Characteristics of post-anthesis carbon and nitrogen accumulation and translocation in maize cultivars with different low nitrogen tolerance
WU Ya-Wei,, PU Wei, ZHAO Bo, WEI Gui, KONG Fan-Lei, YUAN Ji-Chao,*College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture / Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
National Key Research and Development Program of China.2018YFD0301206 National Key Research and Development Program of China.2017YFD0301704 National Key Research and Development Program of China.2016YFD0300307 National Key Research and Development Program of China.2016YFD0300209
Abstract To understand the suitable amount of nitrogen (N) application and the potential of increasing yield and improve efficiency for the maize cultivars with different low N tolerance. The experiment was setting from 2017 to 2019, the low-N tolerant cultivar ‘Zhenghong 311 (ZH311)’ and the low-N sensitive cultivar ‘Xianyu 508 (XY508)’ were selected and four N application rates (0 kg hm-2, 150 kg hm-2, 300 kg hm-2, and 450 kg hm-2) were set to investigate the effects of N level on carbon (C) and N accumulation and translocation in the later growth stage of different maize cultivars. The results showed that in low N environment, maize increased the C and N translocations of pre-silking to the grain to ensure the yield. Increasing the N fertilizer applications could improve the contribution rates of dry matter and carbohydrate to grain yield. Compared with XY508, ZH311 had higher accumulations of plant dry matter, N and non-structural carbohydrate (NSC) of pre- and post-silking, and higher contribution rates of dry matter, N and accumulations to grain yield of post-silking, so it had higher grain yield. There was no significant difference between cultivars in the rate of dry matter, N and NSC translocation of pre-silking. In the face of low N stress, ZH 311 not only ensured the sufficient C and N translocations of pre-silking to the grain, but also maintained a higher capacity of assimilate accumulation to affect the yield formation. Keywords:low nitrogen tolerance;maize;dry matter;nitrogen;non-structural carbohydrate
PDF (1959KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 吴雅薇, 蒲玮, 赵波, 魏桂, 孔凡磊, 袁继超. 不同耐低氮性玉米品种的花后碳氮积累与转运特征[J]. 作物学报, 2021, 47(5): 915-928. doi:10.3724/SP.J.1006.2021.03033 WU Ya-Wei, PU Wei, ZHAO Bo, WEI Gui, KONG Fan-Lei, YUAN Ji-Chao. Characteristics of post-anthesis carbon and nitrogen accumulation and translocation in maize cultivars with different low nitrogen tolerance[J]. Acta Agronomica Sinica, 2021, 47(5): 915-928. doi:10.3724/SP.J.1006.2021.03033
Table 2 表2 表2年份、品种与氮肥水平对玉米产量和碳氮物质转运、积累量影响的方差分析 Table 2Variance analysis of year, cultivar, and nitrogen application on grain yield, nitrogen and carbon translocation, and accumulation amount in maize
变异来源 Source of variation
籽粒产量 Yield
花前干物质 转运量 DRA
花后干物质 积累量 DAA
花前氮素 转运量 NRA
花后氮素 积累量 NAA
花前NSC 转运量 NSCRA
花后NSC 积累量 NSCAA
年份 Year (Y)
630.15**
9.61**
14.86**
1913.22**
46.96**
18.99**
40.73**
品种 Cultivar (C)
111.32**
0.37
124.41**
502.68**
18.95**
127.54**
89.09**
氮肥 Nitrogen (N)
165.15**
107.02**
180.00**
27.18**
152.56**
174.83**
154.60**
Y×C
14.72**
57.38**
5.01*
908.82**
75.69**
0.44
25.00**
Y×N
17.30**
8.16**
13.82**
86.57**
46.11**
2.97*
11.42**
C×N
13.23**
10.82**
2.41*
5.97**
4.18*
20.81**
3.28*
Y×C×N
1.05
12.17**
4.14**
12.90**
19.08**
8.21**
2.14
*和**分别代表P < 0.05和P < 0.01显著水平。产量、干物质转运量和积累量为2017-2019年数据, 其余指标为2018-2019年数据。 Yield: grain yield; DRA: dry matter translocation amount of pre-silking; DAA: dry matter accumulation amount of post-silking; NRA: nitrogen translocation amount of pre-silking; NAA: nitrogen accumulation amount of post-silking; NSCRA: NSC translocation amount of pre-silking; NSCAA: NSC accumulation amount of post-silking. * and ** represent significant differences at P < 0.05 and P < 0.01, respectively. The data of yield, dry matter translocation and accumulation are from 2017 to 2019, and other indexes are from 2018 to 2019.
(A): 穗粒数; (B): 有效穗数; (C): 穗粒数; (D): 籽粒产量。多重比较仅在同一年份的2个品种间进行, 不同字母代表在 P < 0.05 水平上差异显著。 Fig. 2Effects of N level on grain yield and its components of maize with different low N tolerance
ZH311: Zhenghong 311; XY508: Xianyu 508. (A): kernel per ear; (B): efficient ear numbers; (C): 100-kernel weight; (D): grain yield. Values followed by different lowercase letters in the same year and two cultivars indicate significant differences at P < 0.05 by LSD test.
多重比较仅在同一年份的2个品种间进行, 不同字母代表在P < 0.05水平上差异显著。 Fig. 3Effects of N level on dry matter accumulation of maize with different low N tolerance
ZH311: Zhenghong 311; XY508: Xianyu 508. Values followed by lowercase letters in the same year and two cultivars indicate significant differences at P < 0.05 by LSD test.
表3结果表明, 增施氮肥显著降低花前干物质转运量(DRA)、转运率(DRR)及其对籽粒重的贡献率(CDRA)和收获指数(HI), 提高植株花后物质积累量(DAA) 及其对籽粒重的贡献率, DAA对籽粒贡献率大于DRA。低氮处理(0~150 kg hm-2), 正红311的DRA和CDRA较先玉508更高或接近, 中高氮(300~ 450 kg hm-2)下则相反, 其DRA和CDRA较先玉508更低, 尤其2019年, 正红311在300 kg hm-2和450 kg hm-2干物质没有转运。
Table 3 表3 表3氮肥水平对不同耐低氮性玉米品种吐丝后干物质转运的影响 Table 3Effects of N level on dry matter translocation of maize with different low N tolerance after silking stage
年份 Year
品种 Cultivar
氮肥处理 N treatment (kg hm-2)
花前干物质 转运量 DRA (×106 kg hm-2)
花前干物质 转运率 DRR (%)
花后干物质 积累量 DAA (×106 kg hm-2)
花前干物质转运对 籽粒重的贡献率 CDRA (%)
收获指数 HI
2017
ZH311
0
0.93 a
17.12 a
5.47 e
14.54 a
0.52 ab
150
0.94 a
14.61 ab
6.69 c
12.34 ab
0.52 ab
300
0.53 cd
6.92 c
8.53 a
5.86 c
0.50 bc
450
0.46 d
5.77 c
8.37 a
5.19 c
0.49 c
XY508
0
0.69 bc
17.09 a
4.39 f
13.69 a
0.52 ab
150
0.76 ab
14.19 ab
5.40 e
12.31 ab
0.51 ab
300
0.74 b
12.36 b
6.20 d
10.67 b
0.53 a
450
0.47 d
7.46 c
7.07 b
6.25 c
0.49 c
2018
ZH311
0
1.35 a
15.43 ab
6.97 c
16.23 a
0.47 ab
150
1.33 a
14.44 b
7.21 c
15.59 a
0.46 b
300
0.99 b
9.96 c
7.87 b
11.14 b
0.45 b
450
0.00 e
0.00 e
9.21 a
0.00 e
0.46 b
XY508
0
0.95 b
18.32 a
5.04 e
15.23 a
0.51 ab
150
0.52 c
9.76 c
6.11 d
7.87 bc
0.46 b
300
0.31 cd
5.62 d
6.95 c
4.25 cd
0.48 ab
450
0.25 d
4.06 d
7.43 bc
3.15 de
0.53 a
2019
ZH311
0
1.03 a
22.07 b
3.59 e
22.39 a
0.49 c
150
0.41 c
7.09 d
6.36 c
6.00 b
0.49 c
300
0.00 d
0.00 e
9.23 a
0.00 c
0.46 d
450
0.00 d
0.00 e
8.00 b
0.00 c
0.46 d
XY508
0
0.92 ab
28.26 a
3.66 e
21.64 a
0.56 b
150
1.03 a
22.69 b
7.38 b
16.76 a
0.58 ab
300
0.74 b
13.14 c
8.12 b
9.39 b
0.56 b
450
0.35 c
6.42 d
7.25 b
4.17 bc
0.58 a
多重比较仅在同一列同一年份的2个品种间进行, 不同字母代表在P < 0.05水平上差异显著。*和**分别代表P < 0.05和P < 0.01显著水平。 ZH311: Zhenghong 311, XY 508: Xianyu 508. DRA: dry matter translocation amount of pre-silking; DRR: dry matter translocation rate of pre-silking; DAA: dry matter accumulation amount of post-silking; CDRA: contribution rate of dry matter translocation amount of pre-silking; HI: harvest index. Values followed by the same letter within a column in the same year and two cultivars are not significantly different at P < 0.05 by LSD test. * and ** represent significant at P < 0.05 and P < 0.01, respectively.
多重比较仅在同一年份的2个品种间进行, 不同字母代表在P < 0.05水平上差异显著。 Fig. 4Effects of N level on non-structural carbohydrate (NSC) accumulation of maize with different low N tolerance
ZH311: Zhenghong 311; XY508: Xianyu 508. Values followed in the same year and two cultivars are not significantly different at P < 0.05 by the LSD test.
由表4可知, 与干物质转运相似, 增施氮肥显著降低吐丝后植株NSC转运量(NSCRA)、转运率(NSCRR)及其对籽粒NSC (CNSCRA)的贡献率和NSC收获指数(NSCHI), 提高植株花后NSC积累量(NSCAA)及其对籽粒NSC的贡献率。正红311的NSCRA、NSCRR和CNSCRA较先玉508更低。2018年, 正红311 NSCRR在0~450 kg hm-2氮处理下分别较先玉508低19.63%、46.58%、88.85%和100.00%, 2019年分别低33.54%、66.02%、100.00%和100.00%; 正红311的CNSCRA在0~450 kg hm-2氮处理下较先玉508分别低(2018年) 29.44%、45.24%、92.18%和100.00%, 2019年分别低32.20%、60.99%、100.00%和100.00%, 二者差异随施氮量的减少而减小。与花前NSC转运相反, 正红311的NSCAA及其对籽粒NSC的贡献较先玉508高, 二者差距随施氮量的减少增大。
Table 4 表4 表4氮肥水平对不同耐低氮性玉米吐丝后非结构性碳水化合物转运的影响 Table 4Effects of N level on non-structural carbohydrate (NSC) translocation of maize with different low N tolerance after silking stage
年份 Year
品种 Cultivar
氮肥处理 N treatment (kg hm-2)
花前NSC转运量 NSCRA (t hm-2)
花前NSC转运率 NSCRR (%)
花后NSC积累量 NSCAA (t hm-2)
花前NSC转运对 籽粒NSC贡献率 CNSCRA (%)
NSC 收获指数 NSCHI
2018
ZH311
0
0.24 a
75.70 b
4.55 d
5.01 b
0.97 b
150
0.11 cd
50.32 c
5.25 c
2.07 c
0.96 c
300
0.01 e
10.50 d
5.90 b
0.33 d
0.94 e
450
0.00 e
0.00 e
6.49 a
0.00 d
0.92 f
XY508
0
0.21 a
94.19 a
2.83 f
7.10 a
0.98 a
150
0.16 b
75.32 b
4.11 e
3.78 b
0.97 b
300
0.15 bc
70.64 b
4.42 d
4.22 b
0.97 b
450
0.10 d
46.94 c
5.24 c
1.81 c
0.95 d
2019
ZH311
0
0.17 a
44.03 c
2.55 d
6.40 b
0.89 b
150
0.08 c
18.34 e
4.00 c
2.04 cd
0.88 b
300
0.00 d
0.00 f
5.79 a
0.00 d
0.85 c
450
0.00 d
0.00 f
5.44 a
0.00 d
0.85 c
XY508
0
0.20 a
66.25 a
2.13 d
9.44 a
0.91 a
150
0.19 a
53.97 b
3.48 c
5.23 b
0.92 a
300
0.05 c
32.73 d
4.70 b
4.18 bc
0.91 a
450
0.01 d
3.94 f
5.78 a
0.25 d
0.91 a
多重比较仅在同一列同一年份的2个品种间进行, 不同字母代表在P < 0.05水平上差异显著。*和**分别代表P < 0.05和P < 0.01显著水平。 ZH311: Zhenghong 311; XY508: Xianyu 508. NSCRA: NSC translocation amount of pre-silking; NSCRR: NSC translocation rate of pre-silking; NSCAA: NSC accumulation amount of post-silking; CNSCRA: Contribution rate of NSC translocation amount of pre-silking; NSCHI: NSC harvest index. Values followed by the same letter within a column in the same year and two cultivars are not significantly different at P < 0.05 by LSD test. * and ** represent significant differences at P < 0.05 and P < 0.01, respectively.
多重比较仅在同一年份的2个品种间进行, 不同字母代表在P < 0.05水平上差异显著。 Fig. 5Effect of N level on N accumulation with different low N tolerance in maize
ZH311: Zhenghong 311; XY508: Xianyu 508. Values followed by different lowercase letters in the same year and two cultivars indicate significant differences at P < 0.05 by LSD test.
如表5所示, 随着施氮量增加, 植株的氮素转运率(NRR)及其对籽粒氮素(CNRA)呈下降趋势, 花后氮素积累量(NAA)及其对籽粒氮素的贡献率呈增加趋势, 高氮会降低氮收获指数(NHI)。各指标年际差异较大, 品种间的氮素转运、积累对氮水平响应程度也不同。2018年, 正红311的NRA、NRR和CNRA均显著大于先玉508, NAA及其对籽粒氮素的贡献则更小。正红311的NRA在0~450 kg hm-2处理下分别较先玉508高90.55%、119.20%、150.88%和130.66%; NRR分别高25.16%、40.69%、43.61%和52.69%; CNRA则分别高24.46%、74.34%、87.41%和54.68%。正红311的NAA在0~450 kg hm-2处理下较先玉508分别低-0.77%、31.98%、33.12%和 -11.50%。与2018年不同, 2019年, 正红311的NRA、NRR和CNRA较先玉508更小。0~450 kg hm-2处理下, 正红311的NRA较先玉508分别低14.50%、16.09%、52.09%和22.62%; NRR分别低22.29%、30.23%、66.84%和41.89%; CNRA分别低18.94%、31.30%、66.91%和31.11%。2个品种间NAA及其对籽粒氮素贡献的差异2年表现相同规律。0~450 kg hm-2氮处理下, 正红311的NAA较先玉508分别高32.53%、41.20%、73.99%和23.20%。总的来说, 正红311花后氮素的积累, 尤其是低氮条件下(≤150 kg hm-2), 比先玉508的大。
Table 5 表5 表5氮肥水平对不同耐低氮性玉米品种氮素转运的影响 Table 5Effects of N level on N translocation of maize with different low N tolerance after silking
年份 Year
品种 Cultivar
氮肥处理 N treatment (kg hm-2)
花前氮素转运量 NRA (kg hm-2)
花前氮素转运率 NRR (%)
花后氮素积累量 NAA (kg hm-2)
花前氮素转运对 籽粒氮素的贡献 CNRA (%)
氮素收获 指数 NHI
2018
ZH311
0
80.14 a
67.63 a
33.01 c
70.85 a
0.70 a
150
74.92 b
63.92 b
37.91 c
66.42 a
0.69 ab
300
84.54 a
61.20 b
40.06 c
67.93 a
0.65 bc
450
52.60 c
44.81 d
70.23 a
43.09 c
0.60 de
XY508
0
42.06 d
54.03 c
32.75 c
56.92 b
0.64 c
150
34.18 e
45.43 d
55.73 b
38.10 cd
0.65 c
300
33.70 e
42.61 d
59.89 ab
36.24 d
0.63 cd
450
22.80 f
29.34 e
62.98 ab
27.86 e
0.57 e
2019
ZH311
0
19.23 bc
48.01 b
22.99 e
45.75 b
0.61 bc
150
17.39 c
35.49 c
63.40 c
21.65 d
0.63 abc
300
9.63 d
12.76 e
119.36 a
7.51 e
0.59 c
450
21.82 b
27.86 d
83.40 b
20.51 d
0.58 c
XY508
0
22.49 b
61.79 a
17.35 e
56.44 a
0.62 abc
150
20.73 bc
50.87 b
44.90 d
31.51 c
0.67 ab
300
20.09 bc
38.47 c
68.60 c
22.71 d
0.70 a
450
28.19 a
47.94 b
67.70 c
29.77 c
0.65 abc
多重比较仅在同一列同一年份的2个品种间进行, 不同字母代表在P < 0.05水平上差异显著。*和**分别代表P < 0.05和P < 0.01显著水平。 ZH311: Zhenghong 311; XY508: Xianyu 508. NRA: nitrogen translocation amount of pre-silking; NRR: nitrogen translocation rate of pre-silking; NAA: nitrogen accumulation amount of post-silking; CNRA: Contribution rate of nitrogen translocation amount of pre-silking; NHI: nitrogen harvest index. Values followed by the same letter within a column in the same year and two cultivars are not significantly different at P < 0.05 as determined by the LSD test. * and ** represent significant differences at P < 0.05 and P < 0.01, respectively.
Table 6 表6 表6籽粒产量与花前干物质、氮素和非结构性碳水化合物转运量及花后积累量的关系 Table 6Relationship between grain yield and pre-silking translocation and post-silking accumulation of dry matter, nitrogen, and non-structural carbohydrates
品种 Cultivar
籽粒产量 Yield
有效穗数 EEN
穗粒数 SPE
百粒重 100-KW
花前干物质转运量 DRA
花后干物质积累量 DAA
花前氮素转运量 NRA
花后氮素积累量 NAA
花前NSC转运量 NSCRA
ZH 311
有效穗数ENN
0.89**
穗粒数 SPE
0.80**
0.64
百粒重100-KW
0.72*
0.64
0.18
花前干物质转运量 DRA
-0.30
-0.41
0.21
-0.72*
花后干物质积累量 DAA
0.87**
0.89**
0.66
0.64
-0.55
花前氮素转运量 NRA
0.62
0.39
0.88**
0.04
0.44
0.31
花后氮素积累量 NAA
0.31
0.28
-0.22
0.82**
-0.72*
0.36
-0.44
花前NSC转运量 NSCRA
-0.49
-0.68*
0.01
-0.72*
0.83**
-0.62
0.16
-0.49
花后NSC积累量 NSCAA
0.88**
0.92**
0.72*
0.54
-0.43
0.96**
0.45
0.14
-0.63
XY 508
有效穗数 ENN
0.63
穗粒数 SPE
0.51
-0.33
百粒重 100-KW
0.82**
0.85**
0.01
花前干物质转运量 DRA
-0.78*
-0.28
-0.68*
-0.39
花后干物质积累量 DAA
0.97**
0.67
0.43
0.85**
-0.79*
花前氮素转运量 NRA
0.25
0.68*
-0.53
0.73*
0.30
0.26
花后氮素积累量 NAA
0.53
0.92**
-0.42
0.90**
-0.04
0.58
0.88**
花前NSC转运量 NSCRA
-0.74*
-0.78*
-0.01
-0.80**
0.65
-0.81**
-0.43
-0.69*
花后NSC积累量 NSCAA
0.91**
0.68*
0.34
0.83**
-0.81**
0.98**
0.24
0.58
-0.86**
*和**分别代表P < 0.05和P < 0.01显著水平。相关分析计算仅用2018-2019年数据(n = 24, 2年4氮处理3重复)。 ZH311: Zhenghong 311; XY508: Xianyu 508.Yield: grain yield; EEN: efficient ear number; SPE: spike per ear; 100-KW: 100-kernel weight; DRA: dry matter translocation amount of pre-silking; DAA: dry matter accumulation amount of post-silking; NRA: nitrogen translocation amount of pre-silking; NAA: nitrogen accumulation amount of post-silking; NSCRA: NSC translocation amount of pre-silking; NSCAA: NSC accumulation amount of post-silking.* and ** represent significant differences at P < 0.05 and P < 0.01, respectively. The data from 2018 to 2019 are used for correlation analysis (n = 24, 2 years, 4 N treatments and 3 replicates).
Zhang WF, MaL, Huang GQ, WuL, Chen XP, Zhang FS. The development and contribution of nitrogenous fertilizer in China and challenges faced by the country Sci Agric Sin, 2013,46:3161-3671 (in Chinese with English abstract). [本文引用: 2]
Wu YW, ZhaoB, LiQ, Kong FL, Du LJ, ZhouF, Shi HC, Ke YP, Liu QL, Feng DJ, Yuan JC. Non-structural carbohydrates in maize with different nitrogen tolerance are affected by nitrogen addition PLoS One, 2019,14:e225753. [本文引用: 3]
LiQ, Luo YH, TanJ, Kong FL, Yang SM, Yuan JC. Indexes screening and comprehensive evaluation of low nitrogen tolerance of hybrid maize cultivars at seedling stage Chin J Eco-Agric, 2014,22:1190-1199 (in Chinese with English abstract). [本文引用: 3]
Mi GH, Chen FJ, ChunL, Guo YF, Tian QY, Zhang FS. Biological characteristics of nitrogen efficient maize genotypes Plant Nutr Fert Sci, 2007,13:155-159 (in Chinese with English abstract). [本文引用: 4]
Moll RH, Kamprath EJ, Jackson WA. Analysis and interpretation of factors which contribute to efficiency of N utilization Agron J, 1982,74:562-564. [本文引用: 2]
Zhong SR, Gong SY, Zhang SC, Chen RX, Liu QY, Zhai XQ. Research progress on low nitrogen tolerance and nitrogen efficiency in crop plants Acta Agric Nuc Sin, 2018,32:1656-1663 (in Chinese with English abstract). [本文引用: 1]
PlénetD, LemaireG. Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration Plant Soil, 2000,216:65-82. [本文引用: 2]
NingP, YangL, Li CJ, Fritschi FB. Post-silking carbon partitioning under nitrogen deficiency revealed sink limitation of grain yield in maize J Exp Bot, 2018,69:1707-1719. [本文引用: 1]
MaJ, ZhangY. Effect of topdressing nitrogen on transportation and accumulation of non-structural carbohydrate of vegetative organs and yield in maize J Maize Sci, 2019,27(2):155-160 (in Chinese with English abstract). [本文引用: 1]
Wu WM, Chen HJ, Wang SJ, Wei FZ, Li JC. Effects of nitrogen fertilization application regime on dry matter, nitrogen accumulation and transportation in summer maize under waterlogging at the seedling stage Acta Agron Sin, 2015,41:1246-1256 (in Chinese with English abstract). [本文引用: 2]
Chang YF, Dong PF, Wang XL, Liu WL, Li CH. Effect of nitrogen application on carbon and nitrogen metabolism of different summer maize varieties Sci Agric Sin, 2017,50:2282-2293 (in Chinese with English abstract). [本文引用: 2]
Chen FJ, Mi GH. Comparison of nitrogen accumulation and nitrogen utilization efficiency between elite inbred lines and the landraces of maize Acta Agric Scandinavica, Section B: Soil Plant Sci, 2012,62:565-569. [本文引用: 1]
Wen LY, Xue YF, ZhangH, Zhang XQ, Gao YB, Liu KC, Li ZX. The characteristics of nitrogen translocation of maize inbred lines with different nitrogen efficiency from anthesis to maturity Plant Nutr Fert Sci, 2019,25:568-578 (in Chinese with English abstract). [本文引用: 1]
Chen YL. Mechanisms for Coordination of High Yield and High Nitrogen Remobilization Efficiency in Maize PhD Dissertation of China Agricultural University, Beijing, China, 2016. pp 83-85 (in Chinese with English abstract). [本文引用: 1]
LiQ, Kong FL, Yuan JC. Effects of inter annual meteorological differences on material accumulation and yield of maize in hilly area of southwest China Crops, 2020,4:150-157 (in Chinese with English abstract). [本文引用: 1]
ZhangY. Dry matter accumulation and changes of nitrogen, phosphorus and potassium contents in spring maize at different growth stages in northern China J Maize Sci, 1996,4(1):63-65 (in Chinese with English abstract). [本文引用: 1]
LiQ, Ma XJ, Cheng QB, DouP, Yu DH, Luo YH, Yuan JC, Kong FL. Effects of nitrogen fertilizer on post-silking dry matter production and leaves function characteristics of low-nitrogen tolerance maize Chin J Eco-Agric, 2016,24(1):17-26 (in Chinese with English abstract). [本文引用: 2]
Zhang XZ, LiuM, Qi ZJ. Effect of water nitrogen dosage on nitrogen absorption and transformation of maize under sprinkler irrigation condition Trans CSAM, 2019,50(8):299-308 (in Chinese with English abstract). [本文引用: 1]
Yin CX, LiQ, Kong LL, Qin YB, WangM, YuL, Liu CG, Wang LC, Hou YP. Effect of reduced controlled-release nitrogen fertilizer application on yield, nitrogen absorption and transportation of spring maize Sci Agric Sin, 2018,51:3941-3950 (in Chinese with English abstract). [本文引用: 3]
Zhou PL, RenH, QiH, ZhaoM, Li CF. Effects of nitrogen application rates on dry matter productivity and nitrogen utilization of different type maize hybrids .Acta Agron Sin, 43:263-276 (in Chinese with English abstract). [本文引用: 1]
Li YH, Cao ML, Du HL, Guo PY, Zhang HY, Guo MJ, Yuan XY. Effect of fertilization location and amount on dry matter accumulation, translocation and yield of hybrid millet Sci Agric Sin, 2017,52:4177-4190 (in Chinese with English abstract). [本文引用: 2]
Gu CJ, Yang HQ, Jiang WL, Shu XL, Zhang GC, Wu XJ, Chen XQ. The content analysis of total protein and soluble protein in different colored rice varieties Mol Plant Breed, 2017,15:1035-1042 (in Chinese with English abstract). [本文引用: 1]
Zheng FN, Chu JP, ZhangX, Fei LW, Dai XL, He MR. Interactive effects of sowing pattern and planting density on grain yield and nitrogen use efficiency in large spike wheat cultivar Acta Agron Sin, 2020,46:423-431 (in Chinese with English abstract). [本文引用: 1]
LiQ, Kong FL, Wu YW, Feng DJ, Yuan JC. Increasing nitrogen accumulation and reducing nitrogen loss with N-efficient maize cultivars Plant Prod Sci, 2020,23:260-269. [本文引用: 3]
Pan JF, Cui KH, XiangJ, Weid, WangK, Huang JL, Nie LX. Characteristics of non-structural carbohydrate accumulation and translocation in rice genotypes with various sink-capacity J Huazhong Agric Univ, 2015,34(1):9-15 (in Chinese with English abstract). [本文引用: 1]
Yang MD, Guan XK, LiuY, Cui JY, Ding CM, Wang JL, Han JL, Wang HP, Kang HP, Wang TC. Effects of drip irrigation pattern and water regulation on the accumulation and allocation of dry matter and nitrogen, and water use efficiency in summer maize Acta Agron Sin, 2019,45:443-459 (in Chinese with English abstract). [本文引用: 1]
LyuX, Niu SD, Li ZB, Huang XJ, Zhong TY. Present situation and trends in research on cultivated land intensive use in China Trans CSAE, 2015,31(18):212-224 (in Chinese with English abstract). [本文引用: 1]
Yu JJ, Han JN, Wang RF, Li XX. Down-regulation of nitrogen/carbon metabolism coupled with coordinative hormone modulation contributes to developmental inhibition of the maize ear under nitrogen limitation Planta, 2016,244:111-124. [本文引用: 1]
MasclauxC, Valadier MH, BrugiereN, Morot-Gaudry JF, HirelB. Characterization of the sink/source transition in tobacco ( Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence Planta, 2000,211:510-518. [本文引用: 1]
Pan JF. Effects of Nitrogen Treatments on Characteristics of Accumulation and Translocation of Nonstructural Carbohydrates in Stems and Their Genetic Basis PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2010. pp 9-10 (in Chinese with English abstract). [本文引用: 1]
Xu YJ, Xu YD, Li YY, Qian XY, Wang ZQ, Yang JC. Effect of alternate wetting and drying irrigation on post-anthesis remobilization of assimilates and grain filling of rice Acta Agron Sin, 2018,44:554-568 (in Chinese with English abstract). [本文引用: 1]
Xu YJ. Mechanism in Filling Difference between Superior and Inferior Caryopses of Three Cereal Crops and Its Regulation Techniques PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2016. pp 201-205 (in Chinese with English abstract). [本文引用: 1]
WuY, LiQ, JinR, ChenW, Liu XL, Kong FL, Ke YP, Shi HC, Yuan JC. Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low-nitrogen tolerances J Integr Agric, 2019,18:1246-1256. [本文引用: 3]
LiQ, Ma XJ, Cheng QB, DouP, Yu DH, Luo YH, Kong FL, Yuan JC. Effects of nitrogen application on nitrogen utilization and nitrogen balance in fields of maize cultivars with different low nitrogen tolerance J Soil Water Conserv, 2016,30(3):171-176 (in Chinese with English abstract). [本文引用: 2]
LiQ, Wu YW, ChenW, JinR, Kong FL, Ke YP, Shi HC, Yuan JC. Cultivar differences in root nitrogen uptake ability of maize hybrids Front Plant Sci, 2017,8:1060. [本文引用: 1]
QinJ, Yang ZY, Sun YJ, XuH, MaJ. Differential comparison of assimilation products accumulation, nitrogen uptake and utilization and grain yield of hybrid indica rice combinations with different panicle types Chin J Rice Sci, 2014,28:514-522 (in Chinese with English abstract). [本文引用: 1]
Mu XY, ZhaoX, Gu LM, Ji BY, DingY, Zhang FQ, ZhangJ, Qi JS, Ma ZY, Xia LK, Tang BJ. Effects of straw returning amount on grain yield, dry matter accumulation and transfer in summer maize with different genotypes Sci Agric Sin, 2020,53:29-41 (in Chinese with English abstract). [本文引用: 1]
GuoS, Sun WY, Gu RL, Wang ZK, Chen FJ, Zhao BQ, Yuan LX, Mi GH. Differences in leaf nitrogen remobilization efficiency and related gene expression during grain filling stage of two maize hybrids Plant Nutr Fert Sci, 2018,24:1149-1157 (in Chinese with English abstract). [本文引用: 1]
Wei TB, Hu FL, ZhaoC, Feng FX, Yu AZ, LiuC, ChaiQ. Response of dry matter accumulation and yield components of maize under N-fertilizer postponing application in oasis irrigation areas .Sci Agric Sin, 50:2916-2927 (in Chinese with English abstract). [本文引用: 1]
LiQ, Ma XJ, Cheng QB, DouP, Yu DH, Luo YH, Yuan JC, Kong FL. Effects of nitrogen fertilizer on the accumulation and allocation of dry matter and nitrogen for maize cultivars with different low nitrogen tolerance J Zhejiang Univ (Agric Life Sci Edn), 2015,41:527-536 (in Chinese with English abstract). [本文引用: 1]