 0/200 treatment was significantly higher than that in either side of the 0/0 control, but greatly decreased when the ‘0’ side phloem was girdled, suggesting that the increased [Na+] in the ‘0’ side roots was possibly due to transportation of foliar Na+to roots through phloem. Plants under non-uniform salinity extruded more Na+from the root than those under uniform salinity. Root Na+efflux in the low salinity side was greatly enhanced by the higher salinity side. NaCl-induced Na+efflux and H+influx were inhibited by amiloride and sodium orthovanadate, suggesting that root Na+extrusion was probably due to active Na+/H+antiport across the plasma membrane. Improved plant growth under non-uniform salinity was thus attributed to increased water use, reduced leaf Na+concentration, transport of excessive foliar Na+to the low salinity side, and enhanced Na+efflux from the low salinity root.

WEST D W . Water use and sodium chloride uptake by apple trees. II. The response to soil oxygen deficiency
Plant and Soil, 1978,50:51-65.

DOI:10.1007/BF02107156URL [本文引用: 1]

MUNNS R . Comparative physiology of salt and water stress
Plant, Cell and Environment, 2002,25:239-250.

DOI:10.1046/j.0016-8025.2001.00808.xURLPMID:11841667 [本文引用: 1]
Abstract Plant responses to salt and water stress have much in common. Salinity reduces the ability of plants to take up water, and this quickly causes reductions in growth rate, along with a suite of metabolic changes identical to those caused by water stress. The initial reduction in shoot growth is probably due to hormonal signals generated by the roots. There may be salt-specific effects that later have an impact on growth; if excessive amounts of salt enter the plant, salt will eventually rise to toxic levels in the older transpiring leaves, causing premature senescence, and reduce the photosynthetic leaf area of the plant to a level that cannot sustain growth. These effects take time to develop. Salt-tolerant plants differ from salt-sensitive ones in having a low rate of Na + and Cl transport to leaves, and the ability to compartmentalize these ions in vacuoles to prevent their build-up in cytoplasm or cell walls and thus avoid salt toxicity. In order to understand the processes that give rise to tolerance of salt, as distinct from tolerance of osmotic stress, and to identify genes that control the transport of salt across membranes, it is important to avoid treatments that induce cell plasmolysis, and to design experiments that distinguish between tolerance of salt and tolerance of water stress.

DEGARIS K A, WALKER R R, LOVEYS B R, TYERMAN S D . Exogenous application of abscisic acid to root systems of grapevines with or without salinity influences water relations and ion allocation
Australian Journal of Grape and Wine Research, 2017,23:66-76.

DOI:10.1111/ajgw.12264URL [本文引用: 1]
AbstractBackground and Aims:Exposure to salinity or water deficit is known to increase the concentration of abscisic acid (ABA) within grapevines. Elevated plant ABA has alone been shown t ...

SAXENA I, SRIKANTH S, CHEN Z . Cross talk between H2O2 and interacting signal molecules under plant stress response
Frontiers in Plant Science, 2016,7:570.

DOI:10.3389/fpls.2016.00570URLPMID:4848386 [本文引用: 1]
It is well established that oxidative stress is an important cause of cellular damage. During stress conditions, plants have evolved regulatory mechanisms to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species, which is subsequently converted to H2O2. H2O2is continuously produced as the byproduct of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2production. H2O2acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2immerges as an important factor during many biological processes. It has been established that it acts as a secondary messenger in signal transduction networks. In this review, we discuss potential roles of H2O2and other signaling molecules during various stress responses.

WANG X P, BAI T C, ZHI J H, LI Z Y . Effects of salt water drip irrigation on jujube roots soil available nitrogen distribution: A security assurance perspective
International Journal of Security and Its Applications, 2016,10(2):267-278.

[本文引用: 1]

PARDO J M . Biotechnology of water and salinity stress tolerance
Current Opinion in Biotechnology, 2010,21(2):185-196.

DOI:10.1016/j.copbio.2010.02.005URLPMID:20189794 [本文引用: 1]
from the shoot, and the modification of specific Na transport processes has yielded enhanced salinity tolerance.

BAZIHIZINA N, COLMER T D, BARRETT-LENNARD E G . Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia: growth, photosynthesis, water relations and tissue ion concentrations.
Annals of Botany, 2009,104:737-745.

DOI:10.1093/aob/mcp151URLPMID:27296421512 [本文引用: 1]
61 Background and Aims Soil salinity is often heterogeneous, yet the physiology of halophytes has typically been studied with uniform salinity treatments. An evaluation was made of the growth, net photosynthesis, water use, water relations and tissue ions in the halophytic shrub Atriplex nummularia in response to non-uniform NaCl concentrations in a split-root system. 61 Methods Atriplex nummularia was grown in a split-root system for 21 d, with either the same or two different NaCl concentrations (ranging from 10 to 670 mN), in aerated nutrient solution bathing each root half. 61 Key Results Non-uniform salinity, with high NaCl in one root half (up to 670 mN) and 10 mM in the other half, had no effect on shoot ethanol-insoluble dry mass, net photosynthesis or shoot pre-dawn water potential. In contrast, a modest effect occurred for leaf osmotic potential (up to 30 % more solutes compared with uniform 10 mM NaCl treatment). With non-uniform NaCl concentrations (10/670 mN), 90 % of water was absorbed from the low salinity side, and the reduction in water use from the high salinity side caused whole-plant water use to decrease by about 30 %; there was no compensatory water uptake from the low salinity side. Leaf Na62 and Cl63 concentrations were 1-9-to 2-3-fold higher in the uniform 670 mM treatment than in the 10/670 mM treatment, whereas leaf K62 concentrations were 1-2-to 20-fold higher in the non-uniform treatment. 61 Conclusions Atriplex nummularia with one root half in 10 mM NaCl maintained net photosynthesis, shoot growth and shoot water potential even when the other root half was exposed to 670 mM NaCl, a concentration that inhibits growth by 65 % when uniform in the root zone. Given the likelihood of non-uniform salinity in many field situations, this situation would presumably benefit halophyte growth and physiology in saline environments.

XU J W, HUANG X, LAN H X, ZHANG H S, HUANG J . Rearrangement of nitrogen metabolism in rice (Oryza sativa L.) under salt stress.
Plant Signaling & Behavior, 2016,11(3):e1138194.

DOI:10.1080/15592324.2016.1138194URLPMID:4883850 [本文引用: 1]
Salt stress is an important environmental condition limiting the agricultural production. The reprogram of protein expression is one of the strategies of plants to cope with salt stress. We have previously analyzed the photosynthesis, antioxidant and oxidative phosphorylation involved in the carbon metabolism and the redox metabolism in rice seedlings under salt stress. Here, we focused on the proteins involved in nitrogen metabolic response. As it was reported that the nitrite uptake was enhanced in Arabidopsis PII knock-out mutants, the down-regulation of P-II nitrogen sensing protein in rice probably contributes to the accumulation of amino acids under stress. In addition, the protein synthesis is limited by the decrease of related proteins, and more amino acids could be used as the compatible solute. Hence, our study indicates that the rearrangement of nitrogen metabolism under salt stress could accumulate more amino acids as the compatible solute rather than the components of proteins. This study provides information for an improved understanding of nitrogen metabolic response to salt stress in rice.

马晓东, 钟小莉, 桑钰 . 干旱胁迫下胡杨实生幼苗氮素吸收分配与利用
生态学报, 2018,38(20):1-11.

DOI:10.5846/stxb201711282136URL [本文引用: 1]
胡杨(Populus euphratica)是塔里木河流域荒漠河岸林的建群种,水分和氮素是限制胡杨幼苗的存活及早期生长的主要因子.利用15N同位素示踪技术分析水和氮素的交互作用对胡杨幼苗不同生长阶段氮素的吸收分配利用及幼苗生长的影响,进一步探究氮素对胡杨实生苗早期形态建成的作用及对干旱胁迫的缓解效应,以期提高幼苗的存活率.实验以一年生胡杨实生幼苗为研究对象,采用温室内盆栽实验,设置4个干旱处理(D1、D2、D3、D4,土壤相对含水量为:20%-25%、40%-45%、60%-65%、80%-85%)和3种氮素水平(No、N1、N2∶0、3、6g/盆)测定胡杨幼苗的生长指标和各部分的Ndff、分配率及利用率.结果表明:胡杨幼苗在土壤相对含水量60%-65%(D3)、氮素添加量3g/盆(N1)时,其生长表现为最佳状态;干旱胁迫下,不同氮素添加量对胡杨幼苗各部分的Ndff值存在显著差异,N2低于N1;随干旱胁迫减弱(D3、D4),植株在生长早期(25 d)根部吸收的15N优先向地上部分转运,生长后期(75 d)植株Ndff最高,其中以根系中Ndff最高;不同生长期幼苗各部分的15N分配存在显著差异,根系15N分配率较高,但不同氮量处理间差异不显著;随生长期的推移,植株对15NH415NO3的利用率表现为粗根最大,各处理中D3N1处理均显著高于其他处理.结论:轻度干旱胁迫下添加适量的氮素能够增强植株对氮素的吸收征调能力,优化水资源获取以维持生存的重要机制.
MA X D, ZHONG X L, SANG Y . Characteristics of nitrogen absorption, distribution, and utilization by Populus euphratica seedlings under drought stress.
Acta Ecologica Sinica, 2018,38(20):1-11. (in Chinese)

DOI:10.5846/stxb201711282136URL [本文引用: 1]
胡杨(Populus euphratica)是塔里木河流域荒漠河岸林的建群种,水分和氮素是限制胡杨幼苗的存活及早期生长的主要因子.利用15N同位素示踪技术分析水和氮素的交互作用对胡杨幼苗不同生长阶段氮素的吸收分配利用及幼苗生长的影响,进一步探究氮素对胡杨实生苗早期形态建成的作用及对干旱胁迫的缓解效应,以期提高幼苗的存活率.实验以一年生胡杨实生幼苗为研究对象,采用温室内盆栽实验,设置4个干旱处理(D1、D2、D3、D4,土壤相对含水量为:20%-25%、40%-45%、60%-65%、80%-85%)和3种氮素水平(No、N1、N2∶0、3、6g/盆)测定胡杨幼苗的生长指标和各部分的Ndff、分配率及利用率.结果表明:胡杨幼苗在土壤相对含水量60%-65%(D3)、氮素添加量3g/盆(N1)时,其生长表现为最佳状态;干旱胁迫下,不同氮素添加量对胡杨幼苗各部分的Ndff值存在显著差异,N2低于N1;随干旱胁迫减弱(D3、D4),植株在生长早期(25 d)根部吸收的15N优先向地上部分转运,生长后期(75 d)植株Ndff最高,其中以根系中Ndff最高;不同生长期幼苗各部分的15N分配存在显著差异,根系15N分配率较高,但不同氮量处理间差异不显著;随生长期的推移,植株对15NH415NO3的利用率表现为粗根最大,各处理中D3N1处理均显著高于其他处理.结论:轻度干旱胁迫下添加适量的氮素能够增强植株对氮素的吸收征调能力,优化水资源获取以维持生存的重要机制.

AHANGER M A, AGARWAL R M . Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as in?uenced by potassium supplementation.
Plant Physiology and Biochemistry, 2017,115:449-460.

[本文引用: 1]

IQBAL N, UMAR S, KHAN N A . Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea).
Journal of Plant Physiology, 2015,178(15):84-91.

DOI:10.1016/j.jplph.2015.02.006URLPMID:25800225 [本文引用: 1]
Proline content and ethylene production have been shown to be involved in salt tolerance mechanisms in plants. To assess the role of nitrogen (N) in the protection of photosynthesis under salt stress, the effect of N (0, 5, 10, 20mM) on proline and ethylene was studied in mustard (Brassica juncea). Sufficient N (10mM) optimized proline production under non-saline conditions through an increase in proline-metabolizing enzymes, leading to osmotic balance and protection of photosynthesis through optimal ethylene production. Excess N (20mM), in the absence of salt stress, inhibited photosynthesis and caused higher ethylene evolution but lower proline production compared to sufficient N. In contrast, under salt stress with an increased demand for N, excess N optimized ethylene production, which regulates the proline content resulting in recovered photosynthesis. The effect of excess N on photosynthesis under salt stress was further substantiated by the application of the ethylene biosynthesis inhibitor, 1-aminoethoxy vinylglycine (AVG), which inhibited proline production and photosynthesis. Without salt stress, AVG promoted photosynthesis in plants receiving excess N by inhibiting stress ethylene production. The results suggest that a regulatory interaction exists between ethylene, proline and N for salt tolerance. Nitrogen differentially regulates proline production and ethylene formation to alleviate the adverse effect of salinity on photosynthesis in mustard.

RICHTER J A, ERBAN A, KOPKA J, ZORB C . Metabolic contribution to salt stress in two maize hybrids with contrasting resistance
Plant Science, 2015,233:107-115.

DOI:10.1016/j.plantsci.2015.01.006URLPMID:25711818 [本文引用: 1]
Salt stress reduces the growth of salt-sensitive plants such as maize. The cultivation of salt-resistant maize varieties might therefore help to reduce yield losses. For the elucidation of the underlying physiological and biochemical processes of a resistant hybrid, we used a gas chromatography mass spectrometry approach and analyzed five different salt stress levels. By comparing a salt-sensitive and a salt-resistant maize hybrid, we were able to identify an accumulation of sugars such as glucose, fructose, and sucrose in leaves as a salt-resistance adaption of the salt-sensitive hybrid. Although, both hybrids showed a strong decrease of the metabolite concentration in the tricarboxylic acid cycle. These decreases resulted in the same reduced catabolism for the salt-sensitive and even the salt-resistant maize hybrid. Surprisingly, the change of root metabolism was negligible under salt stress. Moreover, the salt-resistance mechanisms were the most effective at low salt-stress levels in the leaves of the salt-sensitive maize.

HELLMANN H, FUNCK D, RENTSCH D, FROMMER W . Hypersensitivity of an arabidopsis sugar signaling mutant toward exogenous proline application
Plant Physiology, 2000,123:779-790.

DOI:10.1104/pp.123.2.779URL [本文引用: 1]

FU J, WANG Y F, LIU Z H, LI Z T, YANG K J . Trichoderma asperellum alleviates the effects of saline-alkaline stress on maize seedlings via the regulation of photosynthesis and nitrogen metabolism
Plant Growth Regulation, 2018,85:363-374.

DOI:10.1007/s10725-018-0386-4URL [本文引用: 1]
This study aimed to investigate the influence of the fungus Trichoderma asperellum on photosynthesis and nitrogen metabolism in maize seedlings of different genotypes, subjected to saline–alkaline stress. Saline–alkaline tolerant and sensitive varieties, Jiangyu 417 and Xianyu 335 (XY335), respectively, were grown in naturally saline–alkaline soil (pH 9.30) in 5-inch pots. Root and leaf samples were collected when seedlings had three heart-shaped leaves and the fourth leaf developing. Meadow soil (pH 8.23) was used as a positive control. Saline–alkaline stress remarkably increased NH 4 + content and caused ammonia toxicity, weakened the ammonium assimilation process, and reduced photosynthesis in maize seedlings. Our results show that T. asperellum alleviated these effects to a certain degree, especially in XY335. The application of T. asperellum likely improved the content of photosynthetic pigments, enhanced the photochemical activity of the photosystem II reaction center, increased the activities of ATP enzymes in the chloroplasts, reduced the non-stomatal limitation of photosynthesis owing to saline–alkaline stress, and promoted photosynthesis to provide more raw materials and energy for nitrogen metabolism, thereby improving the activity of nitrogen metabolism and the capacity for material production in maize seedlings. By coordinating the synergistic effect of glutamate dehydrogenase, glutamine synthetase/glutamate synthase, and transamination, T. asperellum promoted the assimilation of excessively accumulated ammonia, maintained the balance of NH 4 + and the enzymes related to its metabolism, and subsequently alleviated ammonia toxicity and negative changes in nitrogen metabolism resulting from saline–alkaline stress. Thus, the application of T. asperellum alleviated damage to chloroplasts and thylakoid membranes, and improved nitrogen metabolism, thereby promoting seedling growth. The concentration of 165×6510 9 spores02L 611 was found to be the most effective and economical treatment.
相关话题/作物 植物 土壤 环境 物质