Effects of the Different Crop Straw Biochars on Soil Bacterial Community of Yellow Soil in Guizhou
HOU JianWei,, XING CunFang,, LU ZhiHong, CHEN Fen, YU GaoWujiang College, Tongren University, Tongren 554300, Guizhou通讯作者:
第一联系人:
责任编辑: 李云霞
收稿日期:2018-03-19接受日期:2018-09-11网络出版日期:2018-12-01
基金资助: |
Received:2018-03-19Accepted:2018-09-11Online:2018-12-01
摘要
关键词:
Abstract
Keywords:
PDF (978KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
侯建伟, 邢存芳, 卢志宏, 陈芬, 余高. 不同秸秆生物炭对贵州黄壤细菌群落的影响[J]. 中国农业科学, 2018, 51(23): 4485-4495 doi:10.3864/j.issn.0578-1752.2018.23.008
HOU JianWei, XING CunFang, LU ZhiHong, CHEN Fen, YU Gao.
0 引言
【研究意义】土壤酸化是土壤退化的一个重要方面,土壤酸化会造成土壤质量和肥力的下降,营养元素的流失,从而对生长的作物产生严重危害[1]。黄壤是贵州省面积最大的地带性土壤,面积共738.43万hm2,分别占贵州省土壤面积和全国黄壤面积的46.4%和25.3%。pH小于5.5的强酸性黄壤面积占贵州省黄壤总面积的41.2%[2]。生物炭改变土壤理化性质的同时,也对土壤微生物群落结构产生影响,土壤微生物能够促进土壤有机质的分解以及土壤养分的转化,对维持土壤质量和土壤的健康有十分重要的作用[3]。其中,细菌在微生物数量中占有绝对优势,可决定土壤微生物总量的分布和有机物的分解与转化[4]。开展不同秸秆生物炭对酸性黄壤细菌群落影响的研究,分析细菌群落结构特征、组成以及引起细菌群落变化的主控环境因子,有利于进一步认识黄壤细菌群落的结构变化。【前人研究进展】秸秆生物炭不仅是富含碳的有机物质,还包括氮、氧、硫等多种养分元素和无机碳酸盐成分,其输入可以增加黄壤有机碳含量水平,提供微生物可利用组分[5]。同时,秸秆生物炭具有一定的离子交换能力和吸附特性,其对营养元素(如 NO3--N,NH4+-N,PO43-)的吸附和截留,可以降低肥料养分的流失,提高养分利用率[6]。此外,生物炭还可以通过对土壤pH、CEC等环境的改变,间接地改变微生物群落多样性及氮素转化过程[7]。周桂玉等[8]研究发现,添加玉米秸秆生物炭可以提高草甸黑土有机碳和有效养分含量;但张晗芝等[9]则报道,秸秆生物炭的添加对砂浆水稻土有效磷和pH没有显著影响。生物炭类型和炭化温度可决定生物炭的组分及特性[10],随着裂解温度的升高,C、N元素富集,表面吸附特性及孔度也发生变化[10],都会影响其对土壤养分状况的改变程度。微生物在土壤生态系统的物质循环和能量流动过程中扮演着重要的角色,它可以直接或间接参与生物炭在土壤中的降解、迁移和转化过程[11]。生物炭作为一种性质独特的物质,其孔隙结构及对水肥的吸附作用可直接为土壤微生物提供良好的栖息环境和生长所需养分[12]。KOLB等[13]指出,秸秆炭较木质炭可能含有更为丰富的微生物可利用组分以及适宜的栖息环境,更能提高微生物数量和生物量水平。不同来源的生物炭因结构特性及组分差异,往往会被不同的微生物群体所利用[14],其引起的微生物群落结构变化也会有差异。生物炭对土壤微生物活性和群落结构组成的改变往往与试验条件、生物炭自身性质、土壤质地及肥力水平等密切相关[13]。【本研究切入点】黄壤是贵州省喀斯特地区主要的农业土壤类型,具有质地黏重,比水容量小,养分含量低和酸性强等特点,已限制了农业的可持续发展[15]。基于《贵州统计年鉴》(2004—2013年)全省以水稻、玉米和油菜秸秆产量最大,分别为300×104—480×104 t、260×104— 382.2×104 t和200×104—260×104 t[16]。近年来,秸秆废弃物转化生物炭还田改良酸性土壤,并从生物分类学的角度准确描绘数量庞大的微生物群体,一直以来都是备受关注的焦点问题[17]。但是不同秸秆生物炭对酸性黄壤细菌群落结构特征和组成的影响并未见广泛报道;不同秸秆生物炭引起细菌群落变化的主控环境因子还不十分清楚。【拟解决的关键问题】本研究以玉米、水稻和油菜秸秆500℃炭化得到的3 种生物炭为添加材料,以贵州省地带性黄壤为改良对象,通过室内培育试验,研究不同秸秆生物炭对黄壤细菌群落结构特征和组成的影响,分析土壤菌群与环境因子的相关关系和主控环境因子,以期为黄壤改良和秸秆资源的合理利用提供理论参考。1 材料与方法
1.1 供试材料
生物炭:玉米秸秆生物炭、水稻秸秆生物炭和油菜秸秆生物炭,由辽宁金和福有限公司生产(炭化温度500℃,炭化时间6 h)。土壤:取自铜仁学院试验田耕层土壤(0—20 cm土层)。土样在实验室自然风干并过2 mm的土壤筛。供试土壤和生物炭的理化性质见表1。
Table 1
表1
表1供试土壤和生物炭的理化性质
Table 1
变量 Variables | 生物炭种类Biochar categories | 土壤 Soil | ||
---|---|---|---|---|
玉米秸秆生物炭 Corn straw biochar | 水稻秸秆生物炭 Rice straw biochar | 油菜秸秆生物炭 Rape straw biochar | ||
pH | 8.23 | 9.59 | 9.55 | 4.60 |
比表面积Surface area (m2·g-1) | 160.2 | 35.8 | 0.88 | / |
总孔容积Total pore volume (mL·g-1) | 0.331 | 0.068 | 1.69 | / |
平均孔径Pore diameter (nm) | 2.42 | 30.1 | 5.85 | / |
全碳Total C (g·kg-1) | 534.5 | 248.6 | 521.7 | 5.82 |
全氮Total N (g·kg-1) | 10.51 | 8.92 | 8.53 | 0.65 |
有效磷Available P (g·kg-1) | 3.99 | 4.34 | 3.75 | 0.001 |
有效钾Available K (g·kg-1) | 15.34 | 16.07 | 14.32 | 0.09 |
新窗口打开|下载CSV
1.2 试验设计与样品采集
试验于 2017 年5—12月室内进行。称取 4 kg 风干,按照 2%添加量将玉米秸秆生物炭(BC1)、水稻秸秆生物炭(BC2)和油菜秸秆生物炭(BC3)分别与土壤充分混匀装入塑料培养盆(直径:20 cm;高:22 cm)中。补加蒸馏水至田间饱和持水量的 60%,同时做无生物炭空白对照(CK),无菌膜封口,保持一定的透气性,培养盆底部中心打直径1 cm小孔,置于(25±1)℃培养箱中进行培养试验。每个处理3次重复,每隔5 d称重法补水一次。培养 186 d 后,于培养盆中均匀、分散的选取3点(培养盆半径中点)用土钻直通盆底取样(土层厚度20 cm)、混匀,即为该处理的1个样品。土壤样品储存于保鲜自封袋中,一部分于-80 ℃冰箱保存,用于土壤微生物群落分析;另一部分室温风干研磨,分别过 2 mm筛和 0.15 mm筛,用于测定土壤化学性质。1.3 测试项目与方法
生物炭:pH用复合电极电位法测定[18];全碳和全氮用CHN元素分析仪(德国Elementar,Vario Macro)测定[18];有效磷用0.5 mol·L-1 NaHCO3浸提-分光光度计法测定[19];速效钾用NH4OAc浸提-火焰光度法测定[19];孔容积、孔径、比表面积采用全自动气体吸附仪(ASAP2020)测定[18]。土壤:全氮用开氏定氮法测定;全磷用NaOH熔融-钼锑抗比色法测定;全钾用NaOH熔融-火焰光度法测定;全碳用重铬酸钾外加热法测定;碱解氮用碱解扩散法测定;有效磷用0.5 mol·L-1 NaHCO3浸提-分光光度计法测定;速效钾用NH4OAc浸提-火焰光度法测定;阳离子交换量(CEC)用乙酸钠-火焰光度法测定;pH用复合电极电位法测定;C/N用全碳与全氮的比计算得出。上述测试方法参见《土壤农化分析》[19]。
土壤DNA的提取与高通量测序[20]:具体测试方法包括基因组DNA的提取(采用CTAB方法对样本的基因组 DNA 进行提取,之后利用琼脂糖凝胶电泳检测DNA的纯度和浓度,取适量的样品于离心管中,使用无菌水稀释样品至1 ng·μL-1)→PCR扩增(以稀释后的基因组 DNA 为模板,根据测序区域的选择,使用带Barcode 的特异引物,New England Biolabs公司的Phusion? High-Fidelity PCR Master Mix with GC Buffer和高效高保真的酶进行PCR,确保扩增效率和准确性。细菌针对V4区的16SrRNA基因(引物为515F和806R))→PCR产物的混样和纯化(PCR产物使用2%浓度的琼脂糖凝胶进行电泳检测;根据PCR产物浓度进行等量混样,充分混匀后使用2%的琼脂糖凝胶电泳检测PCR产物,对目的条带使用Qiagen公司提供的胶回收试剂盒回收产物)→建库测序策略(采用IllunimaHiseq PE 测序平台对16s rRNA的 V4 高变区进行测序)→文库构建和上机测序(使用TruSeq? DNA PCR-Free Sample Preparation Kit建库试剂盒进行文库构建,构建好的文库经过Qubit和QPCR定量,文库合格后,使用Hiseq2500 PE250进行上机测序)。
1.4 数据分析
数据处理利用SAS9.0进行主分量分析(Principal component analysis)和方差分析(ANOVA);用EXCEL2007计算数据置信区间、绘制图表,使用CANOCO4.5软件对土壤化学性质和细菌群落结构进行冗余分析(RDA);利用软件mothur 计算 Alpha 多样性指标,包括丰度指数(ACE和Chao1)和多样性指数(Shannon和 Simpson)。2 结果
2.1 细菌16s rRNA基因拷贝数
不同生物炭处理的细菌16S rRNA基因拷贝数为2.76×105—4.66×105 copies/g soil(图1)。其中,BC3处理的细菌16S rRNA基因拷贝数最多,为4.66×105 copies/g soil,比CK处理增加了68.8%;其次是BC2处理,为3.99×105copies/g soil,比CK处理增加了44.6%;BC1处理最少,为3.95×105copies/g soil,比CK处理增加了43.1%。BC1处理与BC2处理间的细菌16S rRNA基因拷贝数没有显著性差异,其他处理间均达显著差异水平(P<0.05)。图1
新窗口打开|下载原图ZIP|生成PPT图1细菌16s rRNA基因拷贝数
图柱上不同小写字母表示处理间差异显著(P<0.05)
Fig. 1The gene copy number of 16s rRNA
Different small letters on the pillars mean significant difference at 0.05 level among treatments
不同生物炭处理的细菌16S rRNA基因拷贝数与黄壤化学性质的相关性分析表明(表2),细菌16S rRNA基因拷贝数与土壤全氮呈极显著正相关关系(r=0.78**);与pH和全碳均呈显著正相关关系(r分别为0.62*和0.66*);而与其他化学性质间无显著的相关性。
Table 2
表2
表2黄壤化学性质及其与细菌16s rRNA基因拷贝数的相关性分析
Table 2
变量 Variables | 处理Treatment | 相关系数 Correlation coefficient | |||
---|---|---|---|---|---|
CK | BC1 | BC2 | BC3 | ||
pH | 4.60±0.22c | 5.68±0.03b | 5.67±0.07b | 5.81±0.08a | 0.62* |
全碳Total C (g·kg-1) | 5.82±0.31d | 13.58±0.80c | 14.04±1.32b | 17.49±0.99a | 0.66* |
全氮Total N (g·kg-1) | 0.65±0.08 | 0.85±0.06c | 0.96±0.02b | 1.07±0.01a | 0.78** |
全磷Total P (g·kg-1) | 0.17±0.02b | 0.20±0.01a | 0.18±0.01a | 0.19±0.01a | 0.36 |
全钾Total K (g·kg-1) | 22.19±1.06c | 23.23±0.52b | 23.84±0.62b | 24.08±1.22a | 0.44 |
碱解氮Available N (mg·kg-1) | 12.32±1.20d | 22.55±1.82a | 13.63±1.09b | 12.58±0.91c | 0.58 |
速效磷Available P (mg·kg-1) | 1.07±0.02d | 1.79±0.15a | 1.63±0.23b | 1.56±0.20c | 0.69 |
有效钾Available K(mg·kg-1) | 90.32±10.11d | 336.55±35.37b | 320.09±16.34c | 417.26±65.08a | 0.55 |
新窗口打开|下载CSV
2.2 不同生物炭处理细菌多样性分析
将序列相似性达到97%的序列作为一个OTU,在4个土壤处理中,细菌群落分析共获得有效序列657 762条,覆盖率达96.3%,可以满足解释土壤细菌多样性的需要。由表3可知,4个处理的OTU数为2 621—3 431,生物炭处理显著高于CK处理(P<0.05)。BC3处理的OTU数最高,较CK处理增加了30.9%;BC2处理最低,较CK处理增加了8.1%。各土壤处理的Richness指数和Diversity指数(表3)表明,生物炭能够影响细菌群落的丰富度和多样性,但其影响程度因生物炭的种类而差异显著,其中BC3处理最有利于提高土壤细菌群落的丰富度和多样性。Table 3
表3
表316S rRNA基因OTU数、Read数、丰富度和多样性指数
Table 3
处理 Treatment | OTUs | Reads | 丰富度Richness | 多样性Diversity | |||
---|---|---|---|---|---|---|---|
Chao 1 | ACE | Shannon | Simpson | ||||
CK | 2621±145c | 54267±165a | 2122±115d | 2311±36c | 6.42±0.39c | 0.9023±0.002a | |
BC1 | 2994±117b | 53972±211a | 2376±126c | 2845±47a | 8.31±0.31b | 0.9386±0.005a | |
BC2 | 2832±195b | 54376±139a | 2678±72b | 2687±105b | 8.23±0.11b | 0.910±0.001a | |
BC3 | 3431±132a | 54511±97a | 2826±150a | 2926±76a | 8.68±0.23a | 0.908±0.003a |
新窗口打开|下载CSV
2.3 黄壤中细菌群落组成
由门水平的细菌群落组成(图2)可知,Actinobacteria(放线菌门)相对丰度最高,占19.3%— 43.0%,平均为32.7%,其次为Cyanobacteria(蓝藻菌门),占9.0%—39.0%,平均为20.4%,随后依次为Chloroflexi(绿弯菌门,6.4%—22.4%)、Proteobacteria(变形菌门,5.8%—20.5%)、Firmicutes(厚壁菌门,6.4%—22.4%)、Gemmatimonadetes(芽单胞菌门,0.7%—3.8%)、Crenarchaeota(泉古菌门,0.6%— 3.0%)、Acidobacteria(酸杆菌门,1.2%—1.6%)、Armatimonadetes(装甲菌门,0.7%—2.1%)和Bacteroidetes(拟杆菌门,0.4%—3.0%)。CK处理中只有Acidobacteria(酸杆菌门)的相对丰度均高于其他3个处理,而其余菌门在BC1、BC2和BC3处理间的响应不同。具体表现为,BC1处理有利于增加Cyanobacteria、Chloroflexi、Crenarchaeota和Armatimonadetes的相对丰度;BC2处理有利于增 加Firmicutes、Proteobacteria、Gemmatimonadetes和Bacteroidetes的相对丰度;而BC3处理有利于增加Actinobacteria、Chloroflexi、Firmicutes、Proteobacteria、Crenarchaeota、Bacteroidetes和Armatimonadetes的相对丰度。说明在细菌群落组成前10 的菌门中,BC1处理增加了相对丰度较大(Cyanobacteria和Chloroflexi)和较小(Crenarchaeota和Armatimonadetes)的菌门丰度;BC2处理增加了相对居中的菌门丰度;而BC3处理几乎提高了整体优势菌门的相对丰度。图2
新窗口打开|下载原图ZIP|生成PPT图2不同处理相对丰度前10的菌门
Fig. 2The relative abundance of the top 10 phylum under different treatment
由纲水平的相对丰度(表4)可知,只有Actinobacteria(放线菌纲)和Anaerolineae(厌氧绳菌纲)的相对丰度表现为CK最高,而其余菌纲在CK、BC1、BC2和BC3处理间的响应不同。具体表现为:BC1处理增加了Oscillatoriophycideae(颤藻亚纲)、Ellin6529、Chloroflexi(绿弯菌纲)和Thermomicrobia(热微菌纲)的相对丰度,较CK分别提高了65.8%、64.8%、108.9%和234.7%;BC2处理增加了Thermoleophilia(嗜热油菌纲)、Bacilli(芽孢杆菌纲)、Alphaproteobacteria(α-变形杆菌纲)和Gammaproteobacteria(丙型变形菌纲)的相对丰度,较CK分别提高了92.1%、83.8%、92.5%和3197.%;而BC3处理增加了Thermoleophilia、Bacilli、Alphaproteobacteria、Gammaproteobacteria和Chloroflexi的相对丰度,较CK分别提高了155.6%、27.8%、87.4%、92.9%和22.9%。说明细菌群落组成对不同生物炭的响应不同,BC2处理和BC3处理在提高细菌群落纲水平影响上有很大的相似性,均主要集中在Thermoleophilia、Bacilli、Alphaproteobacteria和Gammaproteobacteria四个纲上。
Table 4
表4
表4不同生物炭处理细菌纲水平的相对丰度(前10的菌纲)
Table 4
门 Phylum | 纲 Class | 处理 Treatment | |||
---|---|---|---|---|---|
CK | BC1 | BC2 | BC3 | ||
Cyanobacteria | Oscillatoriophycideae | 22.70±3.25b | 37.63±6.78a | 8.28±0.96c | 6.58±1.11d |
Actinobacteria | Actinobacteria | 25.22±1.92a | 8.55±0.87d | 11.01±2.01c | 18.57±0.97b |
Thermoleophilia | 7.21±1.30c | 9.04±1.22d | 13.85±0.98b | 18.43±2.54a | |
Firmicutes | Bacilli | 1.91±0.32b | 1.47±0.22b | 3.51±0.11a | 2.44±0.09b |
Proteobacteria | Alphaproteobacteria | 4.90±0.13b | 4.09±0.06c | 9.43±0.33a | 9.18±0.25a |
Gammaproteobacteria | 0.28±0.03c | 0.23±0.06c | 1.17±0.10a | 0.54±0.03b | |
Chloroflexi | Ellin6529 | 4.89±0.11b | 8.06±0.47a | 1.54±0.22d | 4.35±0.05c |
Chloroflexi | 3.36±0.18c | 7.02±0.44a | 1.27±0.08d | 4.13±0.33b | |
Anaerolineae | 5.12±0.31a | 2.10±0.09c | 1.44±0.24d | 3.55±0.11b | |
Thermomicrobia | 1.27±0.20c | 4.25±0.29a | 0.99±0.12d | 3.07±0.23b |
新窗口打开|下载CSV
2.4 影响黄壤细菌群落的因子分析
由土壤化学性质参数与细菌群落组成的主分量分析(图3-a)可知,相同处理的土壤都聚集在一起,且生物炭处理土壤彼此较为接近并与对照土壤区分开。图3
新窗口打开|下载原图ZIP|生成PPT图3土壤化学性质参数与细菌群落组成的主分量分析(a)及与细菌群落多样性的冗余分析(b)
TN:全氮;TP:全磷;TK:全钾;TC:全碳;AN:碱解氮;AP:有效磷;AK:速效钾;CEC:阳离子交换量;C/N:碳氮比;BC1:玉米秸秆生物炭;BC2:水稻秸秆生物炭;BC3:油菜秸秆生物炭
Fig. 3Principal component analyses (PCA) of bacterial community composition in soils from different treatments (a), and redundancy analyses (RDA) of the correlations between soil parameters and bacterial community diversity (b)
TN: Total nitrogen; TP: Total phosphorus; TK: Total potassium; TC: Total carbon; AN: Soil inorganic nitrogen; AP: Available phosphorus; AK: Available potassium; CEC: Cation exchange capacity; C/N: The ratio of total carbon and total nitrogen; BC1: Corn straw biochar treatment; BC2: Rice straw biochar treatment; BC3: Rape straw biochar treatment
说明生物炭的添加改变了土壤的细菌群落组成,且不同生物炭对土壤细菌群落组成的影响具有差异性。根据土壤环境因子间的相关性分析剔除相关性较高的变量,最终选出土壤全氮、碳氮比、有效磷、阳离子交换量和pH等5个因子来替代原有10个土壤环境因子变量覆盖的82%的土壤环境信息。第Ⅰ轴(PCA1)的特征值为6.94,且土壤全氮、阳离子交换量与第Ⅰ轴有显著的相关性,证明在水平方向影响了土壤细菌群落的分布,将玉米秸秆生物炭处理土壤(BC1)与其他土壤处理区分开。第Ⅱ轴(PCA2)的特征值为1.26,土壤pH、速效钾、有效磷与第Ⅱ轴有显著的相关性,证明这些因素的共同作用影响了垂直方向土壤细菌群落的组成,将对照土壤(CK)与生物炭处理土壤(BC1、BC2 和 BC3)区分开。
通过对各土壤细菌群落多样性与土壤环境关系冗余分析(图3-b)发现,pH对细菌群落的丰度指数(ACE 和 Chao1 )和多样性指数(Simpson和Shannon)均呈现较强的正相关性,且土壤碳氮比与ACE和Simpson相关性也较好,说明土壤pH和C/N是改变土壤细菌群落多样性和丰富度的主控因子。CEC与土壤细菌群落丰度和多样性均呈现负相关,单一的阳离子交换量水平增加是不利于土壤细菌菌群变化的。所有理化因子总共解释了80.8%的群落变化,影响顺序依次为:土壤C/N>pH>全氮>有效磷>CEC,因此土壤全氮、碳氮比、有效磷、阳离子交换量和pH是改变黄壤细菌群落结构的主控环境因子。
黄壤中优势细菌群落(门水平)与土壤化学性质的相关性分析(表5)表明,除了Crenarchaeota和Armatimonadetes与5个化学指标都不具有相关性外,其他优势细菌群落对土壤化学性质的响应不同。其中,相对丰度靠前的Cyanobacteria、Chloroflexi、Proteobacteria和Firmicutes与土壤pH和C/N均具有很强的正相关性,尤其与Proteobacteria呈极显著正相关关系(r分别为0.436**和0.622**)。其他化学指标对土壤细菌优势菌群变化均有影响,土壤全氮与Proteobacteria 和Bacteroidetes有较强的正相关性;有效磷与Cyanobacteria 和Acidobacteria呈显著负相关关系;CEC与 Actinobacteria和 Acidobacteria呈显著正相关关系。说明土壤pH和C/N的提高更有助于相对丰度较高的优势细菌菌群的生长繁殖,而土壤全氮、有效磷和CEC对细菌群落的影响具有差异性。
Table 5
表5
表5土壤优势菌群(门水平)与土壤化学性质的相关性分析
Table 5
菌群Phylum | pH | C/N | 全氮 Total N | 有效磷 Available phosphorus | CEC |
---|---|---|---|---|---|
Actinobacteria | 0.458* | -0.159 | -0.230 | -0.496 | 0.136 |
Cyanobacteria | 0.592* | 0.492* | 0.192 | -0.376* | 0.278 |
Chloroflexi | 0.661** | 0.537* | 0.303 | -0.203 | -0.195 |
Proteobacteria | 0.436** | 0.622** | 0.721** | 0.441 | 0.318 |
Firmicutes | 0.613* | 0.486* | 0.117 | 0.369* | -0.255 |
Gemmatimonadetes | 0.695** | 0.335 | 0.316 | -0.579 | 0.194 |
Crenarchaeota | -0.139 | -0.257 | 0.089 | 0.572 | -0.148 |
Acidobacteria | 0.301 | 0.378* | 0.144 | -0.198* | 0.247* |
Armatimonadetes | 0.176 | 0.426 | 0.196 | -0.236 | 0.208 |
Bacteroidetes | -0.314 | 0.344* | 0.372* | 0.299 | -0.119 |
新窗口打开|下载CSV
3 讨论
3.1 生物炭对黄壤细菌16s rRNA基因拷贝数和多样性的影响
施用秸秆生物炭显著增加了细菌16S rRNA基因拷贝数,较CK增加了43.1%—68.8%,油菜秸秆生物炭提升效果最佳(图1)。表明生物炭能够提高黄壤细菌16S rRNA基因拷贝数且提升幅度与生物炭类型有关。这可能得益于生物炭的孔隙结构及其对水分和养分的吸附作用可以为微生物提供良好的栖息环境[12]。以往研究认为,秸秆生物炭的输入可以增加温带土壤[13]、土[21]和田园土壤[22]的细菌16S rRNA基因拷贝数;而DEMPSTER等认为,木质生物炭的添加降低了土壤细菌16S rRNA基因拷贝数[23]。本研究表明,玉米、水稻和油菜秸秆生物炭均不同程度地增加了黄壤细菌16S rRNA基因拷贝数(图1)。相关分析也显示,细菌16S rRNA基因拷贝数与土壤全氮、全碳和pH均有很好的正相关关系(表2)。这可能归因于不同类型生物炭的结构特性及组分差异被不同的微生物群体所利用,从而引起细菌数量的差异变化及土壤化学性质的改变[14]。土壤细菌16S rRNA基因拷贝数不仅与生物炭类型和土壤类型有关,还与生物炭炭化条件、施用量及颗粒细度有关[24,25,26]。高温(500℃、400℃)较低温(300℃)制备的生物炭更能促进微生物量的增加[24]。添加3%和9%细粒径生物炭处理的土壤细菌基因拷贝数均高于对应含量的中粒组和粗粒组,且9%细粒径生物炭处理的细菌基因拷贝数最高[25]。说明高温炭化、高添加量的细颗粒生物炭更有利于提高土壤细菌16S rRNA基因拷贝数。各生物炭处理对黄壤细菌群落多样性的影响并不相同,表现为施用生物炭均影响了细菌群落的丰富度和多样性,但其影响程度因生物炭的种类而差异显著。说明生物炭种类能够显著影响黄壤细菌群落多样性。一些研究表明,因生物炭的组分及结构特异性,不同微生物群落对添加生物炭的响应往往不同。比如,武爱莲等[26]研究指出,随着生物炭施用量的增加,土壤细菌 OTU 数目及丰富度指数(Chao1)呈增加趋势;而PIETIKAINEN等[27]研究表明生物炭施用对总体微生物量影响不大。JIN研究表明,温带土壤细菌群落多样性随着生物炭的增加而变大[28];而MARRIS研究发现生物炭的施用会降低土壤微生物的多样性[29]。白浆土、潮土、灰漠土和棕壤土上施用玉米芯生物炭,添加生物炭对不同类型土壤微生物群落多样性的影响不尽相同,但4种土壤短时间(15 d)内添加生物炭处理的多样性指标低于对照,而45 d后生物炭添加量为40 t·hm-2(相当于1.6%的用量)处理的多样性指数最高[26]。这表明土壤细菌群落多样性对生物炭的响应非常复杂,与生物炭类型、添加量及土壤类型均有关系。研究认为,因生物炭可直接被微生物所利用的组分含量有限[12],其对微生物群落结构的改变主要是通过间接途径实现,如影响土壤的养分状况、化学性质[20]和微生物细胞间信号物质的传递[21]等。本研究显示,在相同土壤类型和生物炭添加量下,油菜秸秆生物炭较玉米和水稻秸秆生物炭更利于提高黄壤细菌群落的丰富度和多样性(表3)。这可能是由于油菜秸秆生物炭的结构特性及组分,能够被更多不同的微生物群体所利用,其引起的微生物群落结构变化差异较大,增加了土壤细菌群落多样性。
3.2 生物炭对黄壤细菌群落组成的影响
对不同生物炭处理10大优势菌门的分析(图2)发现,Actinobacteria(放线菌门)、Cyanobacteria(蓝藻菌门)和Chloroflexi(绿弯菌门)是黄壤中相对丰度最高的3个菌门,占所有优势菌门的68%以上,表明在黄壤细菌群落中,放线菌、蓝藻菌和绿弯菌的生长能力较强。生物炭处理可以增加放线菌门丰度方面与大部分研究类似[25,26],而本研究中蓝藻菌门和绿弯菌门丰度的提高可能与土壤类型或生物炭种类有关。KHODADAD等[30]研究发现,生物炭的添加为降解顽固碳源的微生物提供了生长机会,放线菌可以有效地降解复杂的芳香类化合物,因此可以增加土壤中放线菌门丰度。本研究与一些研究[20,21,22]均表明,生物炭可以增加土壤的细菌丰度,但不同微生物类别对不同来源生物炭处理所产生的响应仍存有差异。如在纲水平上(表4),生物炭抑制了Actinobacteria(放线菌纲)和Anaerolineae(厌氧绳菌纲)的生长繁殖,而增加了其他菌纲的生长繁殖。水稻和油菜秸秆生物炭处理主要增加了Thermoleophilia(嗜热油菌纲)、Bacilli(芽孢杆菌纲)、Alphaproteobacteria(α-变形杆菌纲)和Gammaproteobacteria(丙型变形菌纲)四个菌纲的相对丰度;而玉米秸秆生物炭处理增加了Oscillatoriophycideae(颤藻亚纲)、Ellin6529、Chloroflexi(绿弯菌纲)和Thermomicrobia(热微菌)的相对丰度,说明这三种生物炭处理在提高细菌群落纲水平上具有补偿效应。尹昌等[31]对东北黑土 nir S型反硝化菌的系统发育分析表明,黑土中 nir S 型反硝化菌主要由α-、β-和γ-变形菌纲的微生物组成。本研究发现Alphaproteobacteria(α-变形杆菌纲)在水稻和油菜秸秆生物炭处理中丰度要明显高于CK和玉米秸秆生物炭处理(表4),而其他研究中的烟草秸秆生物炭降低了红壤中变形菌门丰度[32]。表明生物炭类型和土壤类型可能是引起土壤α-变形杆菌生长繁殖的重要因子。变形杆菌纲是反硝化细菌的组分,此菌纲丰度的提高可能会引起氮素发生反消化作用几率变大,引起氮素损失。因此推断,本研究中添加水稻和油菜秸秆生物炭致使黄壤中Alphaproteobacteria(α-变形杆菌纲)丰度变大,可能不利于黄壤固持氮素养分。同时,一些研究也表明生物炭因比表面积巨大、表面负电荷丰富和电荷密度较高等特点,决定其具有很强的吸附能力,可一定程度地影响着土壤的养分含量[33]。土壤养分的持留主要靠吸附作用来实现,如矿物质和有机质的吸附[33]。水稻田试验研究表明,生物炭与肥料合理配施的情况下,显著增强了土壤中NH4+-N和NO3--N的吸附与固持作用,降低了氮素损失,从而显著提高了水稻对氮的利用率[34]。还有研究通过生物炭作为尿素的包膜材料来实现持留氮素养分的作用,并得出竹炭包膜尿素可将氨挥发损失量比普通尿素减少16.7%—31.8%[35]。因此,生物炭对养分的持留作用可能大于细菌中变形杆菌纲丰度增加带来的负面影响,但这种强弱关系还有待进一步研究。细菌群落与土壤化学性质参数的冗余分析(图3)表明,土壤全氮对细菌群落的影响最显著,这与LIU 等[36]的研究结果是一致的。土壤C/N、有效磷、阳离子交换量和pH也对细菌群落有很大的影响,这可能与生物炭自身的养分含量和性质有关。土壤pH对细菌群落的丰度指数(ACE 和 Chao1 )和多样性指数(Simpson 和 Shannon)均呈现较强的正相关性;土壤C/N与ACE和Simpson相关性也较好,表明土壤pH和C/N可能是引起土壤中细菌群落多样性和丰富度变化的重要因子。高圣超等[37]研究发现,Gemmatimonadetes(芽单胞菌门)与土壤 pH 呈极显著正相关,Proteobacteria(变形菌门)与土壤全氮呈极显著正相关。本研究对优势细菌群落(门水平)与土壤化学性质的相关性分析(表5)表明,绝大多数优势菌门都与土壤化学因子有一定的相关性。其中Proteobacteria与C/N呈极显著正相关关系;Bacteroidetes与土壤全氮呈显著正相关关系,表明土壤全氮可能是影响Proteobacteria和Bacteroidetes丰度的重要因子。因此,生物炭的添加可能主要是通过影响土壤pH、C/N和全氮等土壤化学性质与土壤细菌菌群的相互作用来改变其群落组成的。
4 结论
生物炭明显改变了黄壤的化学性质、细菌群落结构与组成,在一定程度上缓解了土壤酸度。土壤全氮、碳氮比、pH、有效磷和阳离子交换量是改变黄壤细菌群落结构变化的重要环境因子,其中土壤全氮和pH又是提高土壤细菌群落多样性和丰富度的主控环境因子。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
.,
DOI:10.3321/j.issn:0564-3945.2000.03.005URL [本文引用: 1]
对我国红壤酸化的现状进行了初步分析 ,并对红壤酸化所产生的危害、影响红壤酸化的有关因素进行了相应的分析和讨论 ,提出了防治红壤酸化的有关技术措施和对策
DOI:10.3321/j.issn:0564-3945.2000.03.005URL [本文引用: 1]
对我国红壤酸化的现状进行了初步分析 ,并对红壤酸化所产生的危害、影响红壤酸化的有关因素进行了相应的分析和讨论 ,提出了防治红壤酸化的有关技术措施和对策
.,
[本文引用: 1]
[本文引用: 1]
.,
DOI:10.2307/1948629URL [本文引用: 1]
See full-text article at JSTOR
.,
[本文引用: 1]
.,
[本文引用: 1]
.,
DOI:10.1007/s11104-013-1636-xURL [本文引用: 1]
Two field microcosm experiments and N-15 labeling techniques were used to investigate the effects of biochar addition on rice N nutrition and GHG emissions in an Inceptisol and an Ultisol.Biochar N bioavailability and effect of biochar on fertilizer nitrogen-use efficiency (NUE) were studied by N-15-enriched wheat biochar (7.8803 atom% N-15) and fertilizer urea (5.0026 atom% N-15) (Experiment I). Corn biochar and corn stalks were applied at 12 Mg ha(-1) to study their effects on GHG emissions (Experiment II).Biochar had no significant impact on rice production and less than 2 % of the biochar N was available to plants in the first season. Biochar addition increased soil C and N contents and decreased urea NUE. Seasonal cumulative CH4 emissions with biochar were similar to the controls, but significantly lower than the local practice of straw amendment. N2O emissions with biochar were similar to the control in the acidic Ultisol, but significantly higher in the slightly alkaline Inceptisol. Carbon-balance calculations found no major losses of biochar-C.Low bio-availability of biochar N did not make a significantly impact on rice production or N nutrition during the first year. Replacement of straw amendments with biochar could decrease CH4 emissions and increase SOC stocks.
.,
DOI:10.1007/s11368-013-0803-2URL [本文引用: 1]
Purpose Few studies have examined the effects of biochar on nitrification of ammonium-based fertilizer in acidic arable soils, which contributes to NO 3 61 leaching and soil acidification. Materials and methods We conducted a 42-day aerobic incubation and a 119-day weekly leaching experiment to investigate nitrification, N leaching, and soil acidification in two subtropical soils to which 30002mg N02kg 611 ammonium sulfate or urea and 1 or 502wt% rice straw biochar were applied. Results and discussion During aerobic incubation, NO 3 61 accumulation was enhanced by applying biochar in increasing amounts from 1 to 502wt%. As a result, pH decreased in the two soils from the original levels. Under leaching conditions, biochar did not increase NO 3 61 , but 502wt% biochar addition did reduce N leaching compared to that in soils treated with only N. Consistently, lower amounts of added N were recovered from the incubation (KCl-extractable N) and leaching (leaching plus KCl-extractable N) experiments following 502wt% biochar application compared to soils treated with only N. Conclusions Incorporating biochar into acidic arable soils accelerates nitrification and thus weakens the liming effects of biochar. The enhanced nitrification does not necessarily increase NO 3 61 leaching. Rather, biochar reduces overall N leaching due to both improved N adsorption and increased unaccounted-for N (immobilization and possible gaseous losses). Further studies are necessary to assess the effects of biochar (when used as an addition to soil) on N.
.,
URL [本文引用: 1]
生物质炭是具有高度热稳定性和较强吸附特性的含碳物质,不同来源生物质炭的结构性质可能存在着很大的差异。为此对2种自制的不同来源生物质炭和1种商业黑炭进行了结构表征,并研究了添加生物质炭对土壤有效养分和腐殖质组成的影响。结果表明,不同来源的生物质炭在结构上有明显区别:秸秆生物质炭的芳构化程度和热稳定性最低,脂族性最强;商业黑炭缩合程度和热稳定性最高,脂族性最弱;松枝生物质炭介于二者之间。向土壤中添加秸秆生物质炭和松枝生物质炭培养45d后,土壤有机碳含量、胡敏酸和富里酸含量、有效养分含量都有不同程度的增加,同时胡敏酸的色调系数ΔlgK降低,对土壤有机碳的长期保存有积极意义。
URL [本文引用: 1]
生物质炭是具有高度热稳定性和较强吸附特性的含碳物质,不同来源生物质炭的结构性质可能存在着很大的差异。为此对2种自制的不同来源生物质炭和1种商业黑炭进行了结构表征,并研究了添加生物质炭对土壤有效养分和腐殖质组成的影响。结果表明,不同来源的生物质炭在结构上有明显区别:秸秆生物质炭的芳构化程度和热稳定性最低,脂族性最强;商业黑炭缩合程度和热稳定性最高,脂族性最弱;松枝生物质炭介于二者之间。向土壤中添加秸秆生物质炭和松枝生物质炭培养45d后,土壤有机碳含量、胡敏酸和富里酸含量、有效养分含量都有不同程度的增加,同时胡敏酸的色调系数ΔlgK降低,对土壤有机碳的长期保存有积极意义。
.,
DOI:10.3969/j.issn.1674-5906.2010.11.034URL [本文引用: 1]
采用田间盆栽试验,研究了生物炭(biochar)对玉米(Gramineae)苗期生长(60 d)及土壤化学性质的影响。结果表明,在玉米苗期的前33 d,生物炭(48 t.hm-2)对玉米株高的生长有显著抑制作用,但随着玉米的生长发育,生物炭的抑制作用逐渐消失。收获时(播种后60 d),生物炭对玉米植株干质量,N、P养分的吸收量没有显著影响;生物炭(12、48 t.hm-2)能显著提高土壤全N、有机碳质量分数,但对土壤全P、有效P、pH值没有显著影响。土壤全N、有机碳质量分数与生物炭用量(0、2.4、12、48 t.hm-2)为显著正相关(n=12,p〈0.01)。
DOI:10.3969/j.issn.1674-5906.2010.11.034URL [本文引用: 1]
采用田间盆栽试验,研究了生物炭(biochar)对玉米(Gramineae)苗期生长(60 d)及土壤化学性质的影响。结果表明,在玉米苗期的前33 d,生物炭(48 t.hm-2)对玉米株高的生长有显著抑制作用,但随着玉米的生长发育,生物炭的抑制作用逐渐消失。收获时(播种后60 d),生物炭对玉米植株干质量,N、P养分的吸收量没有显著影响;生物炭(12、48 t.hm-2)能显著提高土壤全N、有机碳质量分数,但对土壤全P、有效P、pH值没有显著影响。土壤全N、有机碳质量分数与生物炭用量(0、2.4、12、48 t.hm-2)为显著正相关(n=12,p〈0.01)。
.,
DOI:10.1016/j.biortech.2010.11.018URLPMID:21112777 [本文引用: 2]
The forms of alkalis of the biochars produced from the straws of canola, corn, soybean and peanut at different temperatures (300, 500 and 700°C) were studied by means of oxygen-limited pyrolysis. The alkalinity and pH of the biochars increased with increased pyrolysis temperature. The X-ray diffraction spectra and the content of carbonates of the biochars suggested that carbonates were the major alkaline components in the biochars generated at the high temperature; they were also responsible for the strong buffer plateau-regions on the acid–base titration curves at 500 and 700°C. The data of FTIR–PAS and zeta potentials indicated that the functional groups such as –COO61 (–COOH) and –O61 (–OH) contained by the biochars contributed greatly to the alkalinity of the biochar samples tested, especially for those generated at the lower temperature. These functional groups were also responsible for the negative charges of the biochars.
[本文引用: 1]
.,
DOI:10.1016/j.soilbio.2011.04.022URL [本文引用: 3]
Soil amendment with biochar is evaluated globally as a means to improve soil fertility and to mitigate climate change. However, the effects of biochar on soil biota have received much less attention than its effects on soil chemical properties. A review of the literature reveals a significant number of early studies on biochar-type materials as soil amendments either for managing pathogens, as inoculant carriers or for manipulative experiments to sorb signaling compounds or toxins. However, no studies exist in the soil biology literature that recognize the observed large variations of biochar physico-chemical properties. This shortcoming has hampered insight into mechanisms by which biochar influences soil microorganisms, fauna and plant roots. Additional factors limiting meaningful interpretation of many datasets are the clearly demonstrated sorption properties that interfere with standard extraction procedures for soil microbial biomass or enzyme assays, and the confounding effects of varying amounts of minerals. In most studies, microbial biomass has been found to increase as a result of biochar additions, with significant changes in microbial community composition and enzyme activities that may explain biogeochemical effects of biochar on element cycles, plant pathogens, and crop growth. Yet, very little is known about the mechanisms through which biochar affects microbial abundance and community composition. The effects of biochar on soil fauna are even less understood than its effects on microorganisms, apart from several notable studies on earthworms. It is clear, however, that sorption phenomena, pH and physical properties of biochars such as pore structure, surface area and mineral matter play important roles in determining how different biochars affect soil biota. Observations on microbial dynamics lead to the conclusion of a possible improved resource use due to co-location of various resources in and around biochars. Sorption and thereby inactivation of growth-inhibiting substances likely plays a role for increased abundance of soil biota. No evidence exists so far for direct negative effects of biochars on plant roots. Occasionally observed decreases in abundance of mycorrhizal fungi are likely caused by concomitant increases in nutrient availability, reducing the need for symbionts. In the short term, the release of a variety of organic molecules from fresh biochar may in some cases be responsible for increases or decreases in abundance and activity of soil biota. A road map for future biochar research must include a systematic appreciation of different biochar-types and basic manipulative experiments that unambiguously identify the interactions between biochar and soil biota.
.,
DOI:10.2136/sssaj2008.0232URL [本文引用: 3]
Wildfire-produced charcoal is a common component of soils, affecting a range of important abiotic and biotic soil processes. Our ability to predict the effects of charcoal addition to soil is currently limited, however, by our understanding of how charcoal affects the soil microbial community mediating many of these processes. This study sought to improve our understanding of the relationship b...
.,
DOI:10.1016/j.soilbio.2009.03.016URL [本文引用: 2]
We investigated the behavior of biochars in arable and forest soil in a greenhouse experiment in order to prove that these amendments can increase carbon storage in soils. Two qualities of biochar were produced by hydrothermal pyrolysis from 13C labeled glucose (0% N) and yeast (5% N), respectively. We quantified respiratory losses of soil and biochar carbon and calculated mean residence times of the biochars using the isotopic label. Extraction of phospholipid fatty acids from soil at the beginning and after 4 months of incubation was used to quantify changes in microbial biomass and to identify microbial groups utilizing the biochars. Mean residence times varied between 4 and 29 years, depending on soil type and quality of biochar. Yeast-derived biochar promoted fungi in the soil, while glucose-derived biochar was utilized by Gram-negative bacteria. Our results suggest that residence times of biochar in soils can be manipulated with the aim to “design” the best possible biochar for a given soil type.
.,
URL [本文引用: 1]
根据国家石漠化综合治理草地畜牧业工程需要,应用生态学、植物学、营养学等学科理论,综述了贵州省喀斯特石漠化地区饲用灌木资源,并对其利用价值进行综合评价,指出以多花木兰(Magnolia multiflora)、紫穗槐(Amorpha fruticosa)、杭子梢(Campylotropis macrocarpa)等为代表的饲用灌木不但营养价值丰富,而且其抗逆性强,具有综合开发利用价值,并对喀斯特石漠化地区饲用灌木开发利用存在的问题进行分析,提出了解决对策,指出大力发展以饲用灌木为主的非常规饲料加工业是喀斯特石漠化地区发展生态畜牧业的重要保障,也是石漠化综合治理过程中提高植被覆盖率的有效途径。
URL [本文引用: 1]
根据国家石漠化综合治理草地畜牧业工程需要,应用生态学、植物学、营养学等学科理论,综述了贵州省喀斯特石漠化地区饲用灌木资源,并对其利用价值进行综合评价,指出以多花木兰(Magnolia multiflora)、紫穗槐(Amorpha fruticosa)、杭子梢(Campylotropis macrocarpa)等为代表的饲用灌木不但营养价值丰富,而且其抗逆性强,具有综合开发利用价值,并对喀斯特石漠化地区饲用灌木开发利用存在的问题进行分析,提出了解决对策,指出大力发展以饲用灌木为主的非常规饲料加工业是喀斯特石漠化地区发展生态畜牧业的重要保障,也是石漠化综合治理过程中提高植被覆盖率的有效途径。
.,
DOI:10.3969/j.issn.1001-3601.2015.08.064URL [本文引用: 1]
为深入了解目前贵州农作物秸秆资源分布特征及其资源化利用情况,基于《贵州统计年鉴》(2004—2013年)及实地调查数据,对近几年贵州播种面积较大且秸秆系数较大的农作物(水稻、玉米、油菜和烤烟)秸秆资源分布及利用现状进行调查统计。结果表明:1)全省以水稻和玉米播种面积最大,各市州4类农作物播种总面积以遵义市最大,达488.04khm2;六盘水市最低,仅为95.78khm2。2)全省以水稻和玉米秸秆产量最大,油菜和烤烟次之,2003—2012年水稻秸秆量有明显下降趋势,产量为300~480万t;玉米秸秆产量呈先增加后降低趋势,2010年全省玉米秸秆产量最大,达382.20万t;油菜秸秆量除少数年份低于200万t,其余年份均在200~260万t波动;烤烟秸秆量也逐年增加,2008年最高达34.69万t。3)全省秸秆分布最多市州为遵义市、毕节地区、黔南州、铜仁地区、黔东南州和黔西南州,其中,遵义市年均秸秆产量最高(259.30万t),贵阳市和六盘水市最低(分别为62.39万t和60.44万t)。
DOI:10.3969/j.issn.1001-3601.2015.08.064URL [本文引用: 1]
为深入了解目前贵州农作物秸秆资源分布特征及其资源化利用情况,基于《贵州统计年鉴》(2004—2013年)及实地调查数据,对近几年贵州播种面积较大且秸秆系数较大的农作物(水稻、玉米、油菜和烤烟)秸秆资源分布及利用现状进行调查统计。结果表明:1)全省以水稻和玉米播种面积最大,各市州4类农作物播种总面积以遵义市最大,达488.04khm2;六盘水市最低,仅为95.78khm2。2)全省以水稻和玉米秸秆产量最大,油菜和烤烟次之,2003—2012年水稻秸秆量有明显下降趋势,产量为300~480万t;玉米秸秆产量呈先增加后降低趋势,2010年全省玉米秸秆产量最大,达382.20万t;油菜秸秆量除少数年份低于200万t,其余年份均在200~260万t波动;烤烟秸秆量也逐年增加,2008年最高达34.69万t。3)全省秸秆分布最多市州为遵义市、毕节地区、黔南州、铜仁地区、黔东南州和黔西南州,其中,遵义市年均秸秆产量最高(259.30万t),贵阳市和六盘水市最低(分别为62.39万t和60.44万t)。
.,
DOI:10.1128/JB.01224-08URL [本文引用: 1]
[本文引用: 3]
[本文引用: 3]
[本文引用: 3]
[本文引用: 3]
.,
DOI:10.3969/j.issn.1674-7968.2016.11.013URL [本文引用: 3]
为了揭示连作条件下植烟土壤细菌群落结构及其与土壤环境间的响应关系,本研究采用了Illumina平台Hiseq2500高通量测序技术,对不同施肥处理(常规施肥,蚯蚓粪肥,微生物菌肥以及蚯蚓粪和微生物菌肥混合)的漯河烟区连作植烟土壤细菌进行16S r RNA V4区测序,结合冗余分析(redundancy analysis,RDA)研究土壤细菌微生物的群落结构组成、多样性以及与土壤环境间的相关关系。结果表明,测序质控后共获得25 203个操作分类单元(operational taxonomic units,OTUs),计1 600 239条读数。分层聚类图显示,不同施肥处理的连作植烟土壤细菌群落有较大差异,但这种差异不体现在结构多样性上。多样性指数分析表明,连作植烟土壤细菌群落易受环境变化的影响,体现出一定的时间差异性;烤烟成熟期土壤丰度指数明显升高,微生物菌肥和蚯蚓粪肥处理下土壤细菌群落丰度变化较大。主成分分析表明,不同土壤环境因子间有很强的相关关系,可以将原有的11个土壤环境因子按照强正相关关系划分为4类;RDA结果表明,土壤p H既影响土壤细菌群落的多样性,又影响土壤细菌群落的丰度;而有机质主要对土壤细菌群落丰度有积极影响。研究结果为在微生物水平上研究连作植烟障碍的形成机理提供了依据。
DOI:10.3969/j.issn.1674-7968.2016.11.013URL [本文引用: 3]
为了揭示连作条件下植烟土壤细菌群落结构及其与土壤环境间的响应关系,本研究采用了Illumina平台Hiseq2500高通量测序技术,对不同施肥处理(常规施肥,蚯蚓粪肥,微生物菌肥以及蚯蚓粪和微生物菌肥混合)的漯河烟区连作植烟土壤细菌进行16S r RNA V4区测序,结合冗余分析(redundancy analysis,RDA)研究土壤细菌微生物的群落结构组成、多样性以及与土壤环境间的相关关系。结果表明,测序质控后共获得25 203个操作分类单元(operational taxonomic units,OTUs),计1 600 239条读数。分层聚类图显示,不同施肥处理的连作植烟土壤细菌群落有较大差异,但这种差异不体现在结构多样性上。多样性指数分析表明,连作植烟土壤细菌群落易受环境变化的影响,体现出一定的时间差异性;烤烟成熟期土壤丰度指数明显升高,微生物菌肥和蚯蚓粪肥处理下土壤细菌群落丰度变化较大。主成分分析表明,不同土壤环境因子间有很强的相关关系,可以将原有的11个土壤环境因子按照强正相关关系划分为4类;RDA结果表明,土壤p H既影响土壤细菌群落的多样性,又影响土壤细菌群落的丰度;而有机质主要对土壤细菌群落丰度有积极影响。研究结果为在微生物水平上研究连作植烟障碍的形成机理提供了依据。
.,
DOI:10.11654/jaes.2014.04.019URL [本文引用: 3]
以小麦-玉米轮作试验为研究对象,探究了施用不同量生物炭对塿土土壤生物活性动态变化的影响。生物炭用量设5个水平:B0(0 t·hm^-2)、B20(20 t·hm^-2)、B40(40 t·hm^-2)、B60(60 t·hm^-2)和B80(80 t·hm^-2),氮磷钾肥均作基肥施用。结果表明:生物炭可显著提高土壤脲酶、过氧化氢酶和玉米收获后碱性磷酸酶活性,但对蔗糖酶和小麦季碱性磷酸酶活性影响不显著,且显著提高土壤酶指数;提高土壤微生物量碳氮含量,用量为80 t·hm^-2时效果最显著,但降低土壤微生物量碳氮比;显著增加土壤三大类微生物类群的数量,增幅随其用量的增加而增加。动态变化显示,越冬期的土壤微生物量碳氮含量最低,但微生物量碳在拔节期出现高峰,而土壤微生物量氮在返青期出现高峰,与作物生育旺盛时期一致;显著减少微生物量碳和微生物量碳氮比的季节波动。施用生物炭可显著改善土壤微生物和酶活性,土壤酶指数为土壤酶活性的综合表征,可全面反映土壤酶活性对生物炭的响应特征,能够作为一种土壤质量评价方法。
DOI:10.11654/jaes.2014.04.019URL [本文引用: 3]
以小麦-玉米轮作试验为研究对象,探究了施用不同量生物炭对塿土土壤生物活性动态变化的影响。生物炭用量设5个水平:B0(0 t·hm^-2)、B20(20 t·hm^-2)、B40(40 t·hm^-2)、B60(60 t·hm^-2)和B80(80 t·hm^-2),氮磷钾肥均作基肥施用。结果表明:生物炭可显著提高土壤脲酶、过氧化氢酶和玉米收获后碱性磷酸酶活性,但对蔗糖酶和小麦季碱性磷酸酶活性影响不显著,且显著提高土壤酶指数;提高土壤微生物量碳氮含量,用量为80 t·hm^-2时效果最显著,但降低土壤微生物量碳氮比;显著增加土壤三大类微生物类群的数量,增幅随其用量的增加而增加。动态变化显示,越冬期的土壤微生物量碳氮含量最低,但微生物量碳在拔节期出现高峰,而土壤微生物量氮在返青期出现高峰,与作物生育旺盛时期一致;显著减少微生物量碳和微生物量碳氮比的季节波动。施用生物炭可显著改善土壤微生物和酶活性,土壤酶指数为土壤酶活性的综合表征,可全面反映土壤酶活性对生物炭的响应特征,能够作为一种土壤质量评价方法。
.,
DOI:10.3864/j.issn.0578-1752.2013.18.014URL [本文引用: 2]
【Objective】 Effects of organic fertilizer and biochar on root system and microbial functional diversity in soil planted with the biennial seedling Malus hupehensis Rehd were studied. Meanwhile, the effect of increasing soil carbon on soil quality and plants were evaluated to provide a theoretical basis for sustainable development of orchard. 【Method】The biennial seedlings of M. hupehensis Rehd was planted in a pot experiment. The root system of plants and microbial functional diversity were analyzed by adding different amounts of organic fertilizer and biochar【Result】The quantity and area of fine absorbing root, the population of bacteria in soil and rhizosphere, the FDA enzyme activity and the microbial functional diversity were improved by application of organic fertilizer or biochar, and combined application of both were proved to be even more effective. Biochar was predominant in increasing area of fine absorbing root, while disadvantaged in improving microbial functional diversity, compared with organic fertilizer. The area of fine absorbing root in 10% organic fertilizer and 6% biochar, 10% organic fertilizer and 3% biochar, 10% organic fertilizer, 6% biochar and 3% biochar was 6.6,10, 2.5, 3.3 and 3.1 times than that of CK.The population of bacteria, actinomycetes and fungi in soil of treatments were 3.32-10.23, 1.2-1.97 and 3.24-5.26 times as much as the control group. The largest amount of rhizosphere actinomycetes was obtained after application of organic fertilizer, while application of 3% rhizosphere biochar corresponded to the largest amount of rhizosphere fungi. 【Conclusion】The root system of plants and microbial functional diversity in soil can be improved by increasing soil carbon, which is beneficial to soil fertilizer and sustainable development of agriculture.
DOI:10.3864/j.issn.0578-1752.2013.18.014URL [本文引用: 2]
【Objective】 Effects of organic fertilizer and biochar on root system and microbial functional diversity in soil planted with the biennial seedling Malus hupehensis Rehd were studied. Meanwhile, the effect of increasing soil carbon on soil quality and plants were evaluated to provide a theoretical basis for sustainable development of orchard. 【Method】The biennial seedlings of M. hupehensis Rehd was planted in a pot experiment. The root system of plants and microbial functional diversity were analyzed by adding different amounts of organic fertilizer and biochar【Result】The quantity and area of fine absorbing root, the population of bacteria in soil and rhizosphere, the FDA enzyme activity and the microbial functional diversity were improved by application of organic fertilizer or biochar, and combined application of both were proved to be even more effective. Biochar was predominant in increasing area of fine absorbing root, while disadvantaged in improving microbial functional diversity, compared with organic fertilizer. The area of fine absorbing root in 10% organic fertilizer and 6% biochar, 10% organic fertilizer and 3% biochar, 10% organic fertilizer, 6% biochar and 3% biochar was 6.6,10, 2.5, 3.3 and 3.1 times than that of CK.The population of bacteria, actinomycetes and fungi in soil of treatments were 3.32-10.23, 1.2-1.97 and 3.24-5.26 times as much as the control group. The largest amount of rhizosphere actinomycetes was obtained after application of organic fertilizer, while application of 3% rhizosphere biochar corresponded to the largest amount of rhizosphere fungi. 【Conclusion】The root system of plants and microbial functional diversity in soil can be improved by increasing soil carbon, which is beneficial to soil fertilizer and sustainable development of agriculture.
.,
DOI:10.1007/s11104-011-1067-5URL [本文引用: 1]
Background and Aims Biochar has been shown to aid soil fertility and crop production in some circumstances. We investigated effects of the addition of Jarrah ( Eucalyptus marginata ) biochar to a coarse textured soil on soil carbon and nitrogen dynamics. Methods Wheat was grown for 1002weeks, in soil treated with biochar (0, 5, or 2502t ha 611 ) in full factorial combination with nitrogen (N) treatments (organic N, inorganic N, or control). Samples were analysed for plant biomass, soil microbial biomass carbon (MBC) and nitrogen (MBN), N mineralisation, CO 2 evolution, community level physiological profiles (CLPP) and ammonia oxidising bacterial community structure. Results MBC significantly decreased with biochar addition while MBN was unaltered. Net N mineralisation was highest in control soil and significantly decreased with increasing addition of biochar. These findings could not be attributed to sorption of inorganic N to biochar. CO 2 evolution decreased with 502t ha 611 biochar but not 2502t ha 611 . Biochar addition at 2502t ha 611 changed the CLPP, while the ammonia oxidising bacterial community structure changed only when biochar was added with a N source. Conclusion We conclude that the activity of the microbial community decreased in the presence of biochar, through decreased soil organic matter decomposition and N mineralisation which may have been caused by the decreased MBC.
.,
[本文引用: 2]
[本文引用: 2]
.,
[本文引用: 3]
[本文引用: 3]
.,
DOI:10.13930/j.cnki.cjea.151212URL [本文引用: 4]
生物炭施入土壤被认为是一种有效的固碳减排措施,可增加土壤有机碳及矿质养分含量,提高土壤的持水能力及保肥能力。为探明其施入土壤后对土壤微生物活性及多样性的影响,本文在盆栽试验条件下,采用Biolog与高通量测序相结合的方法,研究了CK(不施生物炭)和施用5 g·kg^(-1)、10 g·kg^(-1)、30 g·kg^(-1)、60 g·kg^(-1)玉米秸秆生物炭对土壤微生物碳源利用能力(AWCD)、功能多样性指数以及土壤细菌的丰度和多样性的影响。结果表明,随着生物炭施用量的增加,表征土壤微生物活性的AWCD值呈下降趋势,表现为:5 g·kg^(-1)处理≈CK〉10 g·kg^(-1)处理〉30 g·kg^(-1)处理〉60 g·kg^(-1)处理,其中CK和5 g·kg^(-1)处理间差异不显著(P〉0.05),而10 g·kg^(-1)、30 g·kg^(-1)和60 g·kg^(-1)处理在整个培养期间的AWCD值显著低于CK处理(P〈0.05);土壤微生物群落代谢功能多样性指数(H′)、碳源利用丰富度指数(S)均随生物炭施用量的增加而呈下降趋势,但均匀度指数(E)表现出相反趋势,5g·kg^(-1)、10 g·kg^(-1)、30 g·kg^(-1)、60 g·kg^(-1)各处理的H′较CK处理分别增加0.16%、-0.88%、-3.14%、-11.09%,S分别增加-2.82%、-11.27%、-18.31%、-47.89%,E分别增加1.14%、3.00%、3.73%和13.76%。主成分分析表明,与CK处理比较,5 g·kg^(-1)处理对土壤微生物群落碳源利用方式没有显著影响(P〉0.05),而10 g·kg^(-1)、30 g·kg^(-1)和60g·kg^(-1)处理对土壤微生物群落碳源利用方式影响显著(P〈0.05)。随着生物炭施用量的增加,土壤细菌OTU数目及丰富度指数(Chao1)呈增加趋势,5 g·kg^(-1)处理与CK处理差异不显著,而10 g·kg^(-1)、30 g·kg^(-1)、60 g·kg^(-1)处理的OTU数目较CK处理分别增加1.09%、5.26%、24.42%,Chao1分别增加5.73%、10.21%、37.68%。土壤中施用生物炭后土壤17
DOI:10.13930/j.cnki.cjea.151212URL [本文引用: 4]
生物炭施入土壤被认为是一种有效的固碳减排措施,可增加土壤有机碳及矿质养分含量,提高土壤的持水能力及保肥能力。为探明其施入土壤后对土壤微生物活性及多样性的影响,本文在盆栽试验条件下,采用Biolog与高通量测序相结合的方法,研究了CK(不施生物炭)和施用5 g·kg^(-1)、10 g·kg^(-1)、30 g·kg^(-1)、60 g·kg^(-1)玉米秸秆生物炭对土壤微生物碳源利用能力(AWCD)、功能多样性指数以及土壤细菌的丰度和多样性的影响。结果表明,随着生物炭施用量的增加,表征土壤微生物活性的AWCD值呈下降趋势,表现为:5 g·kg^(-1)处理≈CK〉10 g·kg^(-1)处理〉30 g·kg^(-1)处理〉60 g·kg^(-1)处理,其中CK和5 g·kg^(-1)处理间差异不显著(P〉0.05),而10 g·kg^(-1)、30 g·kg^(-1)和60 g·kg^(-1)处理在整个培养期间的AWCD值显著低于CK处理(P〈0.05);土壤微生物群落代谢功能多样性指数(H′)、碳源利用丰富度指数(S)均随生物炭施用量的增加而呈下降趋势,但均匀度指数(E)表现出相反趋势,5g·kg^(-1)、10 g·kg^(-1)、30 g·kg^(-1)、60 g·kg^(-1)各处理的H′较CK处理分别增加0.16%、-0.88%、-3.14%、-11.09%,S分别增加-2.82%、-11.27%、-18.31%、-47.89%,E分别增加1.14%、3.00%、3.73%和13.76%。主成分分析表明,与CK处理比较,5 g·kg^(-1)处理对土壤微生物群落碳源利用方式没有显著影响(P〉0.05),而10 g·kg^(-1)、30 g·kg^(-1)和60g·kg^(-1)处理对土壤微生物群落碳源利用方式影响显著(P〈0.05)。随着生物炭施用量的增加,土壤细菌OTU数目及丰富度指数(Chao1)呈增加趋势,5 g·kg^(-1)处理与CK处理差异不显著,而10 g·kg^(-1)、30 g·kg^(-1)、60 g·kg^(-1)处理的OTU数目较CK处理分别增加1.09%、5.26%、24.42%,Chao1分别增加5.73%、10.21%、37.68%。土壤中施用生物炭后土壤17
.,
DOI:10.1034/j.1600-0706.2000.890203.xURL [本文引用: 1]
Wildfires produce a charcoal layer, which has an adsorbing capacity resembling activated carbon. After the fire a new litter layer starts to accumulate on top of the charcoal layer, which liberates water-soluble compounds that percolate through the charcoal and the unburned humus layer. We first hypothesized that since charcoal has the capacity to adsorb organic compounds it may form a new habitat for microbes, which decompose the adsorbed compounds. Secondly, we hypothesized that the charcoal may cause depletion of decomposable organic carbon in the underlying humus and thus reduce the microbial biomass. To test our hypotheses we prepared microcosms, where we placed non-heated humus and on top one of the adsorbents: non-adsorptive pumice (Pum), charcoal from Empetrum nigrum (EmpCh), charcoal from humus (HuCh) or activated carbon (ActC). We watered them with birch leaf litter extract. The adsorbing capacity increased in the order Pum<HuCh<EmpCh<ActC, the adsorbents being capable of removing 0%, 26%, 42% and 51% of the dissolved C org in the litter extract, respectively. After one month, all adsorbents harboured microbes, but their amount and basal respiration was largest in EmpCh and HuCh, and smallest in Pum. In addition, different kinds of microbial communities with respect to their phospholipid fatty acid and substrate utilization patterns were formed in the adsorbents. The amount of microbial biomass and number of bacteria did not differ between humus under different adsorbents, although different microbial communities developed in humus under EmpCh compared with Pum, which is obviously related to the increased pH of the humus under EmpCh, and also ActC. We suggest that charcoal from burning can support microbial communities, which are small in size but have a higher specific growth rate than those of the humus. Although the charcoal layer induces changes in the microbial community of the humus, it does not reduce the amount of humus microbes.
[本文引用: 1]
.,
DOI:10.1057/9780230105973URL [本文引用: 1]
THE INTERSECTION of ongoing structural shifts in international energy markets with strategic trends in global financial markets poses the most profound challenge to American hegemony since the end of the Cold War. In 2006, Pierre Noel and I wrote in these pages about an "axis of oil"--a loose and shifting coalition of energy-exporting and -importing states, anchored by Russia and China, that is emerging as a counterweight to the United States (so far, most notably in Central Asia and, increasingly, in Iran). (1) The ability of such a coalition to resist American hegemony is now compounded by the vulnerability of the United States to financial and monetary pressure by its major international creditors-most of which are at least putative members of the axis of oil.
.,
DOI:10.1016/j.soilbio.2010.11.005URL [本文引用: 1]
The effects of pyrogenic carbon on the microbial diversity of forest soils were examined by comparing two soil types, fire-impacted and non-impacted, that were incubated with laboratory-generated biochars. Molecular and culture-dependent analyses of the biochar-treated forest soils revealed shifts in the relative abundance and diversity of key taxa upon the addition of biochars, which were dependent on biochar and soil type. Specifically, there was an overall loss of microbial diversity in all soils treated with oak and grass-derived biochar as detected by automated ribosomal intergenic spacer analysis. Although the overall diversity decreased upon biochar amendments, there were increases in specific taxa during biochar-amended incubation. DNA sequencing of these taxa revealed an increase in the relative abundance of bacteria within the phyla Actinobacteria and Gemmatimonadetes in biochar-treated soils. Together, these results reveal a pronounced impact of pyrogenic carbon on soil microbial community composition and an enrichment of key taxa within the parent soil microbial community.
.,
URL [本文引用: 1]
利用末端限制性片段长度多态性 (T-RFLP)和实时荧光定量PCR(real-time quantitative PCR,Q-PCR)技术,结合反硝化潜势(DEA)和土壤理化性质的测定,探索了长期施用有机和无机肥对公主岭黑土nirS型反硝化细菌的群落结构和丰 度的影响.试验设不施肥(CK)、单施有机肥(OM)、单施无机肥(NPK)以及有机肥和无机肥混施(MNPK)等4个处理.结果表明,长期施用有机肥显 著增加了土壤的DEA,其中OM、NPK和MNPK处理分别为CK处理的5.92、1.81和6.03倍,而NPK和CK间无差异.有机肥处理增加了黑土 nirS型反硝化细菌的丰度,OM、NPK和MNPK处理中nirS基因的拷贝数分别为CK的2.73、1.30和3.98倍;NPK处理对nirS基因 的拷贝数影响不显著.T-RFLP图谱显示施用有机肥改变了nirS反硝化细菌的群落结构;相比于非有机肥处理,有机肥处理中增加了一类79 bp的片段类型,显著降低了84 bp的片段类型,并完全抑制了一类99 bp的片段类型,而有机肥处理间和非有机肥处理间的nirS群落结构分别相似.系统发育分析表明:黑土中nirS型反硝化菌主要由α、β和γ-变形菌纲及 一些尚未培养的微生物组成,79 bp的片段类型与γ-变形菌纲的假单胞菌科(Pseudomonadaceae)和β-变形菌纲的伯克氏菌目(Burkholderiales)相 似,84 bp片段类型与Burkholderiales和红环菌目(Rhodocyclales)相似.相关性分析表明,pH、全磷(TP)、全氮(TN)、总有 机碳(TOC)、硝态氮(NO3--N)和铵态氮(NH4+-N)依次与nirS型反硝化细菌的种群丰度(r为0.724~0.922,P0.05)和 DEA(r为0.453~0.938,P0.01)显著相关,DEA与nirS型反硝化细菌的种群丰度显著线性正相关(r=0.85,P0.01);冗余 度分析表明,除含水量外,TN、TP、pH、TOC、NH4+-N和NO3--N(r为0.440~0.862,P0.01)依次与nirS型反硝化细菌 群落结构的变化显著相关,DEA的变化和nirS型反硝化细菌群落结构的变化亦显著相关(r=0.863,P0.01).本研究表明相比于无机肥处理,公 主岭黑土中nirS型反硝化菌的群落结构与丰度对有机肥处理有更显著的响应,且其群落结构的改变与种群丰度的增加与DEA的提高显著相关.
URL [本文引用: 1]
利用末端限制性片段长度多态性 (T-RFLP)和实时荧光定量PCR(real-time quantitative PCR,Q-PCR)技术,结合反硝化潜势(DEA)和土壤理化性质的测定,探索了长期施用有机和无机肥对公主岭黑土nirS型反硝化细菌的群落结构和丰 度的影响.试验设不施肥(CK)、单施有机肥(OM)、单施无机肥(NPK)以及有机肥和无机肥混施(MNPK)等4个处理.结果表明,长期施用有机肥显 著增加了土壤的DEA,其中OM、NPK和MNPK处理分别为CK处理的5.92、1.81和6.03倍,而NPK和CK间无差异.有机肥处理增加了黑土 nirS型反硝化细菌的丰度,OM、NPK和MNPK处理中nirS基因的拷贝数分别为CK的2.73、1.30和3.98倍;NPK处理对nirS基因 的拷贝数影响不显著.T-RFLP图谱显示施用有机肥改变了nirS反硝化细菌的群落结构;相比于非有机肥处理,有机肥处理中增加了一类79 bp的片段类型,显著降低了84 bp的片段类型,并完全抑制了一类99 bp的片段类型,而有机肥处理间和非有机肥处理间的nirS群落结构分别相似.系统发育分析表明:黑土中nirS型反硝化菌主要由α、β和γ-变形菌纲及 一些尚未培养的微生物组成,79 bp的片段类型与γ-变形菌纲的假单胞菌科(Pseudomonadaceae)和β-变形菌纲的伯克氏菌目(Burkholderiales)相 似,84 bp片段类型与Burkholderiales和红环菌目(Rhodocyclales)相似.相关性分析表明,pH、全磷(TP)、全氮(TN)、总有 机碳(TOC)、硝态氮(NO3--N)和铵态氮(NH4+-N)依次与nirS型反硝化细菌的种群丰度(r为0.724~0.922,P0.05)和 DEA(r为0.453~0.938,P0.01)显著相关,DEA与nirS型反硝化细菌的种群丰度显著线性正相关(r=0.85,P0.01);冗余 度分析表明,除含水量外,TN、TP、pH、TOC、NH4+-N和NO3--N(r为0.440~0.862,P0.01)依次与nirS型反硝化细菌 群落结构的变化显著相关,DEA的变化和nirS型反硝化细菌群落结构的变化亦显著相关(r=0.863,P0.01).本研究表明相比于无机肥处理,公 主岭黑土中nirS型反硝化菌的群落结构与丰度对有机肥处理有更显著的响应,且其群落结构的改变与种群丰度的增加与DEA的提高显著相关.
.,
[本文引用: 1]
[本文引用: 1]
.,
DOI:10.1007/s00374-004-0804-9URL [本文引用: 2]
In tropical areas, where crop production is limited by low soil quality, the development of techniques improving soil fertility without damage to the environment is a priority. In French Guiana , we used subsistence farmer plots on poor acidic soils to test the effect of different organic amendments, bitter manioc peel (M), sawdust (Sw) and charcoal (Ch), on soil nutrient content, earthworm abundance and yard-long bean ( Vigna unguiculata sesquipedalis ) production. The peregrine Pontoscolex corethrurus was the only earthworm species found. Pod production and plant growth were lowest in unamended soil. The application of a mixture of manioc peel and charcoal (M + Ch) improved legume production compared with other organic mixtures. It combined the favourable effects of manioc peel and charcoal. Manioc peel improved soil fertility through its low C:N ratio and its high P content, while charcoal decreased soil acidity and exchangeable Al and increased Ca and Mg availability, thus alleviating the possible toxic effects of Al on plant growth. The M + Ch treatment was favourable to P. corethrurus , the juvenile population of which reached a size comparable to that of the nearby uncultivated soil. The application of a mixture of manioc peel and charcoal, by improving crop production and soil fertility and enhancing earthworm activity, could be a potentially efficient organic manure for legume production in tropical areas where manioc is cultivated under slash-and-burn shifting agriculture.
.,
DOI:10.1007/s11104-007-9391-5URL [本文引用: 1]
.,
DOI:10.3969/j.issn.1674-9057.2008.01.024URL [本文引用: 1]
采用“静态吸收法”研究了自制竹炭包膜尿素(BCCU)在土壤中的氨挥发损失情况,以及施肥量、土壤含水量、土壤温度和土壤类型等因素对氨挥发损失的影响。结果表明,自制的竹炭包膜尿素氨挥发损失量显著减少。在每千克土壤中,施氮600mg时,两种包膜氮肥氨挥发损失量分别比尿素减少31.8%和19.3%;施氮1000mg时,两种包膜氮肥氨挥发损失量分别比尿素减少21.82%和16.66%。在两个施肥水平下,供试氮肥的氨挥发损失量随时间的变化关系均可用Elovich动力学方程Yt=α+blnt来描述。土壤含水量和温度等对氮肥氨挥发有较大的影响,氨挥发量随着含水量和温度的上升而递增。
DOI:10.3969/j.issn.1674-9057.2008.01.024URL [本文引用: 1]
采用“静态吸收法”研究了自制竹炭包膜尿素(BCCU)在土壤中的氨挥发损失情况,以及施肥量、土壤含水量、土壤温度和土壤类型等因素对氨挥发损失的影响。结果表明,自制的竹炭包膜尿素氨挥发损失量显著减少。在每千克土壤中,施氮600mg时,两种包膜氮肥氨挥发损失量分别比尿素减少31.8%和19.3%;施氮1000mg时,两种包膜氮肥氨挥发损失量分别比尿素减少21.82%和16.66%。在两个施肥水平下,供试氮肥的氨挥发损失量随时间的变化关系均可用Elovich动力学方程Yt=α+blnt来描述。土壤含水量和温度等对氮肥氨挥发有较大的影响,氨挥发量随着含水量和温度的上升而递增。
.,
DOI:10.1016/j.soilbio.2013.12.014URL [本文引用: 1]
61Bacterial communities in Mollisols were both affected by soil pH and soil C content.61The effect of soil pH on bacterial communities was stronger than soil C content.61Geographic distance was another important factor in shaping communities.61A latitudinal diversity gradient of the community was observed in the Mollisols.61Soil bacterial communities were spatially distributed in the black soil zone.
.,
DOI:10.3864/j.issn.0578-1752.2017.07.010URL [本文引用: 1]
【目的】表征大豆连作条件下不同施肥处理土壤细菌的群落结构特征和组成差异,并侧重分析接种根瘤菌处理的不同之处;与土壤化学性质进行关联分析,探讨引起黑土细菌菌群变化的主效环境因子,为进一步了解连作条件下东北耕地土壤中细菌群落结构的变化以及大豆的高效种植和氮肥减施提供理论支持。【方法】依托5年大豆连作定位试验,选取不施肥(CK)、磷钾肥(PK)、氮磷钾肥(NPK)、磷钾肥+接种根瘤菌(Bradyrhizobium japonicum 5821)处理(PK+5821)共4个处理的耕层土壤为研究对象,采用高通量测序(Illumina HiSeq)和real-time PCR技术,以16S rRNA基因V4区为分子标靶,解析不同施肥处理土壤细菌的菌群变化,并对细菌群落结构与环境因子进行相关性分析。【结果】与CK相比,施肥明显增加了大豆的产量和土壤养分的含量,但单施化肥降低了土壤的pH。接种B.japonicum 5821显著增加了土壤细菌的基因拷贝数,提高了土壤细菌的丰度。细菌门水平和纲水平的群落分析发现,变形菌门(Proteobacteria)、放线菌门(Actinobacteria)和酸杆菌门(Acidobacteria)为土壤中的3大优势菌群,占所有优势菌门的70%以上;施肥明显降低了土壤中放线菌门的相对丰度,这与细菌纲水平的分析一致。多样性分析发现,CK处理与3个施肥处理的丰富度和多样性指数不同,且主坐标分析(PCoA)显示,3个施肥处理的细菌群落结构在PC1轴上聚在一起,而与CK处理是分开的,表明施肥明显改变了土壤细菌的群落构成。冗余分析(RDA)显示,全氮(F=3.2,P=0.002)对土壤细菌群落结构的影响最大,解释了24%的群落变化,各因子的贡献率依次为全氮有效磷速效钾有机质p H;Spearman相关性分析也表明,5项土壤化学指标均与不同优势菌门存在密切的相关关系。【结论】施肥改变了大豆连作条件下土壤细菌的群落结构。全氮是影响土壤细菌群落结构变化的主效环境因子。接种根瘤菌明显提高了大豆产量,同时保持了良好土壤化学性状和土壤菌群结构,很大程度地减少了化学氮肥的施用,对大豆的高效种植和氮肥减施具有重要意义。
DOI:10.3864/j.issn.0578-1752.2017.07.010URL [本文引用: 1]
【目的】表征大豆连作条件下不同施肥处理土壤细菌的群落结构特征和组成差异,并侧重分析接种根瘤菌处理的不同之处;与土壤化学性质进行关联分析,探讨引起黑土细菌菌群变化的主效环境因子,为进一步了解连作条件下东北耕地土壤中细菌群落结构的变化以及大豆的高效种植和氮肥减施提供理论支持。【方法】依托5年大豆连作定位试验,选取不施肥(CK)、磷钾肥(PK)、氮磷钾肥(NPK)、磷钾肥+接种根瘤菌(Bradyrhizobium japonicum 5821)处理(PK+5821)共4个处理的耕层土壤为研究对象,采用高通量测序(Illumina HiSeq)和real-time PCR技术,以16S rRNA基因V4区为分子标靶,解析不同施肥处理土壤细菌的菌群变化,并对细菌群落结构与环境因子进行相关性分析。【结果】与CK相比,施肥明显增加了大豆的产量和土壤养分的含量,但单施化肥降低了土壤的pH。接种B.japonicum 5821显著增加了土壤细菌的基因拷贝数,提高了土壤细菌的丰度。细菌门水平和纲水平的群落分析发现,变形菌门(Proteobacteria)、放线菌门(Actinobacteria)和酸杆菌门(Acidobacteria)为土壤中的3大优势菌群,占所有优势菌门的70%以上;施肥明显降低了土壤中放线菌门的相对丰度,这与细菌纲水平的分析一致。多样性分析发现,CK处理与3个施肥处理的丰富度和多样性指数不同,且主坐标分析(PCoA)显示,3个施肥处理的细菌群落结构在PC1轴上聚在一起,而与CK处理是分开的,表明施肥明显改变了土壤细菌的群落构成。冗余分析(RDA)显示,全氮(F=3.2,P=0.002)对土壤细菌群落结构的影响最大,解释了24%的群落变化,各因子的贡献率依次为全氮有效磷速效钾有机质p H;Spearman相关性分析也表明,5项土壤化学指标均与不同优势菌门存在密切的相关关系。【结论】施肥改变了大豆连作条件下土壤细菌的群落结构。全氮是影响土壤细菌群落结构变化的主效环境因子。接种根瘤菌明显提高了大豆产量,同时保持了良好土壤化学性状和土壤菌群结构,很大程度地减少了化学氮肥的施用,对大豆的高效种植和氮肥减施具有重要意义。