删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

“独秆”栽培模式下全程氮肥在分蘖中后期施用对旱直播水稻产量和品质的影响

本站小编 Free考研考试/2021-12-26

赵杰,, 李绍平, 程爽, 田晋钰, 邢志鹏,*, 陶钰, 周磊, 刘秋员, 胡雅杰, 郭保卫, 高辉, 魏海燕, 张洪程,*扬州大学江苏省作物栽培生理重点实验室/江苏省粮食作物现代产业技术协同创新中心/水稻产业工程技术研究院, 江苏扬州 225009

Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stage on yield and quality of dry direct seeding rice under “solo-stalk” cultivation mode

ZHAO Jie,, LI Shao-Ping, CHENG Shuang, TIAN Jin-Yu, XING Zhi-Peng,*, TAO Yu, ZHOU Lei, LIU Qiu-Yuan, HU Ya-Jie, GUO Bao-Wei, GAO Hui, WEI Hai-Yan, ZHANG Hong-Cheng,*Jiangsu Provincial Key Laboratory of Crop Cultivation and Physiology, Yangzhou University/Jiangsu Collaborative Innovation Center of Modern Industrial Technology for Grain Crops/Rice Industry Engineering Technology Research Institute, Yangzhou 225009, Jiangsu, China

通讯作者: *张洪程, E-mail: hczhang@yzu.edu.cn; 邢志鹏, E-mail: zpxing@yzu.edu.cn

收稿日期:2020-07-29接受日期:2020-12-1网络出版日期:2021-06-12
基金资助:江苏省农业科技创新与推广项目, 国家现代农业产业技术体系建设专项.CARS-01-27
江苏省现代农业产业技术体系建设专项.JATS(2019)444
江苏省农业科技自主创新资金.CX(20)1012
江苏省高校优势学科建设工程项目资助


Received:2020-07-29Accepted:2020-12-1Online:2021-06-12
Fund supported: The Agricultural Science and Technology Innovation and Extension Project of Jiangsu Province, the China Agriculture Research System.CARS-01-27
The earmarked fund for Jiangsu Agricultural Industry Technology System.JATS(2019)444
The Agricultural Technology Independent Innovation Fund of Jiangsu Province.CX(20)1012
The Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

作者简介 About authors
E-mail: 704428205@qq.com















摘要
稻麦两熟地区, 旱直播水稻生产受前茬小麦收获、全量麦秸秆还田及耕整地质量不高等因素的影响, 常采用迟播期、大播量、高基本苗和主茎成穗为主的“独秆”栽培模式, 而配套该模式直播稻优质丰产的氮肥管理技术尚缺乏系统的研究。以优质食味粳稻南粳9108为材料, 采用机械旱直播方式, 基本苗为380×104 hm-2, 设置不同叶龄期(六、七、八、九和十叶龄期)氮肥追施处理及氮肥追施用量(纯氮180 kg hm-2和225 kg hm-2)处理, 以基本苗380×104 hm-2和300×104 hm-2的旱直播精确定量氮肥管理(纯氮270 kg hm-2, 基肥︰分蘖肥︰穗肥=3.5︰3.5︰3.0)为对照, 系统比较研究“独秆”栽培模式下, 全程氮肥在分蘖中后期施用对旱直播水稻产量和品质的影响。结果表明, 随追施叶龄的延后, 水稻产量呈先增后降趋势, 八叶期追施氮肥水稻产量显著高于其他处理, 且追施量增加, 水稻产量进一步提高。与2组对照相比, 在纯氮180 kg hm-2, 氮肥减量33.3%情况下, 不施氮素基肥配合八叶期一次性追施氮肥, 可显著提高水稻产量5.10%和8.65%; 在纯氮225 kg hm-2, 氮肥减量16.7%情况下, 不施氮素基肥配合八叶期及7 d后二次追肥可显著提高水稻产量7.46%和11.09%。不施氮素基肥配合八叶期追施氮肥水稻产量提高的原因是, 保障较大穗型的基础上增加有效穗数, 显著提高群体颖花量, 同时保持较高水平的结实率和千粒重。随追肥叶龄延后, 水稻整精米率呈增加趋势, 垩白度呈增大趋势, 蛋白质含量增加, 直链淀粉含量下降, 食味值呈降低趋势。与2组对照相比, 不施氮素基肥配合八叶期追施氮肥的水稻, 加工品质提高, 整精米率提高0.67%~2.23%; 外观品质变好, 垩白度降低3.6%~14.5%; 营养品质提升, 蛋白质含量增加3.03%~14.08%; 蒸煮食味品质呈变优趋势, 直链淀粉含量下降4.23%~10.95%; 食味值无显著差异。综上所述, “独秆”栽培模式下基肥不施氮肥配合全程氮肥在分蘖中后期适宜叶龄施用可实现稻麦两熟地区旱直播稻迟播期、大播量和高基本苗生产方式的提质增产生产。
关键词: “独秆”栽培模式;基肥不施氮肥;分蘖中后期施氮肥;氮肥管理模式;直播稻;产量;品质

Abstract
In a rice-wheat cropping system, dry direct seeding rice growth was directly affected by harvest dates of the previous crop of wheat, the return of full wheat straw to the field, and the poor quality of tillage and land preparation. A “solo-stalk” cultivation mode with main stem panicles by late sowing dates, large sowing rates and high basic seedlings was commonly used in dry direct seeding. However, the nitrogen fertilizer management of high-quality and high-yield dry direct-seeding rice for the “solo-stalk” cultivation mode was still lacking in systematic research. With high-quality japonica rice Nanjing 9108, 380×104 hm-2 basic seedlings were realized by mechanical dry direct seeding method. The leaf age treatments of 6, 7, 8, 9, and 10 leaf age and nitrogen application amount treatments of 180 and 225 kg hm-2 were designed with accurate quantitative nitrogen management (total nitrogen was 270 kg hm-2, base fertilizer:tiller fertilizer:spike fertilizer = 3.5:3.5:3.0) at basic seedlings of 380×104 and 300×104 hm-2 as the control. Then dry direct seeding rice yield and quality were systematically determined and compared with the control and “solo-stalk” cultural method with nitrogen fertilizer in whole growth duration applied in middle and late tillering stage. The results showed that rice yield showed a trend of first increased and then decreased with nitrogen application at bigger leaf age. Rice yield was significantly higher than other treatments when applying nitrogen fertilizer at the 8-leaf stage, and the yield was further improved with the increase of nitrogen application amount. Compare with the controls, nitrogen fertilizer in whole growth duration of 180 kg N hm-2 applied one time at 8-leaf stage could significantly increase rice yield by 5.10% and 8.65%, and reduced nitrogen fertilizer by 33.3%, whereas nitrogen fertilizer in whole growth duration of 225 kg N hm-2 applied two time at 8-leaf stage and 7 days later could significantly increase rice yield by 7.46% and 11.09%, and reduced the nitrogen by 16.7%. The reason was that, compared with the control, seed setting rate and 1000-grain weight, effective panicle number was significantly increased resulting in the increasing total spikelet amount per hectare and yield on the basis of maintaining larger panicle type. With nitrogen applied at bigger leaf age, the head rice rate, chalkiness and protein content of rice revealed an increasing trend, but the amylose content and taste value of rice showed a decreasing trend. Compare to the two controls, the processing quality of rice with the head rice rate was increased by 0.67%-2.23% with nitrogen fertilizer in whole growth duration applied at 8-leaf age; the appearance quality was improved with the chalkiness decreased by 3.6%-14.5%; the nutrition quality was better with protein content increased by 3.03%-14.08%; the cooking and eating quality showed a tendency of getting better with amylose content decreased by 4.23%-10.95%; and there was no insignificant difference in taste value. In conclusion, nitrogen fertilizer in whole growth duration applied at suitable leaf age in the middle and late tillering stage could improve the quality and increase the yield of dry direct seeding rice under “solo-stalk” cultural method caused by late sowing dates, large sowing rate, and high basic seedlings in a rice-wheat cropping system.
Keywords:“solo-stalk” cultivation mode;base fertilizer without nitrogen fertilizer;nitrogen fertilizer in middle and late tillering stage;nitrogen fertilizer management mode;direct seeding rice;yield;quality


PDF (712KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
赵杰, 李绍平, 程爽, 田晋钰, 邢志鹏, 陶钰, 周磊, 刘秋员, 胡雅杰, 郭保卫, 高辉, 魏海燕, 张洪程. “独秆”栽培模式下全程氮肥在分蘖中后期施用对旱直播水稻产量和品质的影响[J]. 作物学报, 2021, 47(6): 1162-1174. doi:10.3724/SP.J.1006.2021.02052
ZHAO Jie, LI Shao-Ping, CHENG Shuang, TIAN Jin-Yu, XING Zhi-Peng, TAO Yu, ZHOU Lei, LIU Qiu-Yuan, HU Ya-Jie, GUO Bao-Wei, GAO Hui, WEI Hai-Yan, ZHANG Hong-Cheng. Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stage on yield and quality of dry direct seeding rice under “solo-stalk” cultivation mode[J]. Acta Agronomica Sinica, 2021, 47(6): 1162-1174. doi:10.3724/SP.J.1006.2021.02052


随着城镇化进程的推进, 农村优质劳动力转移, 消耗人工人力少的机械化、轻简化水稻种植方式越来越受到农民青睐[1,2,3]。相比较而言, 水稻旱直播是一种省工省力, 能够降低劳动强度和成本的机械化、轻简化种植方式[4,5]。特别是在水稻种植比较效益降低, 农民种稻积极性下降的背景下, 旱直播水稻在我国不同稻区迅速发展[6,7,8]。稻麦两熟地区, 旱直播水稻生产具有如下特征, 旱直播水稻省去了育秧环节, 但受小麦让茬时间的影响, 较机插水稻相比, 播期推迟, 全生育期缩短, 限制了水稻产量潜力, 并且接茬农耗时间紧, 较机插水稻相比, 耕整地质量不高、不平整, 特别是秸秆全量还田, 麦草还田深度较浅[9]。因此, 旱直播播种后, 稻种在多方面的土壤环境束缚而不利于出苗, 往往出现出苗成苗率低、出苗不匀、缺苗断垄等问题, 不利于旱直播稻优质稳产高产生产。为解决上述问题, 生产中常采用迟播期、大播量、高基本苗, 以主茎成穗为主、多数植株无分蘖穗的“独秆”栽培模式[10,11]。在该生产方式下, 采用传统的氮肥管理, 较高的基、蘖肥会使水稻生育前期群体过大、氮素损失严重等, 导致水稻生育中后期群体结构较差、病虫害多发和倒伏严重等现象, 同时氮素的大量流失还会引起水体富营养化等环境问题[12]。由此可见, 配套“独秆”栽培模式的旱直播稻优质丰产氮肥管理新技术亟待科学地开展比较研究。针对生产上旱直播大播量、高基本苗, 以主茎成穗为主的“独秆”栽培的生产模式, 瞄准减氮优质稳产高产轻简化生产的目标, 笔者提出“基肥不施氮肥-全程氮肥在分蘖中后期施用”的配套氮肥管理方式, 并开展在氮肥减量16.7%和33.3%的情况下, 进行分蘖中后期不同叶龄期一次或二次追施氮肥的研究, 探索高基本苗的“独秆”栽培模式下全程氮肥在分蘖中后期施用对旱直播水稻产量和品质形成的影响。前人从肥料、播期、播量、基本苗、水浆管理等单因素对旱直播水稻的生长特性、产量、品质进行了大量研究[13,14,15,16], 多数研究是基于传统的多次性的氮肥管理模式, 而关于减少施氮量和减少氮肥施用次数对水稻产量和品质形成影响的研究相对较少, 特别是针对生产上高播量“独秆”栽培水稻模式下是否能通过不施氮素基肥配套分蘖中后期简次、减量追施氮肥实现水稻优质稳产生产及该模式下水稻产量与品质形成特征与差异的研究更缺乏系统的比较研究。本研究立足于长江中下游地区, 选用多功能一体化旱直播机械, 以大面积应用的优质食味粳稻南粳9108为材料, 研究高播量形成水稻田间高基本苗的条件下, 多种“基肥不施氮肥-全程氮肥在分蘖中后期施用”模式对水稻产量和品质形成的影响, 研明“独秆”栽培模式下全程氮肥在分蘖中后期施用的最佳叶龄期以及适宜施用量, 以期为稻麦两熟制地区秸秆全量还田条件下机械旱直播水稻减氮优质丰产高产轻简化栽培技术更新提供数据支持。

1 材料与方法

1.1 试验地点与供试材料

于2018—2019年在扬州大学农学院校外试验基地(江苏省姜堰区沈高镇)进行, 水稻生长季节的日平均温度和日照时数见图1。土壤类型为潴育型水稻土, 质地黏性。0~20 cm土层有机质含量31.74 g kg-1, 全氮1.97 g kg-1、速效磷62.56 mg kg-1、速效钾165.27 mg kg-1。试验前茬为小麦, 产量7.16 t hm-2

图1

新窗口打开|下载原图ZIP|生成PPT
图12018年和2019年水稻生长季节的日平均温度(A)和日照时数(B)

Fig. 1Daily mean temperature (A) and sunshine hours (B) during the growing season in rice from 2018 to 2019



供试材料为南粳9108, 是当地大面积生产代表性优质食味水稻品种, 迟熟中粳。在直播栽培条件下该水稻品种总叶片数为15.3片, 伸长节间数为5.2个。

1.2 试验设计和栽培管理

根据当地水稻换茬时间和及时抢播的要求, 于6月18日采用多功能一体化旱直播机(秸秆还田、施肥、耕整地、播种、镇压和开沟等多道工序一体化作业机)播种, 行距为25 cm, 播种量为195 kg hm-2, 播后进行小区规划, 调查基本苗并定苗至380×104 hm-2

试验采用裂区设计, 以施氮量(N)为主区, 追肥叶龄期(D)为裂区, 设置2个氮肥水平, 纯氮分别为180 kg hm-2 (N1)和225 kg hm-2 (N2), 各氮肥水平下设置5个追肥叶龄期, 为六叶期(L6)、七叶期(L7)、八叶期(L8)、九叶期(L9)和十叶期(L10)。N1处理在各叶龄期一次性施用尿素150 kg hm-2和45%复合肥750 kg hm-2, N2处理在N1施肥的基础上7 d后追施尿素98 kg hm-2。同时, 在上述主体试验的基础上增设当地直播代表性生产模式对照CK1和CK2, 基本苗分别为380×104 hm-2和300×104 hm-2, 总施氮量270 kg hm-2, 按基肥∶蘖肥∶穗肥=3.5∶3.5∶3.0比例施用, 穗肥按促花肥(倒四叶)、保花肥(倒二叶)等量施入; 磷肥一次性基施, 钾肥分别于耕翻前, 促花肥等量施入。各小区基肥肥料于机械作业前撒施。具体氮、磷、钾肥用量及方式详见表1

Table 1
表1
表1试验肥料用量和施用时期
Table 1Amount and application stage of fertilizer used in the study (kg hm-2)
氮肥
水平
N level
基肥
Base fertilizer
分蘖肥
Tiller
fertilizer
叶龄追肥
Fertilization at
leaf age
促花肥
Flower-promoting fertilizer
保花肥
Flower-preserving fertilizer
合计
Total
NP2O5K2ONNP2O5K2ONK2ONNP2O5K2O
N122.5112.5180112.5112.5180135225
N222.5112.5225112.5112.5225135225
CK194.5135112.594.540.5112.540.5270135225
CK294.5135112.594.540.5112.540.5270135225
N1处理在各叶龄期一次性施用尿素150 kg hm-2和45%复合肥750 kg hm-2; N2处理在N1施肥的基础上7 d后施用尿素98 kg hm-2。N1和N2处理基肥施用过磷酸钙37 kg hm-2和氯化钾179.5 kg hm-2。CK1和CK2施肥方式相同, 氮素以尿素施用, 磷钾肥分别以过磷酸钙和氯化钾施用。
In the N1 treatment, 150 kg hm-2 of urea and 45% compound fertilizer 750 kg hm-2 were applied at each leaf age; in N2 treatment, 98 kg hm-2 of urea was applied after 7 days on the basis of N1 fertilization. In the N1 and N2 treatments, 37 kg hm-2 of superphosphate and 179.5 kg hm-2 of potassium chloride were applied as the base fertilizer. CK1 and CK2 are applied in the same way, nitrogen is applied with urea, and phosphorus and potassium are applied with superphosphate and potassium chloride, respectively.

新窗口打开|下载CSV

小区间筑埂隔离, 覆膜包埂, 保证每个小区单独排灌, 避免串水串肥。小区面积25 m2, 重复3次。水分和病虫草害的管理按照当地水稻生产的高产栽培要求统一进行。

1.3 测定项目与方法

1.3.1 产量及其构成因素 在收获前各小区确定3个样本点, 连续调查3行, 每行2 m, 计算有效穗数; 各小区选取长势一致的连续20穴, 调查穗型结构和结实率; 以1000粒实粒样本(干种子)称重(误差不超过0.05 g), 计算千粒重, 重复3次。成熟期各小区去除边行确定7 m2, 收割测产, 以14.5%含水量折算实际产量。

1.3.2 茎蘖数 各小区确定3个观察点, 每个观察点定点1 m距离, 每5 d调查记录茎蘖数, 茎蘖成穗率(%) = 成熟期穗数/高峰苗×100。同时, 于六叶期、十叶期、拔节期、抽穗期和成熟期进行茎蘖数调查记录。

1.3.3 稻米品质 参照中华人民共和国国家标准《GB/T 1354-2018 优质稻谷》测定加工品质、外观品质、直链淀粉含量。采用Foss公司生产的近红外谷物分析仪(Infrared 1241 grain analyzer)测定精米的蛋白质含量。采用稻米食味仪进行食味值、外观、硬度和黏度指标的测定。

1.4 数据处理与分析

试验中2年数据变化趋势一致, 以2019年数据为主进行分析。采用Microsoft Excel 2013进行数据录入和整理, 用SPSS 22.0进行数据统计分析。

2 结果与分析

2.1 产量及产量构成因子

氮肥水平和追氮叶龄期对水稻产量的影响显著, 氮肥和追肥叶龄互作对产量影响不显著(图2)。随着追肥叶龄期延后, N1和N2处理水稻产量均呈先增后降趋势, 差异显著, 以L8处理的产量最高。随氮肥水平增加, 除L10处理外, N2处理L6~L9水稻实收产量较N1处理增产2.25%~4.03%, 差异显著。与CK1相比, 除N1L6外其他处理产量增加2.71%~ 11.09%; 与CK2相比, 仅N1L8和N2L7、N2L8、N2L9水稻产量分别增加5.10%、2.51%、7.46%和3.03%。N1L8水稻产量较CK1和CK2分别显著增产8.65%和5.10%, N2L8分别显著增产11.09%和7.46%。因此, 基肥不施氮肥配合全程氮肥在L8叶龄期施用可显著提高水稻产量, 且增加追施次数并提高追肥用量能进一步提高水稻产量。

图2

新窗口打开|下载原图ZIP|生成PPT
图22018年和2019年“独秆”栽培模式下全程氮肥在分蘖中后期施用对旱直播水稻产量的影响

N1: 180 kg N hm-2; N2: 225 kg N hm-2; L6、L7、L8、L9、L10分别为六、七、八、九和十叶龄期5个追肥叶龄期。不同小写字母表示在0.05水平差异显著(LSD法)。
Fig. 2Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stage on yield of dry direct seed rice under “solo-stalk” cultivation mode in 2018 and 2019

N1: 180 kg N hm-2; N2: 225 kg N hm-2; L6, L7, L8, L9, and L10 are the five topdressing leaf ages of 6, 7, 8, 9, and 10, respectively. Different lowercase letters indicate significant differences at the 0.05 probability level by LSD test.


氮肥水平和追肥叶龄期对有效穗数和群体颖花量影响均显著, 每穗粒数和结实率受追肥叶龄影响显著(表2)。随氮肥水平增加, 有效穗数和群体颖花量呈增加趋势。N1和N2处理水稻群体颖花量随追肥叶龄延后先增加后下降, 结实率先下降后增高, 千粒重没有显著差异。除L10外, N1和N2处理有效穗数、每穗粒数均随追肥叶龄延后先增加后下降, L10水稻穗粒数最少, 但有效穗数较L9增加, 差异不显著, 可能与L10处理下抽穗期高位分蘖多有关。N1L8和N2L8水稻有效穗数较CK1、CK2增加9.05%和14.41%、22.48%和28.49%; 穗粒数较CK1增加2.16%和3.73%, 较CK2下降10.52%和9.15%; 群体颖花量增加11.41%和18.67%、9.59%和16.74%; 结实率增加2.33%和2.05%、1.45%和1.17%。说明基肥不施氮肥配合全程氮肥在L8叶龄期施用水稻显著提高的有效穗数和显著增加的群体颖花量是其形成较高产量的途径。

Table 2
表2
表2“独秆”栽培模式下全程氮肥在分蘖中后期施用对旱直播水稻产量构成因素的影响
Table 2Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stage on yield components of dry direct seed rice under “solo-stalk” cultivation mode
处理Treatment基本苗
Basic
seedlings
(×104 hm-2)
有效穗数
Number of
panicle
(×104 hm-2)
每穗粒数
Spikelets
per panicle
群体颖花量
Total spikelet
number
(×108 hm-2)
结实率
Seed setting
rate
(%)
千粒重
1000-grain weight
(g)
氮肥水平
N level
追肥叶龄
Leaf age
N1L6381.8 a409.8 e85.6 cd3.51 cd95.66 a27.2 a
L7381.9 a428.6 d88.4 bc3.78 c93.85 ab27.4 a
L8382.0 a455.3 b93.7 a4.29 ab92.85 bc27.4 a
L9382.4 a436.5 cd83.5 d3.69 cd91.66 c27.2 a
L10382.8 a446.2 bc75.3 e3.45 d92.72 bc27.1 a
N2L6382.1 a429.3 d88.0 bc3.69 cd95.46 a27.3 a
L7381.5 a450.2 b90.4 ab4.09 b94.17 ab27.1 a
L8383.2 a474.2 a94.5 a4.54 a92.59 bc27.3 a
L9382.3 a449.8 b82.0 d3.79 c91.31 c27.2 a
L10382.4 a454.2 b75.0 e3.55 cd92.21 bc27.2 a
F-value
N0.23NS147.00**1.25NS32.28*0.22NS0.05NS
L0.70NS28.14**59.11**32.17**25.96**0.15NS
N×L0.48NS0.79NS0.76NS0.55NS0.26NS0.13NS
CK1382.1419.291.63.8590.7327.2
CK2303.5372.7104.73.9291.5227.2
处理和缩写同图2。同一列数据不同小写字母表示在0.05水平差异显著(LSD法)。***分别表示在0.05和0.01水平差异显著, NS表示差异不显著。
Treatments and abbreviations are the same as those given in Fig. 2. Data followed by different lowercase letters in the same column indicate significant differences at the 0.05 probability level by LSD test. * and * * are significant differences at the 0.05 and 0.01 probability levels, respectively; “NS” is not significant difference.

新窗口打开|下载CSV

2.2 穗型结构

整穗特征值上, 追肥叶龄期对着粒密度、单穗重、一二次枝梗比和总粒数比、总粒数影响显著, 其互作仅对一二次枝梗比影响显著(表3)。N1和N2水稻着粒密度、单穗重和单穗总粒数均随追肥叶龄延后先增后降; 一二次枝梗比和总粒数比呈先降后增的趋势, 差异显著; 穗长无显著差异。一次枝梗和二次枝梗特征值上, 随追肥叶龄延后, N1和N2一次枝梗数和总粒数呈显著下降趋势; 二次枝梗数、总粒数和单枝梗着粒数呈先增后降趋势, 差异显著。N1L8和N2L8水稻着粒密度较CK1增加4.08%和4.02%, 较CK2下降6.87%和6.93%; 单穗重较CK1增加6.22%和7.13%, 较CK2下降4.92%和4.10%; 单穗总粒数较CK1增加2.16%和3.73%, 较CK2降低10.52%和9.15%; 一二次枝梗比和总粒数比较CK1和CK2分别下降9.66%~16.32%和11.52%~21.63%。说明在N1L8和N2L8处理主要通过显著增加二次枝梗数和总粒数使其较CK1保持相对较高的穗粒数和单穗重。

Table 3
表3
表3“独秆”栽培模式下全程氮肥在分蘖中后期施用对旱直播水稻穗型结构的影响
Table 3Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stages on panicle structure of dry direct seed rice under “solo-stalk” cultural code
处理Treatment整穗Panicle一次枝梗Primary branches二次枝梗Secondary branches
氮肥水平
N level
追肥叶龄
Leaf age
穗长
PL (cm)
着粒密度
GD
(grain cm-1)
单穗重
GWPP (g)
一二次枝梗比
RN
一二次枝梗总粒数比
RTG
总粒数
TG
枝梗数
NB
单枝梗着粒数
GPB
总粒数
TG
结实率
SSR (%)
枝梗数
NB
单枝梗着粒数
GPB
总粒数
TG
结实率
SSR (%)
N1L613.8 ab6.21 de2.17 c0.75 a1.53 a85.6 c9.0 a5.72 a51.7 a97.7 b12.1 de2.81 b33.9 d88.0 b
L713.7 ab6.44 bc2.20 bc0.64 cd1.34 bc88.4 b8.5 b5.94 a50.5 a97.4 b13.3 bc2.85 b37.9 bc87.0 c
L813.6 b6.87 a2.36 a0.56 f1.16 de93.7 a8.4 b6.00 a50.2 a96.6 c14.9 a2.91 ab43.5 a85.9 d
L913.7 ab6.09 e2.11 d0.61 e1.28 cde83.7 cd7.8 c5.99 a46.9 b96.6 c13.0 c2.84 b36.8 bcd87.7 b
L1013.9 ab5.39 g1.91 e0.74 ab1.55 a75.2 e7.7 c5.96 a45.7 bc97.0 c10.4 g2.84 b29.5 e88.2 b
N2L614.0 a6.29 cd2.20 bc0.73 ab1.44 abc88.1 b9.1 a5.74 a52.0 a98.3 a12.4 d2.92 ab36.2 cd88.2 b
L713.9 ab6.49 b2.24 b0.63 de1.28 cde90.0 b8.4 b5.87 a50.6 a97.6 b13.4 b2.94 ab39.5 b86.4 cd
L813.9 ab6.86 a2.38 a0.57 f1.11 e95.1 a8.3 b6.02 a50.1 a97.5 b14.6 a3.09 a45.1 a84.9 e
L913.9 ab5.92 f2.07 d0.66 c1.32 bcd82.2 d7.8 c5.99 a46.6 bc97.6 b11.8 e3.01 ab35.6 cd84.6 e
L1013.9 ab5.40 g1.93 e0.71 b1.45 ab74.8 e7.7 c5.73 a44.3 c97.8 b10.8 f2.82 b30.6 e89.2 a
F-value
N9.9NS1.27NS9.15NS0.55NS2.59NS5.14NS0.13NS0.25NS0.27NS80.18*4.07NS8.07NS3.14NS171.26**
L0.88NS147.44**183.93**109.43**29.80**169.64**57.35**5.97**28.35**33.59**339.47**3.77*105.76**73.40**
N×L0.96NS1.2NS1.41NS4.99**0.96NS2.2NS0.14NS1.32NS0.40NS6.44**14.76**1.37NS1.71NS22.74**
CK113.96.602.220.671.4291.79.05.9953.894.0513.42.8337.985.04
CK214.27.372.480.631.31104.79.96.0059.395.2815.72.9045.486.51
处理和缩写同图2。同一列数据不同小写字母表示在0.05水平下差异显著(LSD法),***分别表示在0.05和0.01水平差异显著,NS表示差不异显著。
Treatments and partial abbreviations are the same as those given in Fig. 2. PL: panicle length; GD: grain density; GWPP: grain weight per panicle; RN: ratio of No. of branches of primary branches to No. of branches of secondary branches; RTG: ratio of total grains of primary branches to total grains of secondary branches; NB: Number of branches; GPB: grains per branch; TG: total grains; SSR: seed-setting rate. Data followed by different lowercase letters in the same column indicate significant differences at the 0.05 probability level by LSD test. * and * * are significant differences at the 0.05 and 0.01 probability levels, respectively. The “NS” was not significant difference.

新窗口打开|下载CSV

2.3 主要生育期茎蘖数与成穗率

氮肥水平对拔节期及以后茎蘖数影响显著, 追肥叶龄期则从十叶期开始对茎蘖数有显著影响, 其互作对茎蘖数影响不显著(表4)。N1和N2水稻高峰苗随追肥叶龄延后呈下降趋势, 其中N2处理L6、L7、L8的高峰苗高于N1处理。在6叶期取样调查, N1和N2处理下不同追肥叶龄水稻茎蘖数无显著差异, 但较CK1下降19.40%~20.65%, 较CK2增加23.29%~25.24%。十叶期, L6、L7、CK1和CK2处理的茎蘖迅速增加, 高于其他处理。拔节期, L7处理茎蘖数最高, L6~L10水稻茎蘖数均高于CK1和CK2。抽穗期, N1和N2水稻茎蘖数随追肥叶龄延后呈先增后降的趋势, 且除L6外, 其他叶龄追肥处理水稻茎蘖数显著高于CK1和CK2。对L8处理的茎蘖数据分析发现, 与其他处理相比, 水稻生长前期茎蘖没有优势, 但在中后期茎蘖迅速平稳增加, 至成熟期能保持较高的有效穗数。

Table 4
表4
表4“独秆”栽培模式下全程氮肥在分蘖中后期施用对旱直播水稻茎蘖动态的影响
Table 4Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stages on dynamics of tiller of dry direct seed rice under “solo-stalk” cultivation mode (×104 hm-2)
处理Treatment六叶期
6-leaf stage
十叶期
10-leaf stage
拔节期
Jointing stage
抽穗期
Heading stage
成熟期
Maturity stage
氮肥水平
N level
追肥叶龄
Leaf age
N1L6426.7 a766.7 a574.7 d428.0 e409.8 e
L7423.4 a566.0 b689.4 ab474.0 bc428.6 d
L8420.0 a541.4 b626.0 cd489.4 b455.3 b
L9420.7 a542.7 b578.0 d458.7 cd436.5 cd
L10421.4 a542.0 b575.4 d449.4 cde446.2 bc
N2L6425.4 a801.4 a601.4 cd434.7 de429.3 d
L7423.4 a568.0 b724.0 a490.7 b450.2 b
L8420.0 a542.0 b646.7 bc514.7 a474.2 a
L9422.0 a538.7 b581.4 d470.7 bc449.8 b
L10426.7 a544.0 b583.4 d456.0 cd454.2 b
F-value
N0.84NS1.28NS25.69*29.23*147.00**
L0.79NS84.57**61.33**22.29**28.14**
N×L0.25NS0.46NS0.86NS0.47NS0.79NS
CK1529.4679.7545.4430.0419.2
CK2340.7556.0393.4381.4372.7
处理和缩写同图2。同一列数据不同小写字母表示在0.05水平差异显著(LSD法)。***分别表示在0.05和0.01水平差异显著, NS表示差异不显著。
Treatments and abbreviations are the same as those given in Fig. 2. Data followed by different lowercase letters in the same column indicate significant differences at the 0.05 probability level by LSD test. * and * * are significant difference at the 0.05 and 0.01 probability levels, respectively; “NS” is not significant difference.

新窗口打开|下载CSV

N1和N2处理茎蘖成穗率随追肥叶龄延后呈增加的趋势, 差异显著(图3)。N2处理的茎蘖成穗率高于N1处理, 但同一叶龄处理下差异不显著。N1L8、N2L8、N1L9、N2L9、N1L10和N2L10水稻成穗率较CK1增加17.76%、18.72%、22.35%、25.26%、25.57%和26.07%, 较CK2显著增加8.48%、9.36%、12.71%、15.39%、15.67%和16.14%; N1L7和N2L7水稻成穗率稍高于CK1的61.76%, 但低于CK2的67.05%。对L9和L10处理进行田间观测发现, L9、L10叶龄期追肥下水稻抽穗前后有高位分蘖发生, 显著提高了茎蘖成穗率。

图3

新窗口打开|下载原图ZIP|生成PPT
图3“独秆”栽培模式下全程氮肥在分蘖中后期施用对旱直播水稻茎蘖成穗率的影响

处理和缩写同图2。不同小写字母表示在0.05水平差异显著(LSD法)。
Fig. 3Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stages on percentage of productive tillers and stems of dry direct seed rice under “solo-stalk” cultivation mode

Treatments and abbreviations are the same as those given in Fig. 2. Data followed by different lowercase letters indicate significant differences at the 0.05 probability level by LSD test.


2.4 稻米品质

2.4.1 加工品质 N1和N2水稻精米率和整精米率随追肥叶龄延后呈增加趋势(表5), 差异不显著; 同一追肥叶龄下, N2处理水稻精米率和整精米率较N1增加0.31%~1.32%和0.18%~0.94%。其中N1L8和N2L8水稻整精米率较CK1增加1.28%和2.23%, 较CK2增加0.67%和1.62%。说明与CK1和CK2相比, 基肥不施氮肥配合全程氮肥在L8叶龄期施用稻米加工品质有改善趋势。

2.4.2 外观品质 追肥叶龄期对垩白度和垩白粒率影响显著, 随追肥叶龄延后, N1和N2处理的垩白度呈显著增加趋势(表5)。N2处理L6~L10水稻垩白度、垩白粒率较N1处理增加5.1%~8.4%和1.9%~5.4%。其中N1L8水稻垩白度较CK1和CK2下降14.5%和11.1%, N2L8较CK1和CK2下降7.3%和3.6%; N1L8垩白粒率较CK1增加4.8%, 较CK2下降0.7%, N2L8垩白粒率较CK1增加10.4%, 较CK2增加4.7%。水稻长宽比和透明度于处理间无显著差异。说明基肥不施氮肥配合全程氮肥在L8叶龄期施用可较CK1和CK2显著降低垩白度, 改善稻米的外观品质。

Table 5
表5
表5“独秆”栽培模式下全程氮肥在分蘖中后期施用对旱直播水稻加工品质和外观品质的影响
Table 5Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stages on processing and appearance quality of dry direct seed rice under “solo-stalk” cultivation mode
处理Treatment加工品质Processing quality外观品质Appearance quality
氮肥水平
N level
追肥叶龄
Leaf age
糙米率
BRR (%)
精米率
MRR (%)
整精米率
HMR (%)
长宽比
LWR
透明度
TD
垩白大小
CS (%)
垩白粒率
CGR (%)
垩白度
CD (%)
N1L684.67 a66.18 a62.19 a1.65 a3.0 a56.9 a9.3 a5.3 f
L784.76 a66.36 a62.66 a1.66 a3.0 a60.5 a9.2 a5.5 ef
L884.86 a66.54 a63.15 a1.66 a3.0 a59.0 a11.1 a6.4 cde
L984.96 a66.68 a63.89 a1.66 a3.0 a61.6 a11.7 a7.2 abc
L1085.30 a67.15 a64.29 a1.67 a3.0 a67.8 a11.4 a7.8 ab
N2L684.66 a66.38 a62.40 a1.66 a3.0 a61.2 a9.6 a5.5 ef
L784.76 a66.97 a63.01 a1.66 a3.0 a62.1 a9.6 a5.9 def
L885.13 a67.11 a63.74 a1.66 a3.0 a60.2 a11.6 a7.0 bcd
L985.20 a67.52 a64.01 a1.66 a3.0 a63.9 a12.1 a7.7 ab
L1085.30 a68.04 a64.64 a1.67 a3.0 a70.3 a11.7 a8.2 a
F-value
N1.13NS0.59NS0.29NS0.07NS0.60NS0.42NS8.41NS
L1.66NS1.03NS3.68NS1.14NS2.94NS3.61*22.50**
N×L0.14NS0.08NS0.04NS0.05NS0.06NS0.01NS0.05NS
CK184.2866.3462.351.673.071.510.57.5
CK284.8866.7262.721.673.065.211.17.2
处理和缩写同图2。同一列数据不同小写字母表示在0.05水平差异显著(LSD法)。***分别表示在0.05和0.01水平差异显著, NS表示差异不显著。
Treatments and partial abbreviations are the same as those given in Fig. 2. BRR: brown rice rate; MRR: milled rice rate; HMR: head milled rice rate; LWR: length width rate; TD: transparent degree; CS: chalkiness size; CGR: chalkiness grain rate; CD: chalkiness degree. Data followed by different lowercase letters in the same column indicate significant differences at the 0.05 probability level by LSD test . * and * * are significant difference at the 0.05 and 0.01 probability levels, respectively; “NS” is not significant difference.

新窗口打开|下载CSV

2.4.3 蒸煮和食味品质 追肥叶龄期对水稻食味指标影响显著, 直链淀粉含量则受到氮肥水平和追肥叶龄期显著影响(表6)。随追肥叶龄延后, N1和N2水稻直链淀粉含量和食味值呈显著下降趋势。N2处理水稻直链淀粉含量和食味值较N1处理下降2.58%~4.74%和0.85%~4.91%, 同一追肥叶龄下差

异不显著。其中N1L8和N2L8处理直链淀粉含量较CK1下降4.23%和8.77%, 较CK2下降6.52%和10.95%; 食味值较CK1增加2.68%和1.67%, 较CK2下降0.22%和1.21%; 黏度、外观和硬度特征值与CK1和CK2差异较小, 说明与CK1和CK2相比, N1L8和N2L8处理蒸煮食味品质能保持较一致水平。

Table 6
表6
表6“独秆”栽培模式下全程氮肥在分蘖中后期施用对旱直播水稻蒸煮食味品质和营养品质的影响
Table 6Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stage on cooking, eating and nutritional quality of dry direct seed rice under “solo-stalk” cultivation mode
处理Treatment食味值
Taste value
外观
Appearance
硬度
Hardness
黏度
Viscosity
蛋白质含量
PC (%)
直链淀粉含量
AC (%)
氮肥水平
N level
追肥叶龄
Leaf age
N1L682.1 a8.3 a5.8 e8.7 a7.63 e12.49 a
L778.7 a7.8 a6.0 d8.3 a7.73 de12.08 ab
L874.0 bc7.1 bc6.3 bc7.6 b7.93 de11.69 abc
L973.8 bc7.0 bc6.4 bc7.6 b8.13 cde11.10 bcd
L1070.8 cd6.5 cd6.6 a7.2 bc8.28 bcde10.42 d
N2L681.4 a8.2 a5.8 e8.6 a7.98 cde12.15 ab
L774.8 b7.2 b6.2 cd7.6 b8.35 bcd11.52 abc
L873.2 bc7.0 bc6.3 bc7.4 bc8.62 abc11.13 bcd
L970.8 cd6.6 cd6.5 ab7.1 bc8.83 ab10.64 cd
L1068.7 d6.3 d6.7 a6.8 c9.13 a10.15 d
F-value
N17.27NS12.98NS3.27NS16.69NS132.13**51.64*
L39.29**38.67**45.57**28.14**5.90**10.00**
N×L0.89NS1.03NS0.44NS1.15NS0.39NS0.07NS
CK172.07.06.47.27.7012.20
CK274.17.26.17.67.5512.50
处理和缩写同图2。同一列数据不同小写字母表示在0.05水平差异显著(LSD法)。***分别表示在0.05和0.01水平差异显著, NS表示差异不显著。
Treatments and abbreviations are the same as those given in Fig. 2. PC: protein content; AC: amylose content. Data followed by different lowercase letters in the same column indicate significant differences at the 0.05 probability level by LSD test. * and * * are significant difference at the 0.05 and 0.01 probability levels, respectively; “NS” is not significant difference.

新窗口打开|下载CSV

2.4.4 营养品质 氮肥水平和追肥叶龄期对水稻蛋白质含量影响显著(表6)。N1和N2水稻蛋白质含量随追肥叶龄延后呈显著增加趋势; N2处理L8~L10的蛋白质含量较N1处理显著增加8.61%~10.26%, L6和L7差异不显著。N1L8处理的蛋白质含量较CK1增加3.03%, 较CK2增加5.03%; N2L8处理蛋白质含量较CK1增加11.90%, 较CK2增加14.08%。说明, 全程氮肥在L8叶龄期施用可较对照提高蛋白质含量, 改善营养品质。

3 讨论

3.1 “独秆”栽培模式全程氮肥在分蘖中后期施用对旱直播稻产量及构成因素的影响

前人研究发现水稻生育前期过量施肥是导致氮素利用率低的原因之一, 通过减少基肥用量而适当增加中后期氮肥施用量, 不仅有助于提高水稻产量, 还能提高氮肥利用率[17,18,19,20]。郭俊杰等[21]研究认为江苏省水稻氮肥减量可行, 基肥和分蘖肥为主要减量方向, 配合优化管理, 能实现水稻增产增效。肖小平等[22]表明在稻草还田下通过减氮增密(基肥减施20%, 增密27.3%)可显著提高氮素利用率, 进而提高作物产量。本研究在“独秆”栽培条件下基肥不施氮肥配合全程氮肥在分蘖中后期施用的N1和N2两个处理水稻产量随着追肥叶龄期延后均以L8叶龄期施肥最高, 达10.11 t hm-2和10.34 t hm-2, 较CK1显著增产8.65%和11.09%, 较CK2显著增产5.10%和7.46%; 若进行二次施肥管理N2处理L6~L9的水稻产量较N1可显著增产2.25%~4.03%。其高产原因在于保持较高水平结实率和千粒重的基础上, 显著提高了群体颖花量, 这与前人研究结果一致[23,24,25,26,27]。本试验氮肥处理对千粒重影响差异不显著, 可能与“独秆”栽培模式高基本苗条件下基肥不施氮肥全程氮肥在分蘖中后期施用能保持较高的群体颖花量, 显著提高粒叶比, 充分发挥库对源的促进作用, 使粒重达到某种限度有关[28]。另外, 本试验也发现在“独秆”栽培模式下, 保证适宜结实率和千粒重的基础上, 通过显著增加群体有效穗数和穗粒数是增加群体颖花量的关键, 这与前人研究认为“在保证适宜穗数基础上主攻大穗是水稻高产甚至超高产的主要途径”存在差异[29,30,31,32], 究其原因可能是因为“独秆”栽培条件下, 在较高群体密度基础上, 通过确定适宜叶龄期追肥能够显著降低一二次枝梗比、总粒数比, 显著提高二次枝梗数、总粒数和单枝梗粒数, 充分发挥二次枝梗对水稻穗型和产量增加方面的重要作用[33,34], 从而调控有效穗数和穗粒数之间的矛盾, 使有效穗数和穗粒数协同增加。同时, 随追肥叶龄期延后, N1和N2处理的群体高峰苗呈下降趋势, 有效穗数整体呈先升后降趋势, 茎蘖成穗率则呈显著上升趋势。因此, 本研究认为在高基础地力高基本苗条件下, 基肥不施氮肥, 水稻生育前期依靠土壤背景氮素配合全程氮肥在分蘖中后期适宜叶龄追施可通过保障较大穗型的基础上显著增加有效穗数, 提高茎蘖成穗率, 提高群体颖花量, 同时保持较高水平的结实率和千粒重, 从而实现旱直播水稻的增产增效。

3.2 “独秆”栽培模式全程氮肥在分蘖中后期施用对旱直播稻米品质的影响

稻米品质是稻米在商品流通中所必须具有的基本特征, 包括加工品质、外观品质、蒸煮食味品质和营养品质4个方面[35]。李广宇等[36]研究表明, 延后追肥叶龄期可以降低垩白率, 前氮后移没有降低稻米的加工品质和外观品质。刘梦红等[37]研究认为, 随着减氮施肥和前氮后移施肥稻米的垩白粒率和垩白度呈下降趋势, 加工品质差异不显著。殷春渊等[38]研究认为, 增加氮肥施用量使水稻垩白粒率和垩白度呈增加趋势, 直链淀粉和蛋白质含量也基本表现增加趋势。万靓军等[39]研究表明, 增施氮肥显著改善稻米外观品质, 增加稻米蛋白质含量, 降低直链淀粉含量, 改善稻米营养品质。本研究认为, 在“独秆”栽培模式中旱直播水稻采用不施氮素基肥, 全程氮肥在分蘖中后期不同叶龄追施的氮肥管理模式对稻米加工品质没有显著影响, 其中N1L8和N2L8处理的整精米率较2组对照增加0.67%~2.23%; 外观品质中垩白度随着氮肥水平的增加和追肥叶龄期的延后呈显著上升趋势, 其中N1L8和N2L8处理的垩白度较2组对照下降3.6%~14.5%。这可能是因为在较高密度群体基础上, 依靠土壤背景氮加上全程氮肥在分蘖中后期适宜叶龄施用, 能够改善群体和个体生长矛盾, 粒叶比协调, 促进籽粒灌浆充实, 提高了稻米的加工品质和外观品质。本研究中稻米的食味值、直链淀粉含量、外观和黏度均随氮肥水平的增加和追肥叶龄期的延后呈显著下降趋势, 而稻米的硬度、蛋白质含量则呈显著增加趋势, 其中N1L8和N2L8处理的食味值与2组对照相比没有显著差异, 蛋白质含量较2组对照增加3.03%~14.08%, 直链淀粉含量较2组对照下降4.23%~10.95%。张洪程等[40]研究认为, 适当增施氮肥有利于营养品质、加工品质、蒸煮食味品质的提高, 而高肥则不利于外观品质的提高。可见, “独秆”栽培模式不施氮素基肥配合全程氮肥在L8叶龄期追施可以改善旱直播稻米的加工品质和外观品质, 提高蛋白质含量, 降低直链淀粉含量, 同时实现稻米的食味值与对照无显著差异。

4 结论

本试验中, 与对照相比, 秸秆全量还田“独秆”栽培模式下基肥不施氮肥配合全程氮肥在L8叶龄期施用, 可使水稻显著增产5.10%和8.65%, 同时可减施氮肥33.3%; 若7 d后二次追氮肥可显著增产7.46%和11.09%, 同时可减施氮肥16.7%。该模式能在维持较大穗型的基础上, 显著增加有效穗数显著增加群体颖花量, 并且保持较高的结实率和千粒重有关。在稻米品质方面, 与对照相比, 基肥不施氮肥配合全程氮肥在L8叶龄期施用水稻整精米率有提高, 垩白度显著下降, 蛋白质含量显著增加, 直链淀粉含量显著下降, 食味值无显著差异。综上, 稻麦两熟地区秸秆全量还田条件下, “独秆”栽培水稻可采用基肥不施氮肥配合全程氮肥在L8叶龄施用实现产量和品质的协同提升, 可为更新迟播期、大播量、高基本苗旱直播水稻减氮优质稳产增效栽培技术提供参考依据。本试验中土壤类型为黏壤土, 地力中等偏上, 而“独秆”栽培模式下全程氮肥在分蘖中后期施用的氮肥管理模式能否适合不同生育类型水稻品种、不同类型土壤、不同地力水平土壤等还有待开展对比研究。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

佴军, 张洪程, 陆建飞. 江苏省水稻生产30年地域格局变化及影响因素分析
中国农业科学, 2012,45:3446-3452.

[本文引用: 1]

Nai J, Zhang H C, Lu J F. Regional pattern changes of rice production in thirty years and its influencing factors in Jiangsu province
Sci Agric Sin, 2012,45:3446-3452 (in Chinese with English abstract).

[本文引用: 1]

Xiong W, Conway D, Lin E, Holman I. Potential impacts of climate change and climate variability on China’s rice yield and production
Climate Res, 2009,40:23-35.

[本文引用: 1]

朱德峰, 程式华, 张玉屏, 林贤青, 陈惠哲. 全球水稻生产现状与制约因素分析
中国农业科学, 2010,43:474-479.

[本文引用: 1]

Zhu D F, Cheng S H, Zhang Y P, Lin X Q, Chen H Z. Analysis of status and constraints of rice production in the world
Sci Agric Sin, 2010,43:474-479 (in Chinese with English abstract).

[本文引用: 1]

曾山, 汤海涛, 罗锡文, 马国辉, 王在满, 臧英, 张明华. 同步开沟起垄施肥水稻精量旱穴直播机设计与试验
农业工程学报, 2012,28(20):12-19.

[本文引用: 1]

Zeng S, Tang H T, Luo X W, Ma G H, Wang Z M, Zang Y, Zhang M H. Design and experiment of precision rice hill-drop drilling machine for dry land with synchronous fertilizing
Trans CSAE, 2012,28(20):12-19 (in Chinese with English abstract).

[本文引用: 1]

轧宗杰, 卢树昌, 侯琨. 水稻旱直播栽培发展现状、问题及应用前景
作物杂志, 2020, ( 2):9-15.

[本文引用: 1]

Ya Z J, Lu S C, Hou K. Development status, problems and application prospects of dry direct seeding rice
Crops, 2020, ( 2):9-15 (in Chinese with English abstract).

[本文引用: 1]

赵正洪, 戴力, 黄见良, 潘晓华, 游艾青, 赵全志, 陈光辉, 周政, 胡文彬, 纪龙. 长江中游稻区水稻产业发展现状、问题与建议
中国水稻科学, 2019,33:553-564.

[本文引用: 1]

Zhao Z H, Dai L, Huang J L, Pan X H, You A Q, Zhao Q Z, Chen G H, Zhou Z, Hu W B, Ji L. Status, problems and solutions in rice industry development in the middle reaches of the Yangtze river
Chin J Rice Sci, 2019,33:553-564 (in Chinese with English abstract).

[本文引用: 1]

张洪程. 直播稻种植科学问题研究. 北京: 中国农业科学技术出版社, 2009. pp 1-15.
[本文引用: 1]

Zhang H C. Research on the Scientific Issues of Direct Seeding Rice Planting. Beijing: China Agricultural Science and Technology Press, 2009. pp 1-15(in Chinese).
[本文引用: 1]

吴文革, 陈烨, 钱银飞, 王小军, 吴一梅. 水稻直播栽培的发展概况与研究进展
中国农业科技导报, 2006,8(4):32-36.

[本文引用: 1]

Wu W G, Chen Y, Qian Y F, Wang X J, Wu Y M. The current status and progresses of the research on direct seeding rice
J Agric Sci Technol, 2006,8(4):32-36 (in Chinese with English abstract).

[本文引用: 1]

Xing Z P, Hu Y J, Qian H J, Cao W W, Guo B W, Wei H Y, Xu K, Huo Z Y, Zhou G S, Dai Q G, Zhang H C. Comparison of yield traits in rice among three mechanized planting methods in a rice-wheat rotation system
J Integr Agric, 2017,16:1451-1466.

[本文引用: 1]

侯庆福, 周复来. 晚茬冬小麦高产独秆栽培法
莱阳农学院学报, 1985, ( 2):23-29.

[本文引用: 1]

Hou Q F, Zhou F L. A cultivating method for high yield and single stem of the late planting wheat
J Laiyang Agric Coll, 1985, ( 2):23-29 (in Chinese with English abstract).

[本文引用: 1]

龚金龙, 张洪程, 常勇, 胡雅杰, 龙厚元, 戴其根, 霍中洋, 许轲, 魏海燕, 李德剑, 沙安勤, 周有炎, 罗学超. 稻麦“双迟”栽培模式及其周年生产力的综合评价
中国水稻科学, 2011,25:629-638.

[本文引用: 1]

Gong J L, Zhang H C, Chang Y, Hu Y J, Long H Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Li D J, Sha A Q, Zhou Y Y, Luo X C. “Double late” cultivation model for rice and wheat and its comprehensive evaluation on annual productivity
Chin J Rice Sci, 2011,25:629-638 (in Chinese with English abstract).

[本文引用: 1]

朱兆良, 孙波, 杨林章, 张林秀. 我国农业面源污染的控制政策和措施
科技导报, 2005,23(4):47-51.

[本文引用: 1]

Zhu Z L, Sun B, Yang L Z, Zhang X L. Policy and countermeasures to control non-point pollution of agriculture in China
Sci Technol Rev, 2005,23(4):47-51 (in Chinese with English abstract).

[本文引用: 1]

李杰, 张洪程, 龚金龙, 常勇, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 不同种植方式对超级稻籽粒灌浆特性的影响
作物学报, 2011,37:1631-1641.

[本文引用: 1]

Li J, Zhang H C, Gong J L, Chang Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Influence of planting methods on grain-filling properties of super rice
Acta Agron Sin, 2011,37:1631-1641 (in Chinese with English abstract).

[本文引用: 1]

Ali M A, Ladha J K, Rickman J, Laies J S. Comparison of different methods of rice establishment and nitrogen management strategies for lowland rice
J Crop Improv, 2006,16:173-189.

[本文引用: 1]

朱大伟, 郭保卫, 张洪程, 刘国涛, 戴其根, 霍中洋, 许轲, 魏海燕. 播期对优质米“南粳9108”生长特性及积温光照利用的影响
生态学杂志, 2014,33:3010-3017.

[本文引用: 1]

Zhu D W, Guo B W, Zhang H C, Liu G T, Dai Q G, Huo Z Y, Xu K, Wei H Y. Effects of sowing date on the growth characteristics and utilization of temperature and illumination of high quality japonica rice Nanjing 9108 in different ecological regions
Chin J Ecol, 2014,33:3010-3017 (in Chinese with English abstract).

[本文引用: 1]

李旭毅, 卿发红, 池忠志, 姜心禄, 郭翔, 郑家国, 刘世蓉. 水稻机械精量穴直播出苗阶段水分管理方式研究
西南农业学报, 2017,30:2449-2453.

[本文引用: 1]

Li X Y, Qing F H, Chi Z Z, Jiang X L, Guo X, Zheng J G, Liu S R. Study on water management for mechanical precise hill-drop drilling rice during emergence stage
Southwest Chin J Agric Sci, 2017,30:2449-2453 (in Chinese with English abstract).

[本文引用: 1]

丁艳锋, 刘胜环, 王绍华, 王强盛, 黄丕生, 凌启鸿. 氮素基、蘖肥用量对水稻氮素吸收与利用的影响
作物学报, 2004,30:739-744.

[本文引用: 1]

Ding Y F, Liu S H, Wang S H, Wang Q S, Huang P S, Ling Q H. Effects of the amount of basic and tillering nitrogen applied on absorption and utilization of nitrogen in rice
Acta Agron Sin, 2004,30:739-744 (in Chinese with English abstract).

[本文引用: 1]

钟旭华, 黄农荣, 郑海波, 彭少兵, Buresh R. 不同时期施氮对华南双季杂交稻产量及氮素吸收和氮肥利用率的影响
杂交水稻, 2007,22(4):62-66.

[本文引用: 1]

Zhong X H, Huang N R, Zheng H B, Peng S B, Buresh R J. Effect of nitrogen application timing on grain yield, nitrogen uptake and use efficiency of hybrid rice in south China
Hybrid Rice, 2007,22(4):62-66 (in Chinese with English abstract).

[本文引用: 1]

谢小兵, 周雪峰, 蒋鹏, 陈佳娜, 张瑞春, 伍丹丹, 曹放波, 单双吕, 黄敏, 邹应斌. 低氮密植栽培对超级稻产量和氮素利用率的影响
作物学报, 2015,41:1591-1602.

[本文引用: 1]

Xie X B, Zhou X F, Jiang P, Chen J N, Zhang R C, Wu D D, Cao F B, Shan S L, Huang M, Zou Y B. Effect of low nitrogen rate combined with high plant density on grain yield and nitrogen use efficiency in super rice
Acta Agron Sin, 2015,41:1591-1602 (in Chinese with English abstract).

[本文引用: 1]

朱相成, 张振平, 张俊, 邓艾兴, 张卫建. 增密减氮对东北水稻产量、氮肥利用效率及温室效应的影响
应用生态学报, 2016,27:453-461.

[本文引用: 1]

Zhu X C, Zhang Z P, Zhang J, Deng A X, Zhang W J. Effects of increased planting density with reduced nitrogen fertilizer application on rice yield, N use efficiency and greenhouse gas emission in northeast China
Chin J Appl Ecol, 2016,27:453-461 (in Chinese with English abstract).

[本文引用: 1]

郭俊杰, 柴以潇, 李玲, 高丽敏, 谢凯柳, 凌宁, 郭世伟. 江苏省水稻减肥增产的潜力与机制分析
中国农业科学, 2019,52:849-859.

[本文引用: 1]

Guo J J, Chai Y X, Li L, Gao L M, Xie K L, Ling N, Guo S W. The potential and related mechanisms of increasing rice yield by reducing chemical nitrogen application in Jiangsu province
Sci Agric Sin, 2019,52:849-859 (in Chinese with English abstract).

[本文引用: 1]

肖小平, 李超, 唐海明, 汤文光, 程凯凯, 郭立君, 汪柯, 潘孝晨. 秸秆还田下减氮增密对双季稻田土壤氮素库容及氮素利用率的影响
中国生态农业学报, 2019,27:422-430.

[本文引用: 1]

Xiao X P, Li C, Tang H M, Tang W G, Cheng K K, Guo L J, Wang K, Pan X C. Soil nitrogen storage and recovery efficiency in double paddy fields under reduced nitrogen dose and increased crop density
Chin J Eco-Agric, 2019,27:422-430 (in Chinese with English abstract).

[本文引用: 1]

张洪程, 吴桂成, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 端木银熙, 孙菊英, 赵品恒, 沙安勤, 周有炎, 李德剑, 肖跃成, 王宝金, 吴爱国. 粳型杂交水稻超高产形成规律与栽培途径的探讨
杂交水稻, 2010,25(增刊1):346-353.

[本文引用: 1]

Zhang H C, Wu G C, Dai Q G, Huo Z Y, Xu K, Gao H, Wei H Y, Duan-Mu Y X, Sun J Y, Zhao P Q, Sha A Y, Zhou Y Y, Li D J, Xiao Y C, Wang B J, Wu A G. Formulation of and cultural approach to super-high yielding in japonica hybrid rice
Hybrid Rice, 2010,25(S1):346-353 (in Chinese with English abstract).

[本文引用: 1]

吴桂成, 张洪程, 钱银飞, 李德剑, 周有炎, 徐军, 吴文革, 戴其根, 霍中洋, 许轲, 高辉, 徐宗进, 钱宗华, 孙菊英, 赵品恒. 粳型超级稻产量构成因素协同规律及超高产特征的研究
中国农业科学, 2010,43:266-276.

[本文引用: 1]

Wu G C, Zhang H C, Qian Y F, Li D J, Zhou Y Y, Xu J, Wu W G, Dai Q G, Huo Z Y, Xu K, Gao H, Xu Z J, Qian Z H, Sun J Y, Zhao P H. Rule of grain yield components from high yield to super high yield and the characters of super-high yielding japonica super rice
Sci Agric Sin, 2010,43:266-276 (in Chinese with English abstract).

[本文引用: 1]

魏海燕, 王亚江, 孟天瑶, 葛梦婕, 张洪程, 戴其根, 霍中洋, 许轲. 机插超级粳稻产量、品质及氮肥利用率对氮肥的响应
应用生态学报, 2014,25:488-496.

[本文引用: 1]

Wei H Y, Wang Y J, Meng T Y, Ge M J, Zhang H C, Dai Q G, Huo Z Y, Xu K. Response of yield, quality and nitrogen use efficiency to nitrogen fertilizer from mechanical transplanting super japonica rice
Chin J Appl Ecol, 2014,25:488-496 (in Chinese with English abstract).

[本文引用: 1]

成臣, 曾勇军, 王祺, 谭雪明, 商庆银, 曾研华, 石庆华. 施氮量对晚粳稻甬优1538产量、品质及氮素吸收利用的影响
水土保持学报, 2018,32(5):222-228.

[本文引用: 1]

Cheng C, Zeng Y J, Wang Q, Tan X M, Shang Q Y, Zeng Y H, Shi Q H. Effects of nitrogen application rates on japonica rice yield, quality, and nitrogen uptake and utilization during the late-rice cropping seasons in southern China
J Soil Water Conserv, 2018,32(5):222-228 (in Chinese with English abstract).

[本文引用: 1]

杨建昌, 杜永, 吴长付, 刘立军, 王志琴, 朱庆森. 超高产粳型水稻生长发育特性的研究
中国农业科学, 2006,39:1336-1345.

[本文引用: 1]

Yang J C, Du Y, Wu C F, Liu L J, Wang Z Q, Zhu Q S. Growth and development characteristics of super-high-yielding mid-season japonica rice
Sci Agric Sin, 2006,39:1336-1345 (in Chinese with English abstract).

[本文引用: 1]

凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2005. pp 69-77.
[本文引用: 1]

Ling Q H. The Quality of Crop Population. Shanghai: Shanghai Scientific and Technical Publishers, 2005. pp 69-77(in Chinese).
[本文引用: 1]

凌启鸿. 水稻精确定量栽培原理与技术
杂交水稻, 2010,25(增刊1):27-34.

[本文引用: 1]

Ling Q H. Theory and technology of rice precise and quantitative cultivation
Hybrid Rice, 2010,25(S1):27-34 (in Chinese with English abstract).

[本文引用: 1]

杨建昌, 杜永, 刘辉. 长江下游稻麦周年超高产栽培途径与技术
中国农业科学, 2008,41:1611-1621.

[本文引用: 1]

Yang J C, Du Y, Liu H. Cultivation approaches and techniques for annual super-high-yielding of rice and wheat in the lower reaches of Yangtze river
Sci Agric Sin, 2008,41:1611-1621 (in Chinese with English abstract).

[本文引用: 1]

严进明, 张荣铣, 焦德茂, 陈炳松, 张红生. 重穗型杂种稻光合和光合产物运转特性研究
作物学报, 2001,27:261-266.

[本文引用: 1]

Yan J M, Zhang R X, Jiao D M, Chen B S, Zhang H S. Studies on characteristics of photosynthesis and assimilate’s transportation in heavy ear hybrid rice (Oryza sativa L.)
Acta Agron Sin, 2001,27:261-266 (in Chinese with English abstract).

[本文引用: 1]

龚金龙, 胡雅杰, 龙厚元, 常勇, 葛梦婕, 高辉, 刘艳阳, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 李德剑, 沙安勤, 周有炎, 罗学超. 不同时期施硅对超级稻产量和硅素吸收、利用效率的影响
中国农业科学, 2012,45:1475-1488.

[本文引用: 1]

Gong J L, Hu Y J, Long H Y, Chang Y, Ge M J, Gao H, Liu Y Y, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Li D J, Sha A Q, Zhou Y Y, Luo X C. Effect of application of silicon at different periods on grain yield and silicon absorption, use efficiency in super rice
Sci Agric Sin, 2012,45:1475-1488 (in Chinese with English abstract).

[本文引用: 1]

龚金龙, 邢志鹏, 胡雅杰, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 籼、粳超级稻产量构成特征的差异研究
核农学报, 2014,28:500-511.

[本文引用: 1]

Gong J L, Xing Z P, Hu Y J, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Studies on the difference of yield components characteristics between indica and japonica super rice
J Nucl Agric Sci, 2014,28:500-511 (in Chinese with English abstract).

[本文引用: 1]

Huang Y Y, Zhao S S, Fu Y C, Sun H D, Ma X, Tan L B, Liu F X, Sun X Y, Sun H Y, Gu P, Xie D X, Sun C Q, Zhu Z F. Variation in the regulatory region of FZP causes increases in secondary inflorescence branching and grain yield in rice domestication
Plant J, 2018,96:716-733.

DOI:10.1111/tpj.14062URLPMID:30101570 [本文引用: 1]
Inflorescence branching is a key agronomic trait determining rice yield. The primary branch of the ancestral wild rice (Oryza rufipogon Griff.) bears few grains, due to minimal secondary branching. By contrast, Oryza sativa cultivars have been selected to produce large panicles with more secondary branches. Here we showed that the CONTROL OF SECONDARY BRANCH 1 (COS1) gene, which is identical to FRIZZY PANICLE (FZP), plays an important role in the key transition from few secondary branches in wild rice to more secondary branches in domesticated rice cultivars. A 4-bp tandem repeat deletion approximately 2.7 kb upstream of FZP may affect the binding activities of auxin response factors to the FZP promoter, decrease the expression level of FZP and significantly enhance the number of secondary branches and grain yield in cultivated rice. Functional analyses showed that NARROW LEAF 1 (NAL1), a trypsin-like serine and cysteine protease, interacted with FZP and promoted its degradation. Consistently, downregulating FZP expression or upregulating NAL1 expression in the commercial cultivar Zhonghua 17 increased the number of secondary branches per panicle, grain number per panicle and grain yield per plant. Our findings not only provide insights into the molecular mechanism of increasing grain number and yield during rice domestication, but also offer favorable genes for improving the grain yield of rice.

黄发松, 孙宗修, 胡培松, 唐绍清. 食用稻米品质形成研究的现状与展望
中国水稻科学, 1998,12:172-176.

[本文引用: 1]

Huang F S, Sun Z X, Hu P S, Tang S Q. Present situations and prospects for the research on rice grain quality forming
Chin J Rice Sci, 1998,12:172-176 (in Chinese with English abstract).

[本文引用: 1]

李广宇, 彭显龙, 刘元英, 盛大海, 暴勇. 前氮后移对寒地水稻产量和稻米品质的影响
东北农业大学学报, 2009,40(3):7-11.

[本文引用: 1]

Li G Y, Peng X L, Liu Y Y, Sheng D H, Bao Y. Effects of applying N at later growth stage on rice yield and quality in cold area of China
J Northeast Agric Univ, 2009,40(3):7-11 (in Chinese with English abstract).

[本文引用: 1]

刘梦红, 杜春颖, 杨锡铜, 周雪松, 赵海成, 李红宇, 郑桂萍, 吕艳东. 土壤肥力和氮肥运筹对寒地水稻产量、品质及氮肥利用的影响
河南农业科学, 2019,48(2):25-34.

[本文引用: 1]

Liu M H, Du C Y, Yang X T, Zhou X S, Zhao H C, Li H Y, Zheng G P, Lyu Y D. Effects of soil fertility and nitrogen application patterns on yield, quality and nitrogen utilization of rice in cold region
J Henan Agric Sci, 2019,48(2):25-34 (in Chinese with English abstract).

[本文引用: 1]

殷春渊, 王书玉, 刘贺梅, 孙建权, 胡秀明, 薛应征, 王和乐, 范永胜. 不同密度和施氮量对稻米品质特性的影响
河南农业科学, 2015,44(9):15-18.

[本文引用: 1]

Yin C Y, Wang S Y, Liu H M, Sun J Q, Hu X M, Xue Y Z, Wang H L, Fan Y S. Effects of different planting density and amount of nitrogen fertilizer on rice quality characteristics
J Henan Agric Sci, 2015,44(9):15-18 (in Chinese with English abstract).

[本文引用: 1]

万靓军, 张洪程, 霍中洋, 林忠成, 戴其根, 许轲, 张军. 氮肥运筹对超级杂交粳稻产量、品质及氮素利用率的影响
作物学报, 2007,33:175-182.

[本文引用: 1]

Wan L J, Zhang H C, Huo Z Y, Lin Z C, Dai Q G, Xu K, Zhang J. Effects of nitrogen application regimes on yield, quality, and nitrogen use efficiency of super japonica hybrid rice
Acta Agron Sin, 2007,33:175-182 (in Chinese with English abstract).

[本文引用: 1]

张洪程, 王秀芹, 戴其根, 霍中洋, 许轲. 施氮量对杂交稻两优培九产量、品质及吸氮特性的影响
中国农业科学, 2003,36:800-806.

[本文引用: 1]

Zhang H C, Wang X Q, Dai Q G, Huo Z Y, Xu K. Effects of N-application rate on yield, quality and characters of nitrogen uptake of hybrid rice variety Liangyoupeijiu
Sci Agric Sin, 2003,36:800-806 (in Chinese with English abstract).

[本文引用: 1]

相关话题/生产 科学 管理 作物 数据