
Establishment of a Prediction Model of Metabolizable Protein of Concentrate for Mutton Sheep
FU LiXia1,2, MA Tao1, DIAO QiYu
通讯作者:
收稿日期:2018-02-12接受日期:2018-12-29网络出版日期:2019-02-13
基金资助: |
Received:2018-02-12Accepted:2018-12-29Online:2019-02-13
作者简介 About authors
富丽霞,Tel:15711427055;E-mail:

摘要
关键词:
Abstract
Keywords:
PDF (407KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
富丽霞, 马涛, 刁其玉, 成述儒, 宋雅喆, 孙卓琳. 肉羊精料可代谢蛋白质预测模型的建立[J]. 中国农业科学, 2019, 52(3): 539-549 doi:10.3864/j.issn.0578-1752.2019.03.014
FU LiXia, MA Tao, DIAO QiYu, CHENG ShuRu, SONG YaZhe, SUN ZhuoLin.
0 引言
【研究意义】反刍动物由于瘤胃特殊的消化生理结构,单从饲粮概略养分含量或可消化养分很难准确地评价饲粮的真实饲用价值,必须结合营养物质在体内的一系列生化转化过程才能客观完整地反映对饲粮的利用效果。可代谢蛋白质(MP)是目前评价反刍动物利用饲粮蛋白质最准确的指标,该指标不仅考虑了动物本身对饲粮蛋白质的需要,还将瘤胃微生物对饲粮蛋白质的利用情况考虑在内,比较充分完整地体现了反刍动物利用蛋白质的特殊性。准确估测饲粮中的MP,可以简捷快速地评价饲粮的营养价值,为饲粮间配合效果提供科学依据。【前人研究进展】MP的准确测定比较复杂,一方面要测定瘤胃微生物合成蛋白质(MCP),还要明确原料瘤胃非降解蛋白质(UDP)在小肠中的代谢情况。测定MCP应用最广泛最经典的方法是标记物法,其中尿嘌呤衍生物(PD)法测定步骤简单,符合动物福利要求,是估测MCP最有效的方法之一,MA等[1,2]应用该法探究了单一饲粮中尿嘌呤衍生物与微生物氮的估测模型。AFRC [3]中报道MCP中有25%表现为核酸的形式,不能用于体组织的组成,而剩余的75%的MCP在小肠中的消化率约为85%,因此MCP在小肠中的消化率约为64%。关于UDP及其小肠消化率的测定主要采用尼龙袋法和改进三步体外法,该方法简单易于操作,并且很好的模拟了反刍动物特殊的生理条件,GARGALLO 等[4]采用改进三步体外法测定了12种饲料的UDP小肠消化率,王燕等[5]综合比较发现改进三步体外法可以比较准确的测定UDP小肠消化率。国外****(INRA,1989;AFRC,1993;CSIRO,2007;NRC,2007)对MP体系的研究较多[3,6-8],认为MP与DP显著相关,但是国外的相关模型并不一定适合中国的实际生产及相关品种,近年来国内****对该体系的研究已经展开[9,10],但是只研究了不同精粗比饲粮的MP预测模型,饲料来源比较单一。【本研究切入点】精饲料是提供饲粮蛋白质的主要原料,反刍动物由于其消化生理结构的特殊性不能饲喂单一精饲料,并且我国地域辽阔,精饲料种类繁多,赵江波等[11]研究了肉羊常用精饲料代谢能的预测模型,对于肉用绵羊常用精饲料可代谢蛋白质的研究鲜见报道,因此本研究考虑应用套算法探索肉用绵羊对不同精饲料原料的蛋白质利用情况。【拟解决的关键问题】通过实测各种饲粮的概略养分含量和进行消化代谢试验得到各种养分在体内的消化代谢实测数据,建立肉用绵羊常用精饲料的MP估测模型,从而可利用简单的化学分析或消化参数预测饲粮中的MP,简捷快速地评价各种饲粮的营养价值,为进一步完善我国肉用绵羊的饲养标准提供参考。1 材料与方法
1.1 试验时间和地点
本试验于2016年10月11日至2017年6月12日在中国农业科学院南口中试基地进行。1.2 试验材料
尿囊素:纯度≥98.0%(Sigma),尿酸:纯度≥99.0%(Sigma),黄嘌呤氧化酶:7.6 unit/mL(Sigma),尿酸酶:5 unit/mg(Sigma),胃蛋白酶(Sigma P-7000),胰蛋白酶(Sigma P-7545),百里香酚。1.3 试验动物与试验设计
选用14月龄体况健康,平均体重为(49.27±3.12)kg的安装有永久性瘤胃瘘管的杜泊羊(♂)×小尾寒羊(♀)杂交1代肉用羯羊6只,进行尼龙袋试验和改进三步体外法试验,饲粮组成及营养水平见表1。Table 1
Table 1Composition and nutrient levels of the diet for nylon bag test and three-step modified in vitro test (Dry matter basis, %)
项目 Items | 含量 Content |
---|---|
原料 Ingredients | |
羊草 Chinese wildrye hay | 55.00 |
玉米 Corn | 29.40 |
豆粕 Soybean meal | 14.00 |
磷酸氢钙 CaHPO4 | 0.86 |
食盐 NaCl | 0.50 |
预混料Premix1) | 0.24 |
合计 Total | 100 |
营养水平 Nutrient levels2) | |
干物质 Dry matter, DM | 95.55 |
有机物 Organic matter, OM | 93.68 |
总能 Gross energy, GE(MJ·kg-1) | 16.34 |
粗蛋白质 Crude protein, CP | 11.90 |
中性洗涤纤维 Neutral detergent fiber, NDF | 59.12 |
酸性洗涤纤维 Acid detergent fibre, ADF | 25.22 |
粗脂肪 Ether digestible organic matter extract, EE | 2.21 |
钙 Ca | 0.93 |
磷 P | 0.41 |
2) 营养水平均为实测值 The nutrient levels are measured values
新窗口打开|下载CSV
选用另外10只体况健康,平均体重(47.43±4.41)kg的杜寒杂交成年公羊进行消化代谢试验,采用单因子试验设计,试验分11期处理,其中:1期基础饲粮组和10期试验饲粮组,每期处理10个重复,每个重复1只羊。试验饲粮组分别由10种肉用绵羊常用的精饲料高粱、玉米、大麦、小麦、燕麦、菜籽粕、花生粕、棉籽粕、豆粕及玉米酒糟DDGS等替换基础饲粮中羊草、玉米和豆粕,单一精饲料替换比例为30%[12],饲粮组成及营养水平见表2。
Table 2
Table 2Dietary composition and nutrient levels (DM basis, %)
项目 Items | 组成 Ingredient | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
基础 饲粮 Basal diet | 高粱 饲粮 Sorghum diet | 玉米 饲粮 Corn diet | 大麦 饲粮Barley diet | 小麦 饲粮Wheat diet | 燕麦 饲粮 Oat diet | 菜籽粕 饲粮Rapeseed diet | 花生粕 饲粮 Peanut meal diet | 棉籽粕 饲粮Cottonseed meal diet | 豆粕 饲粮Soybean meal diet | 玉米酒 糟饲粮 DDGS diet | |
不同精料替换比例 Different concentrate replacement ratio | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | |
玉米corn | 19.0 | 13.2 | 13.2 | 13.2 | 13.2 | 13.2 | 13.2 | 13.2 | 13.2 | 13.2 | 13.2 |
豆粕Soybean mean | 12.2 | 8.46 | 8.46 | 8.46 | 8.46 | 8.46 | 8.46 | 8.46 | 8.46 | 8.46 | 8.46 |
羊草Chinese wildrye hay | 66.5 | 46.0 | 46.0 | 46.0 | 46.0 | 46.0 | 46.0 | 46.0 | 46.0 | 46.0 | 46.0 |
磷酸氢钙CaHPO4 | 1.41 | 1.41 | 1.41 | 1.41 | 1.41 | 1.41 | 1.41 | 1.41 | 1.41 | 1.41 | 1.41 |
石粉Limestone | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 |
食盐NaCl | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
预混料Premix1) | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 |
合计Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
营养水平Nutrient levels2) | |||||||||||
干物质DM | 92.13 | 90.92 | 90.79 | 91.62 | 91.51 | 91.58 | 91.87 | 91.55 | 93.96 | 93.89 | 91.32 |
有机物OM | 90.15 | 93.10 | 93.45 | 93.77 | 93.51 | 94.74 | 89.06 | 89.38 | 92.34 | 92.07 | 90.30 |
总能 GE (MJ·kg-1) | 17.92 | 17.78 | 17.81 | 17.75 | 17.63 | 17.93 | 18.25 | 18.40 | 18.43 | 18.21 | 18.81 |
粗蛋白质CP | 12.03 | 11.06 | 10.56 | 11.50 | 11.96 | 12.68 | 22.12 | 26.89 | 20.36 | 22.55 | 17.06 |
中性洗涤纤维NDF | 33.20 | 33.56 | 33.33 | 37.84 | 37.15 | 33.29 | 40.13 | 36.19 | 41.33 | 33.55 | 40.74 |
酸性洗涤纤维ADF | 18.05 | 17.71 | 16.82 | 19.66 | 19.03 | 17.43 | 22.35 | 19.44 | 23.67 | 19.67 | 19.42 |
粗脂肪EE | 2.70 | 2.16 | 2.19 | 2.01 | 2.24 | 2.77 | 2.04 | 1.13 | 1.40 | 1.65 | 3.89 |
灰分 Ash | 9.85 | 6.90 | 6.55 | 6.23 | 6.49 | 5.26 | 10.94 | 10.62 | 7.66 | 7.93 | 9.70 |
钙 Ca | 0.94 | 1.05 | 0.94 | 0.82 | 0.96 | 0.96 | 1.45 | 1.06 | 1.03 | 0.99 | 0.82 |
总磷 TP | 0.35 | 0.24 | 0.29 | 0.25 | 0.26 | 0.29 | 0.36 | 0.27 | 0.32 | 0.31 | 0.39 |
2)营养水平为实测值。The nutrient levels are measured values
新窗口打开|下载CSV
1.4 饲养管理
试验羊用耳号标记,用伊维菌素进行驱虫,单栏饲养。6只试验瘘管羯羊提前饲喂基础日粮(表1)15 d,再进行尼龙袋试验和改进三步体外法试验。10只试验公羊饲喂基础饲粮组和10种试验饲粮组(表2),各组饲粮营养成分存在差异造成采食量不同,为消除差异通过预饲期观察,确定最低组的采食量作为饲喂量[13],每天分别于8:00、16:30饲喂,饲喂量600 g,自由饮水,每种饲粮饲喂20 d,其中预试期15 d,正试期5 d,正试期全收粪和尿。
1.5 半体内试验(尼龙袋试验)
试验单一饲料为10种反刍动物常用的精饲料:高粱、玉米、大麦、小麦、燕麦、菜籽粕、豆粕、棉籽粕、花生粕和DDGS,饼粕类饲料的加工方法都采用行业的浸提法,玉米等谷物类采用粉碎机直接粉碎粒度5 mm左右,DDGS由于本身颗粒小,购买后直接使用,经2.5 mm筛孔的粉碎机粉碎。采用HVELPLUND[14]尼龙袋法测定10种精饲料原料的瘤胃降解率,每个样品设立3个重复,每个重复1只羊。样品设6、12、24、36、48 h等5个时间点,每个时间点2个平行。准确称取试验样品6 g,放入已恒重的尼龙袋中,2个平行的尼龙袋绑在一个塑料管上。饲喂后2 h投放至瘤胃,不同时间点分别投放,最后统一取出。自来水冲洗干净(0时间点的也需要一起冲洗),置于鼓风干燥箱内65℃下恒温烘48 h,回潮24 h后称重。测定分析其中的DM、OM、CP。
1.6 改进三步体外法试验
采用改进三步体外法[4]测定UDP小肠消化率。称取5 g试验样品于尼龙袋中,置于瘤胃中培养16 h后取出,清洗至水清,在55℃烘箱内烘48 h,制成风干样后过40目筛,称取0.5 g经瘤胃16 h降解后的饲料残渣风干样,放入Ankom F57滤袋中,用封口机封口。将来自同一只羊的30个滤袋(即5个饲料样品×6个重复)放入同一个培养品中,每个培养品加入预培养的盐酸胃蛋白酶溶液2升[每升溶液中含有1g胃蛋白酶(Sigma P-7000),用0.1 N HCl调节pH至1.9],将培养瓶置于Daisy II(Ankom,Fairport,NY,USA)培养箱39℃振荡培养1 h后,用自来水冲洗尼龙袋至水澄清。再次将滤袋放入含有预热的胰酶制剂溶液[每升溶液中含50 mg百里香酚,3 g胰酶制剂(Sigma P-7545),用磷酸二氢钾调节pH至7.75]的培养瓶中于39℃震荡培养24 h,用自来水冲洗尼龙袋至水澄清,55℃烘干至恒重,称重,分析袋内残渣总蛋白含量。1.7 消化代谢试验及样品收集
每期消化代谢试验正试期前后均称重并记录。正试期每天全收粪并称重,将粪样充分混匀并从不同位点取未受羊毛及尘土污染的部分样品,准确称取总粪量的10%于自封袋中置于-20℃冰箱保存;每天全收尿并记录尿量,收尿前于桶中加入100 mL 10%的稀硫酸,调整尿样pH至2—3,防止尿样腐败分解,四层纱布过滤,采集尿样时先加自来水将尿样稀释至5 L,混匀后取30 mL尿样于收尿瓶中置于-20℃冰箱保存。
1.8 测定指标
样品中营养成分DM、OM、CP、Ash的测定参照张丽英[15]的测定方法,测定NDF和ADF含量时,先用胰蛋白酶及淀粉酶对样品进行酶解处理,再按照VAN SOEST等[16]方法进行操作。PD采用分光光度计进行测定[17]。1.9 计算公式
1.9.1 待测样品在不同时间点的瘤胃消失率及有效降解率(effective degradation rate, ED)的计算公式A(%)=100×(B-C)/B
式中,A为待测饲料营养物质的瘤胃消失率(%);B为待测样品中营养物质的质量(g);C为残渣中营养物质的质量(g)。
有效降解率参照ORSKOV 和 MC DONALD 提出的数学模型[18]计算:
dP = a + b(1 - e-ct)
式中,dP为某营养成分在t时间的瘤胃消失率;a = 快速降解部分(%);b = 慢速降解部分(%);c = b部分的降解速率(/h);t = 培养时间(h)。
利用最小二乘法算出参数a、b和c,然后进一步计算有效降解率:ED = a + bc/(c + k)
式中,ED为某营养成分的有效降解率;k为待测饲料的流通速率,参考冯仰廉[19]取K=0.08%/h。
1.9.2 UDP小肠消化率计算
UDP(%)= CP含量(%)×(1-瘤胃CP降解率);
UDP小肠消化率(%)=(UDP含量-残渣中蛋白质含量)/UDP含量×100。
1.9.3 营养物质消化率及PD排出量等指标的计算
饲粮中某营养成分的表观消化率(%)= 100×(饲粮采食量×饲粮中该营养成分的含量-排粪量×粪中该养分含量)/(饲粮采食量×饲粮中该营养成分的含量);
PD(mmol·d-1)=尿囊素+尿酸+黄嘌呤+次黄嘌呤,微生物氮 (Microbial nitrogen, MN, g·d-1) =-0.521+ 1.493×PD (mmol·d-1)[1];
MP=MCP×0.64+UDP×UDP小肠消化率[3]。
1.10 统计分析
试验数据采用Excel整理统计后,分别采用SAS 9.1中的NLIN程序计算a、b、c值和直线回归与多元回归程序分析建立MP估测模型,单因素方差分析(one-way ANOVA, LSD)进行显著性检验,并采用Duncan氏法进行多重比较,P<0.05作为差异显著的判断标准。结果均以平均值表示。2 结果
2.1 单一精饲料原料的常规养分含量
本试验中10种单一精饲料原料的常规养分含量见表3,各种饲料CP含量差异较大,饼粕类饲料的CP较高,DDGS次之,谷物类饲料最低。Table 3
表3
表3单一精饲料原料的营养水平(干物质基础)
Table 3
项目 Items | 高粱Sorghum | 玉米 Corn | 大麦 Barley | 小麦 Wheat | 燕麦 Oat | 菜籽粕 Rapeseed meal | 花生粕 Peanut meal | 棉籽粕 Cottonseed meal | 豆粕Soybean meal | 玉米酒糟DDGS |
---|---|---|---|---|---|---|---|---|---|---|
干物质 DM | 89.59 | 89.94 | 90.60 | 89.64 | 90.31 | 91.60 | 91.97 | 92.28 | 91.74 | 91.65 |
有机物 OM | 98.27 | 98.79 | 95.75 | 98.33 | 98.22 | 93.04 | 94.39 | 92.66 | 92.50 | 95.19 |
粗蛋白 CP | 10.48 | 8.88 | 10.35 | 13.57 | 15.15 | 40.50 | 58.36 | 44.99 | 47.92 | 30.45 |
中性洗涤纤维 NDF | 14.97 | 16.98 | 18.58 | 14.87 | 10.25 | 17.45 | 12.24 | 20.17 | 12.93 | 23.97 |
酸性洗涤纤维 ADF | 3.01 | 4.06 | 8.69 | 4.66 | 3.30 | 13.19 | 6.65 | 14.60 | 7.05 | 8.66 |
新窗口打开|下载CSV
2.2 单一精饲料原料CP瘤胃降解率和UDP小肠消化率
采用尼龙袋法和改进三步体外法及基于公式(1.9.1和1.9.2)得出的CP瘤胃降解率和UDP小肠消化率见表4。可以看出,10种饲料的CP有效降解率在43.71%—60.87%之间,其中燕麦的CP瘤胃有效降解率显著高于其他9种饲料(P<0.01),除燕麦外,本研究的其他9种饲料中饼粕类饲料(菜籽粕、花生粕、棉籽粕、豆粕、DDGS)的CP瘤胃有效降解率均高于谷物类饲料(高粱、玉米、大麦、小麦);而燕麦的UDP小肠消化率为80.10%,显著低于其他饲料(P<0.01),饼粕类饲料的UDP小肠消化率均高于谷物类饲料。Table 4
表4
表4单一精饲料蛋白质瘤胃降解率和瘤胃非降解蛋白质小肠消化率
Table 4
项目 Items | 高粱Sorghum | 玉米Corn | 大麦 Barley | 小麦 Wheat | 燕麦 Oat | 菜籽粕 Rapeseed meal | 花生粕 Peanut meal | 棉籽粕 Cottonseed meal | 豆粕Soybean meal | 玉米 酒糟DDGS | SEM | P值 P value |
---|---|---|---|---|---|---|---|---|---|---|---|---|
蛋白质瘤胃降解率 Ruminal degradability of crude protein | ||||||||||||
6 h | 16.64d | 24.25bcd | 22.73cd | 30.30b | 44.30a | 27.42bc | 24.33bcd | 29.19b | 16.87d | 15.77d | 1.697 | <0.01 |
12 h | 20.10d | 27.54cd | 31.66cd | 49.83b | 63.53a | 35.55c | 28.63cd | 31.53cd | 20.28d | 19.73d | 2.649 | <0.01 |
24 h | 24.82c | 32.77bc | 39.66b | 63.25a | 72.64a | 41.34b | 40.82b | 42.52b | 34.15bc | 22.15c | 2.948 | <0.01 |
36 h | 36.18cd | 37.66cd | 48.51bc | 70.28a | 80.64a | 47.56bc | 48.55bc | 54.55b | 41.45bcd | 35.03d | 3.302 | <0.01 |
48 h | 38.77d | 47.25cd | 59.36bc | 74.27a | 84.19a | 58.01bc | 59.51bc | 62.18b | 54.02bc | 38.88d | 2.668 | <0.01 |
有效降解率Effective degradation rate | 45.08e | 43.71e | 44.38e | 49.32de | 60.87a | 52.04bcd | 57.26ab | 54.62bcd | 56.02abc | 51.08cd | 1.143 | <0.01 |
瘤胃非降解 蛋白质小肠消化率 Small intestine digestibility of undegraded dietary protein | 84.69d | 86.23cd | 84.23d | 84.10d | 80.10e | 89.25b | 92.86a | 92.31a | 89.26b | 87.31bc | 0.731 | <0.01 |
新窗口打开|下载CSV
2.3 单一精饲料可代谢蛋白质
小肠吸收的蛋白质主要由MCP和UDP组成,通过半体内法(尼龙袋法)及公式(1.9.1和1.9.2)得出单一精饲料的瘤胃降解蛋白质(Rumen degraded protein,RDP)和UDP,利用尿嘌呤衍生物法及结合公式(1.9.3)得出单一精饲料的MCP,进一步通过公式MP=MCP×0.64+UDP×UDP小肠消化率(AFRC,1993)得出单一精饲料MP(表5)。由表5可见,10种精饲料RDP从高到低的顺序依次是花生粕、豆粕、棉籽粕、菜籽粕、DDGS、燕麦、小麦、高粱、大麦及玉米;本研究的10种精饲料的UDP含量除燕麦和小麦外,各饲料UDP含量从高到低的顺序与RDP的顺序一致;饼粕类饲料的MCP和MP均高于谷物类的,MCP含量在46.92—84.74(g·kg-1 DM)之间,MP含量在41.81—129.08(g·kg-1 DM)之间,其中花生粕的MCP和MP都最高,玉米的MCP和MP都最低。MP占DP的比例范围在50.96%—62.33%之间。Table 5
表5
表5单一精饲料原料的瘤胃非降解蛋白质、微生物合成蛋白质和可代谢蛋白质
Table 5
项目 Items | 高粱 Sorghum | 玉米 Corn | 大麦 Barley | 小麦 Wheat | 燕麦 Oat | 菜籽粕 Rapeseed meal | 花生粕 Peanut meal | 棉籽粕 Cottonseed meal | 豆粕Soybean meal | 玉米 酒糟DDGS |
---|---|---|---|---|---|---|---|---|---|---|
瘤胃降解蛋白质 RDP (g·kg-1 DM) | 15.59 | 12.82 | 15.15 | 22.16 | 30.35 | 68.84 | 115.23 | 79.43 | 85.76 | 51.16 |
瘤胃非降解蛋白质 UDP (g·kg-1 DM) | 18.98 | 16.52 | 18.74 | 22.31 | 19.30 | 63.44 | 85.85 | 64.22 | 67.34 | 48.89 |
微生物合成蛋白质 MCP (g·kg-1 DM) | 54.50 | 46.92 | 50.97 | 50.64 | 59.83 | 73.80 | 84.74 | 66.27 | 81.11 | 60.87 |
可代谢蛋白质 MP (g·kg-1 DM) | 48.04 | 41.81 | 45.46 | 48.28 | 50.30 | 99.47 | 129.08 | 96.89 | 106.18 | 78.23 |
可代谢蛋白质占可消化蛋白的比例 The percentage of MP to DP (%) | 61.66 | 55.63 | 50.96 | 55.08 | 53.73 | 53.33 | 54.86 | 62.33 | 55.14 | 56.78 |
新窗口打开|下载CSV
2.4 10种饲粮营养物质的表观消化率
10种饲粮营养物质的表观消化率见表6,可以看出,不同饲粮各营养物质的表观消化率不同,其中玉米饲粮的DM表观消化率最高,为67.40%,菜籽粕饲粮的DM表观消化率只有57.32%;玉米饲粮的OM表观消化率也最高,菜籽粕饲粮的最低;饼粕类饲粮的CP表观消化率高于谷物类饲料的,CP表观消化率在64.03%—80.16%之间;NDF和ADF的表观消化率范围分别是36.01%—48.79%、34.35%—47.40%。Table 6
表6
表6不同饲粮营养物质表观消化率
Table 6
项目 Items | 高粱 饲粮 Sorghum diet | 玉米 饲粮Corn diet | 大麦 饲粮Barley diet | 小麦 饲粮 Wheat diet | 燕麦 饲粮 Oat diet | 菜籽粕 饲粮Rapeseed diet | 花生粕 饲粮Peanut meal diet | 棉籽粕 饲粮Cottonseed meal diet | 豆粕 饲粮Soybean meal diet | 玉米酒糟饲粮 DDGS diet | SEM | P值 P value |
---|---|---|---|---|---|---|---|---|---|---|---|---|
干物质消化率 Digestible dry matter (DMD) | 65.29abc | 67.40a | 64.69bc | 65.48abc | 63.40c | 57.32e | 64.20c | 59.68d | 66.79ab | 58.78de | 0.41 | <0.01 |
有机物消化率 Digestible organic matter (DOM) | 68.65ab | 70.44a | 68.49ab | 68.68ab | 66.91b | 64.15c | 69.97a | 61.45d | 69.30a | 64.47c | 0.37 | <0.01 |
粗蛋白质消化率 Digestible crude protein (DCP) | 64.03e | 64.60de | 71.05b | 67.09cd | 67.63c | 77.47a | 79.73a | 71.75b | 80.16a | 73.76b | 0.65 | <0.01 |
中性洗涤纤维消化率 Digestible neutral detergent fiber (DNDF) | 42.96bc | 42.56bcd | 47.59ab | 48.79a | 38.86cde | 37.09de | 43.71abc | 36.01e | 42.66bcd | 41.67cd | 0.67 | <0.01 |
酸性洗涤纤维消化率 Digestible acid detergent fiber (DADF) | 42.91ab | 37.38c | 45.10a | 45.85a | 38.46bc | 34.35dc | 46.96a | 30.91d | 47.40a | 35.91c | 0.76 | <0.01 |
新窗口打开|下载CSV
2.5 可代谢蛋白质预测模型的建立
为进一步通过饲粮养分含量和可消化养分来预测饲料的可代谢蛋白质,结合本试验中10种饲粮的养分含量和可消化养分与MP进行逐步回归分析,建立的回归模型如表7所示。从模型式可见,决定系数R2均在0.98以上,饲料养分含量比可消化养分预测MP决定系数R2更高。基于养分含量建立MP预测模型的预测因子从一元到五元决定系数R2增加幅度不大;引入变量越多,可消化养分预测MP模型的决定系数R2值越高,R2的变化范围在0.984—0.991之间。用饲粮中CP含量预测DP,决定系数R2为0.984。Table 7
表7
表7概略养分和可消化养分预测可代谢蛋白质模型
Table 7
递推回归模型Recursive regression equation | 决定系数 R2 | P值 P value |
---|---|---|
MP=5.323CP-14.374 | 0.994 | <0.001 |
MP=5.268CP+0.532DM-62.319 | 0.995 | <0.001 |
MP=5.290CP+0.669DM-0.173ADF-71.664 | 0.995 | <0.001 |
MP=5.318CP+1.262DM-0.877ADF+0.376NDF-126.679 | 0.995 | <0.001 |
MP=5.373CP+1.481DM-0.827ADF+0.404NDF+0.254OM-174.198 | 0.995 | <0.001 |
MP=5.899DP+2.077 | 0.984 | <0.001 |
MP=5.710DP-0.530DOM-37.165 | 0.986 | <0.001 |
MP=5.500DP-1.741DOM+1.371DDM+38.005 | 0.989 | <0.001 |
MP=5.678DP-1.550DOM+1.344DDM-1.129DNDF+32.093 | 0.990 | <0.001 |
MP=5.791DP-1.587DOM+1.552DDM-1.871DNDF+0.443DADF+19.832 | 0.990 | <0.001 |
DP=0.895CP-2.663 | 0.994 | <0.001 |
新窗口打开|下载CSV
3 讨论
3.1 单一精饲料粗蛋白质瘤胃降解率和小肠消化率
关于精饲料CP瘤胃降解率和UDP小肠消化率已有较多研究[20,21,22,23]。饲料在瘤胃中的降解主要是瘤胃微生物的一系列生物消化过程,一般而言,随饲料在瘤胃中停留时间的增加,瘤胃降解率增大,饲料自身的物理或化学性质也会影响瘤胃降解率[24,25]。本研究的10种精饲料中,燕麦因其包被淀粉粒的蛋白质基质很容易被细菌穿透,所以CP瘤胃降解率显著高于其他饲料,其他几种饲料中饼粕类饲料(菜籽粕、花生粕、棉籽粕、豆粕、DDGS)的CP瘤胃降解率高于谷物类饲料(高粱、玉米、大麦、小麦),这可能与饼粕类饲料含有较高的CP含量有关,冷静等[26]通过研究6种牧草的瘤胃降解率发现CP含量高有利于蛋白质的降解。饲料CP含量高,能够为瘤胃微生物提供的氮源丰富,因此相应的CP瘤胃降解率会长高。另一方面,过高的瘤胃消失率将会造成进入反刍动物小肠的蛋白质不足,因此CHALUPA 等[27]认为应当对瘤胃降解较高的饲料采取过瘤胃保护措施(如热处理和甲醛处理),以保证小肠有充足的可吸收利用氨基酸。本研究得出10种精饲料的UDP小肠消化率范围在80.10%—92.86%之间,在INRA报道的65%—95%范围内[7]。比较发现每种饲料的UDP小肠消化率均高于CP瘤胃降解率,表明大量不被瘤胃降解的蛋白质能在小肠被很好的消化,朱亚骏等[22]得出类似的结果,因此可以考虑使用这10种饲料做蛋白质过瘤胃保护措施,以提供给小肠充足的氨基酸。本研究还发现饼粕类饲料(菜籽粕、花生粕、棉籽粕、豆粕、DDGS)的UDP小肠消化率高于谷物类饲料(高粱、玉米、大麦、小麦,燕麦),周荣等[23]报道奶牛对常用饲料的UDP小肠消化率饼粕类饲料最高,谷物类饲料次之,粗饲料最低,岳群等[28]研究发现高蛋白低纤维饲料比低蛋白高纤维饲料更易被小肠消化利用,本试验中使用的饼粕类饲料较谷物类饲料蛋白质含量高很多,而纤维含量相差不大,据此可认为精饲料蛋白质含量越高,UDP小肠消化率越高,与周荣等[23]和岳群等[28]研究的结果相一致。
3.2 饲粮养分表观消化率和精饲料瘤胃微生物蛋白质合成量
营养物质的表观消化率是动物对饲粮消化利用的综合反映,本试验中10种饲粮因其精饲料组成不同,各养分表观消化率差异显著,其结果与赵江波等[12]在杜寒杂交羯羊的研究结果接近。10种饲粮精饲料组成不同,饼粕类饲粮的CP水平高于谷物类饲粮,随CP水平的增加,CP表观消化率有升高的趋势,但其他养分的表观消化率没有明显的变化,与李志静等[29]研究得出的结果类似,刘洁等[13]研究表明CP表观消化率与CP含量存在正相关关系。纤维是影响反刍动物采食量的一个重要因素,在瘤胃中发酵的产物是其重要的能量来源,NDF是目前认为表示纤维含量的最准确的指标,本研究中10种饲粮的NDF水平在33.33%—41.33%范围内,通过比较发现,NDF含量对其他营养物质的表观消化率无显著影响,孔祥浩等[30]报道肉羊饲粮的NDF含量处于30%—45%之间时,对其他营养物质的表观消化率影响不显著。本研究中10种精饲料的RDP、UDP、MP含量以及MCP合成量,饼粕类饲料均高于谷物类饲料。瘤胃微生物利用饲粮中养分降解产生的氮源与碳源合成微生物蛋白质,饲粮蛋白质含量越高,提供给微生物的氮源越丰富,微生物合成蛋白质越多,最终以MP含量的多少体现反刍动物对饲粮蛋白质的利用效果,MA等[1]研究报道饲粮中CP含量越高,NDF含量越低,MCP合成量越高。本研究得出随着饲粮中RDP水平的增加,MCP含量也增加,与HAIG等[31,32]通过十二指肠MCP流量和尿嘌呤衍生物法研究得出的结果类似。随着10种精饲料原料的RDP与UDP比例的增加,各养分的表观消化率没有表现出明显的变化趋势,PAENGKOUM[33]等也报道饲粮养分消化率不受RDP含量的影响。反刍动物采食的饲粮蛋白质,必须有一定量的RDP供微生物分解利用,否则就会调用体蛋白为细菌提供营养,使机体的代谢形成负平衡,若细菌营养不足,也会影响淀粉和纤维素的消化。
3.3 利用饲粮养分含量和可消化养分建立精饲料原料MP的预测模型
蛋白质不仅是饲粮重要的营养成分,也是限制肉用绵羊生产性能的重要因素,饲粮中被动物机体利用的蛋白质除了受机体自身的影响外,还受到饲粮组成及可消化养分的影响。综合10种饲粮的概略养分及可消化养分与MP进行相关性分析,并建立递推式回归模型,发现引入概略养分含量建立的MP预测模型决定系数比利用可消化养分得到的决定系数高。当只引入CP含量时,R2就已经达到0.994,再依次引入DM、ADF、NDF和OM时,R2 升高。如果采用可消化养分建立MP预测模型,可以看出依次引入可消化养分参数,R2不断提高,从0.984升高至0.991,预测模型的显著效果未发生变化。本研究利用饲粮中CP含量(%)及DP(%)建立的MP(g·kg-1 DM)预测模型分别是MP=5.323× CP-14.374(R2=0.994,n=10,P<0.001)和MP=5.899× DP+2.077 (R2=0.984,n=10,P<0.001),经转化发现MP预测模型与NRC(2007)推荐的MP(%)=0.7×DP(%)有差异,可能与羊的品种及饲料的地域性有关。基于CP建立的DP预测模型是 DP=0.895×CP-2.663(R2=0.994,n=10,P<0.001),与NRC(2007)的DP =0.9×CP-3及刘洁[9]的DP=1.000×CP-4.672结果接近。刘洁[9]建立了单一饲粮12个不同精粗比梯度的MP预测模型:MP(g·kg-1DM)=-55.712 + 9.826×CP(%)和MP(g·kg-1 DM)=-9.841+0.983×DP(g·kg-1DM),曲连发[10]建立了单一饲粮6个不同精粗比梯度的MP预测模型:MP(g·kg-1 DM)= 0.96×CP(g·kg-1 DM)-87.89和MP(g·kg-1DM)=0.75×DP(g·kg-1DM)-25.82,两个研究结果都得出MP与CP或DP的相关性最高,NRC(2007)也推荐采用CP或DP预测MP模型,本研究得出的结果类似。
前人研究均采用一元函数预测MP,但预测模型都有差异,本研究得出10种单一精饲料原料的MP与DP的含量各不相同,范围在50.96%—62.33%之间,因此利用多种饲粮的DP建立MP的预测模型更加准确,利用更加广泛。对于我国肉用绵羊常用精饲料MP的预测模型鲜有报道,通过本研究依次引入多元变量,使预测值的准确性得到了提高,决定系数R2逐渐增大,并对饲料中养分或可消化养分逐一进行方差膨胀因子(VIF)检验,得出VIF均小于10,即各个因子不存在多重共线性,不影响最终MP的预测值。本试验中,根据MP与养分含量和可消化养分之间的相关性建立了关于MP的多个预测模型,并且决定系数很高。通过对各个预测模型进行检验,发现采用养分含量预测MP模型时,得出利用一元或多元建立的MP预测模型得出的MP值与实际值都很接近;引入可消化养分预测MP时,不论引入一元或者多元MP预测结果也都与实际值很接近。表明在实际生产中可以通过简单的测定养分含量或可消化养分就可以估测出肉用绵羊对饲粮中CP的利用效果。
可代谢蛋白质比较准确地反映了反刍动物利用蛋白质的效果,但是测定步骤繁琐,在实际的生产实践中不易测定,本研究通过体外法、半体内法和体内法较为完整的研究了肉用绵羊对常用精饲料蛋白质的利用情况,并基于概略养分和可消化营养成分建立了MP的预测模型,对MP的估测有重要意义。但是由于试验周期较长,还未对预测模型用其他饲粮进行验证,所以还有待于进一步研究,以便更好的完善与推广。
4 结论
4.1
基于饲粮中CP含量预测DP的模型是:DP= 0.895×CP-2.663(R2=0.994,n=10,P<0.001)。4.2
基于概率养分可以比较准确的预测MP,预测模型是:MP=5.323×CP-14.374(R2=0.994,n=10,P<0.001)。4.3
基于可消化养分建立的精饲料MP预测模型是:MP=5.899×DP+2.077(R2=0.984,n=10,P<0.001)。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
[本文引用: 3]
[D].
[本文引用: 1]
[本文引用: 3]
DOI:10.2527/jas.2004-704URLPMID:16864878 [本文引用: 2]

An in vitro, batch incubator (Daisy(II)) was used to simplify the 3-step, in vitro procedure (TSP) to reduce the cost and labor involved in the determination of intestinal digestion of proteins. Four tests were conducted to study the effects of the type of pepsin (P-7012 and P-7000; Sigma, St. Louis, MO), the type of bags used for the incubation of samples (R510 and F57; Ankom Technology, Fairport, NY), the amount of sample per bag (0.5, 1, 2, or 5 g), and the number of bags per incubation bottle (5, 15, 20, or 30 bags) on the estimated intestinal digestion of proteins. A soybean meal sample heated at 170 degrees C for 0, 0.5, 1, 2, 4, 6, or 8 h was used in all preliminary tests to determine the optimum conditions of the technique. The intestinal digestion of 12 protein supplements was determined using the Daisy(II) as well as the proposed TSP techniques. Results using the 2 types of pepsin were highly correlated: P-7012 = (0.99 +/- 0.04 x P-7000) - 0.29 +/- 2.33 (r(2) = 0.99, P < 0.001, n = 14). Intestinal digestion of soybean meal samples obtained from the TSP assay were highly correlated with those obtained using the Daisy(II) incubator with Ankom R510 bags: Daisy(R510) = (1.37 +/- 0.06 x TSP) - 15.45 +/- 3.85 (r(2) = 0.98, P < 0.001, n = 14); and Ankom F57 bags: Daisy(F57) = (1.33 +/- 0.06 x TSP) - 15.76 +/- 3.87 r(2) = 0.98, P < 0.001, n = 14). Although there was a bias in these equations, when the whole protocol was applied to the determination of intestinal digestion of the 12 protein supplements using the TSP or the Daisy(II) technique with the Ankom R510 bags, the data were highly correlated: (0.93 +/- 0.12 x TSP) + 6.78 +/- 9.09 (r(2) = 0.84, P < 0.001, n = 12). The amount of sample per bag and the number of bags per incubation bottle did not affect the estimates of intestinal digestion of proteins. These results indicate that the use of up to 30 nylon bags (Ankom R510) with 5 g of sample in each Daisy(II) incubation bottle could be used to estimate intestinal digestion of proteins in ruminants.
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[D].
[本文引用: 3]
[D].
[本文引用: 3]
[D].
[本文引用: 2]
[D].
[本文引用: 2]
[本文引用: 1]
[本文引用: 1]
[本文引用: 2]
[本文引用: 2]
[本文引用: 2]
[本文引用: 2]
URL [本文引用: 1]

Digestibility of individual amino acids in the small intestine of sheep was estimated on four different batches of rumen microbial protein, on soybean meal and 0.5% formaldehyde treated soybean meal and on six different samples of undegraded dietary protein. The digestibility of the individual amino acids in the four different isolates of rumen bacteria was not significantly different and a... [Show full abstract]
[本文引用: 1]
[本文引用: 1]
DOI:10.3168/jds.S0022-0302(91)78551-2URLPMID:1660498 [本文引用: 1]

There is a need to standardize the NDF procedure. Procedures have varied because of the use of different amylases in attempts to remove starch interference. The original Bacillus subtilis enzyme Type IIIA (XIA) no longer is available and has been replaced by a less effective enzyme. For fiber work, a new enzyme has received AOAC approval and is rapidly displacing other amylases in analytical work. This enzyme is available from Sigma (Number A3306; Sigma Chemical Co., St. Louis, MO). The original publications for NDF and ADF (43, 53) and the Agricultural Handbook 379 (14) are obsolete and of historical interest only. Up to date procedures should be followed. Triethylene glycol has replaced 2-ethoxyethanol because of reported toxicity. Considerable development in regard to fiber methods has occurred over the past 5 yr because of a redefinition of dietary fiber for man and monogastric animals that includes lignin and all polysaccharides resistant to mammalian digestive enzymes. In addition to NDF, new improved methods for total dietary fiber and nonstarch polysaccharides including pectin and beta-glucans now are available. The latter are also of interest in rumen fermentation. Unlike starch, their fermentations are like that of cellulose but faster and yield no lactic acid. Physical and biological properties of carbohydrate fractions are more important than their intrinsic composition.
[本文引用: 1]
DOI:10.1017/S0021859600063048URL [本文引用: 1]

A method is proposed for estimating the percentage of dietary protein that is degraded by microbial action in the rumen when protein supplement is added to a specified ration. The potential degradability,p, is measured by incubating the supplement in artificial-fibre bags in the rumen and is related to incubation time,t, by the equationp = a+b(1-ct). The rate constantk, measuring the passage of the supplement from the rumen to the abomasum, is obtained in a separate experiment in which the supplement is combined with a chromium marker which renders it completely indigestible. The effective percentage degradation,p, of the supplement, allowing for rate of passage, is shown to bep = a+[bc/(c+k)] (1-e-(e+k)t) by time,t, after feeding. Astincreases, this tends to the asymptotic valuea+bc/(c+k), which therefore provides an estimate of the degradability of the protein supplement under the specified feeding conditions. The method is illustrated by results obtained with soya-bean meal fed as a supplement to a dried-grass diet for sheep. The incubation measurements showed that 89% of the soya-bean protein disappeared within 24 h and indicated that it was all ultimately degradable with this diet. When the dried grass was given at a restricted level of feeding the allowance for time of retention in the rumen reduced the estimate of final degradability to 71% (69% within 24 h). Withad libitumfeeding there was a faster rate of passage and the final degradability was estimated to be 66% (65% within 24 h).
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 2]
[本文引用: 2]
[本文引用: 3]
[本文引用: 3]
DOI:10.5713/ajas.14.0572URLPMID:4341097 [本文引用: 1]

This study evaluated thein situruminal degradability, and subsequent small intestinal digestibility (SID) of dry matter, crude protein (CP), and amino acids (AA) of cottonseed meal (CSM), sunflower seed meal (SFSM) and distillers dried grains with solubles (DDGS) by using the modified three-stepin vitroprocedure. The ruminal degradability and subsequent SID of AA in rumen-undegradable protein (RUP-AA) varied among three protein supplements. The result show that the effective degradability of DM for SFSM, CSM, and DDGS was 60.8%, 56.4%, and 41.0% and their ruminal fermentable organic matter was 60.0%, 55.9%, and 39.9%, respectively. The ruminal degradable protein (RDP) content in CP for SFSM, CSM, and DDGS was 68.3%, 39.0%, and 32.9%, respectively, at the ruminal solid passage rate of 1.84%/h. The SFSM is a good source of RDP for rumen micro-organisms; however, the SID of RUP of SFSM was lower. The DDGS and CSM are good sources of RUP for lambs to digest in the small intestine to complement ruminal microbial AA of growing lambs. Individual RUP-AA from each protein source was selectively removed by the rumen micro-organisms, especially for Trp, Arg, His, and Lys (p<0.01). The SID of individual RUP-AA was different within specific RUP origin (p<0.01). Limiting amino acid was Leu for RUP of CSM and Lys for both RUP of SFSM and DDGS, respectively. Therefore, different protein supplements with specific limitations should be selected and combined carefully in growing lambs ration to optimize AA balance.
URL [本文引用: 1]

Three Hanwoo steers (mean body weight 520卤20.2 kg), each fitted with a permanent ruminal cannula and a T-shaped duodenal cannula, were used to examine digestibility of crude protein (CP), rumen undegraded protein (RUP), and individual amino acids (AA) of three proteinaceous feeds (cottonseed meal, CSM; perilla meal, PRM; rapeseed meal, RSM), by using in situ bag and in situ mobile bag technique...
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 2]
.
[本文引用: 2]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
DOI:10.3168/jds.S0022-0302(02)74184-2URLPMID:12086057Magsci [本文引用: 1]

This experiment determined the effects of dietary protein solubility on amount, form, and route of nitrogen loss in lactating Holstein dairy cows, and the ability of the Cornell Net Carbohydrate and Protein System (CNCPS) to accurately predict rumen microbial yield, serum urea N (SUN), milk urea N (MUN), and fecal N. Eighteen multiparous Holstein cows were assigned randomly to one of three dietary treatments that were similar in crude protein (17.7%) content but differed in their content of soluble intake protein (SIP). Dietary contents of SIP, as % of total CP were 30, 36, and 48%. The experimental period was 21 d, and total N balance collections were done during the last 5 d. As dietary content of SIP increased, excretion of urinary N increased quadratically, and it was the primary route of N excretion. Urinary excretion of purine derivatives (PD) responded quadratically as dietary SIP content increased. The CNCPS predicted a quadratic decrease in total metabolizable protein (MP) supply. No effect of dietary content of SIP was detected on MUN and SUN. The CNCPS predicted a quadratic decrease in SUN and MUN as dietary SIP increased. Results from this study indicated that changing the dietary content of SIP altered routes of N excretion in dairy cows, but had no effect on total N balance. The CNCPS did not adequately predict changes in SUN and MUN for cows fed diets varying in SIP.
DOI:10.2527/2004.82113219xURLPMID:15542468 [本文引用: 1]

Abstract The objectives of this experiment were to investigate the effects of two ruminally degradable protein (RDP) levels in diets containing similar ruminally undegradable protein (RUP) and metabolizable protein (MP) concentrations on ruminal fermentation, digestibility, and transfer of ruminal ammonia N into milk protein in dairy cows. Four ruminally and duodenally cannulated Holstein cows were allocated to two dietary treatments in a crossover design. The diets (adequate RDP [ARDP] and high RDP [HRDP]), had similar concentrations of RUP and MP, but differed in CP/RDP content. Ruminal ammonia was labeled with 15N and secretion of tracer in milk protein was determined for a period of 120 h. Ammonia concentration in the rumen tended to be greater (P = 0.06) with HRDP than with ARDP. Microbial N flow to the duodenum, ruminal digestibility of dietary nutrients, DMI, milk yield, fat content, and protein content and yield were not statistically different between diets. There was a tendency (P = 0.07) for increased urinary N excretion, and blood plasma and milk urea N concentrations were greater (P = 0.002 and P = 0.01, respectively) with HRDP compared with ARDP. Milk N efficiency was decreased (P = 0.01) by the HRDP diet. The cumulative secretion of ammonia 15N into milk protein, as a proportion of 15N dosed intraruminally, was greater (P = 0.003) with ARDP than with HRDP. The proportions of bacterial protein originating from ammonia N and milk protein originating from bacterial or ammonia N averaged 43, 61, and 26% and were not affected by diet. This experiment indicated that excess RDP in the diet of lactating dairy cows could not be efficiently utilized for microbial protein synthesis and was largely lost through urinary N excretion. At a similar MP supply, increased CP or RDP concentration of the diet would result in decreased efficiency of conversion of dietary N into milk protein and less efficient use of ruminal ammonia N for milk protein syntheses.
[本文引用: 1]