删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

力约束管材自由胀形试验研究与材料性能测试

本站小编 Free考研考试/2021-12-25

管材充液成形技术(tube hydroforming)是指管材在内部液压力和轴向推力作用下充满模具型腔并贴模,进而成形具有一定复杂型面的空心薄壁零件高压柔性成形工艺,也被称为内高压成形或液压成形工艺,鉴于其特别适用于成形整体、复杂、薄壁的空心零件,及其成形精度高、材料利用率高、生产成本低的特点,该技术在21世纪初得到了快速发展,并开始广泛应用于航空航天、汽车制造等产业[1, 2, 3].随着工艺应用的发展,研究人员发现由于高压均匀面力等因素的作用,原始板材单向拉伸试验获得的材料性能参数不能很好地适用于管材充液成形工艺分析,实际生产对材料准确度的要求也越来越高,目前管材充液成形性能测试方法和装置尚不够完善和统一[4, 5, 6, 7, 8].需要采用更为准确、可靠的胀形方法获得材料性能数据.He等通过比较现有的解析模型,针对AA6061材料建立了基于不同边界条件的管材胀形统一解析模型,认为胀形轮廓为椭圆,并考虑了模具圆角的影响[7, 8].Velasco和Zribi等通过有限元模拟和试验研究了材料性能参数对管材胀形过程中材料分布和胀形轮廓的影响[9, 10];Imaninejad等采用挤出铝管材对充液胀形中不同的管端约束条件及对管材应变状态的影响进行了试验研究,并对试验中的摩擦力进行了定性分析和定量测量.试验结果表明,不同的管端约束和摩擦状态对材料变形有非常大的影响,以至于可以得到成形极限图上大范围内的点,材料厚向异性指数与管材的轴向收缩量呈显著正相关[11, 12].现有的管材胀形试验方法通常采用模具将管材两端完全固定,边界条件清晰,但不能监控材料的轴向收缩量,因而无法得到反映材料厚向异性指数.另外,管端固定的边界导致管材胀形时管材顶点处轴向应力分量很大,不能很好地反映材料径向性能,因而与材料单向拉伸试验数据相差很大.当采用放开管端轴向自由度的试验方法时,往往由于管材的收缩导致侧推冲头与管材间的过盈密封状态不良,过度推料又容易对管材两端施加推力而影响试验结果,摩擦状态随着胀形压力和侧推冲头的作用而急剧变化,试验干扰因素非常多.管材胀形实时厚度的测量问题一直没有解决,间接理论推导导致误差增大.本文根据大量工程经验,针对现有TBT(Tube Bulging Test)方法存在的不足之处,提出了一种基于轴向自由胀形的管材充液成形性能测试试验方法及装置,建立了与之对应的理论解析模型,以获得实时胀形高度、轴向收缩量和壁厚变化等数据,进而获得应力应变曲线和材料性能参数.试验管材受力边界简单、清晰,摩擦干扰误差小,易于检测、采集和处理数据.
1 试验原理与系统设计1.1 试验原理力约束管材自由胀形试验方法原理如图 1所示,将试验管材的两端完全刚性约束,仅放开其轴向移动的自由度,在管材内部施加均匀液压力p,同时在管材左右两端分别通过伺服侧推油缸施加推力F1,F2,并满足下式:
式中,Fp为内压力p对管材内腔端面Ain的作用力;Ain为试验管材的管端内腔截面积;k1,k2为加载系数;S1,S2为左右两侧伺服油缸上安装的左侧位移传感器和右侧位移传感器的位移反馈值.内压力p均匀上升直至管材破裂过程中保持前述关系不变,同时通过超声测厚仪及探头、胀形高度位移传感器实时监控管材胀形顶点的实时壁厚t和胀形高度h.当k1=k2=1时,侧推力F1,F2正好抵消内压力p对管材内腔端面Ain的作用力Fp,通过获得的胀形过程数据p,t,h即可按照塑性理论推导出试验管材的轴向自由胀形应力应变曲线及材料参数.此种工况下,试验管材仅受到内压力p对管腔内壁的法向作用和管端节点的径向约束,同时保持胀形最高点轴向不窜动,而不受任何他它外力、约束或摩擦的影响.
A—左侧位移传感器; D—超声测厚仪及探头; E—胀形高度位移传感器; I—右侧位移传感器.图 1 力约束管材自由胀形试验原理Fig. 1 Principle diagram of TBT system
图选项



1.2 试验系统组成如图 2所示,试验系统分为控制系统、液压系统、水系统、增压器和试验工装5部分.液压系统工作介质为液压油,水系统工作介质为乳化液,增压器为液压力转换和放大装置.控制系统同时监测并记录左侧位移传感器、左侧油缸无杆腔压力传感器、左侧油缸有杆腔压力传感器、超声测厚仪及探头、胀形高度位移传感器、超高压压力传感器、右侧油缸有杆腔压力传感器、右侧油缸无杆腔压力传感器、右侧位移传感器9个传感器的实时数据.
A—左侧位移传感器;B—左侧油缸无杆腔压力传感器; C—左侧油缸有杆腔压力传感器;D—超声测厚仪及探头; E—胀形高度位移传感器;F—超高压压力传感器; G—右侧油缸有杆腔压力传感器; H—右侧油缸无杆腔压力传感器;I—右侧位移传感器; J—控制系统;K—液压系统; L—水系统;M—增压器;N—试验工装.图 2 试验系统组成Fig. 2 Composition of TBT system
图选项



2 关键技术实现与验证2.1 管端约束、高压密封与导向结构如图 3所示,试验管材两端的约束和高压密封由左推杆、试验管材、对开螺母卡套部件、右推杆、超高压水管、高压密封圈6部分组成.对开螺母卡套部件包括卡套、内螺纹圆柱销、对开螺母.对开螺母上下瓣和卡套通过内螺纹圆柱销连接为一整体,并可反复拆装.左、右推杆与对开螺母卡套部件采用螺纹连接,并可反复拆卸,试验管材经过扩口的两端被左、右推杆和对开螺母卡套部件夹紧在中间,通过螺纹实现预紧.超高压水管通过螺纹连接在右推杆上,并可通过右推杆上的高压水通道向试验管材内注入高压液体.卡套可以在左右两侧上压半圆形导套和下支撑半圆形导套组成的圆形导向结构内沿轴向自由窜动,配合界面采用大间隙配合,并涂油润滑,左右两侧的下支撑半圆形导套通过螺栓固定在底板上,并通过导向键保证同轴度,从而保证了管材沿轴向的自由移动.
1—左推杆;2—底板;3—上压半圆形导套;4—下支撑半圆形导套;5—试验管材;6—高压密封圈;7—卡套;8—内螺纹圆柱销;9—对开螺母;10—右推杆;11—高压水通道;12—超高压水管.图 3 试验工装Fig. 3 Tool set
图选项


2.2 侧推位移与力的比例伺服控制策略对于比例伺服控制实现式(1)要求的力平衡条件仅需要对两侧伺服油缸进行力控制,当管材收缩时侧推油缸跟随运动.但通过试验发现管材因胀形而收缩过程中两侧伺服油缸的位移是不稳定的,由于系统的不完全对称会导致管材偏移.为了便于超声测厚仪稳定采集实时厚度数据,就需要对侧推油缸的位移进行控制,以确保管材顶点始终处于中间位置.经过反复试验发现,精确控制左侧伺服油缸压力和右侧伺服油缸位移,左侧伺服油缸位移传感器采集的位移数据作为右侧伺服油缸位移控制数据,这种控制策略能够同时保证侧推力和侧推位移的对称,并且侧推油缸的位移量体现的是管材胀形的自由收缩量.如图 4所示,试验采集的数据表明了上述控制策略的有效性,在管材胀形至破裂的过程中,式(1)和式(2)所描述的试验平衡状态始终处于动态稳定中.
图 4 轴向力与位移曲线Fig. 4 Force and displacement curve
图选项



2.3 关键技术特征根据管端约束条件不同,传统的管材胀形试验方法分为管端固定、管端力加载和管端自由胀形[11].相较于现有试验方法,本文所描述的管材自由胀形试验方法具有如下特征:①在胀形试验之前,管材两端通过翻边模具进行扩口,对开螺母卡套部件将管材的翻边特征完全约束,因而阻滞了管材夹持段的材料向胀形区的流动,保证了管材变形区材料长度的一致性.②由于管材两端的翻边特征完全被对开螺母卡套部件夹持,现有试验方法中管材与夹持模具之间的相对运动边界被转换到了对开螺母卡套部件与导套之间,原有的剧烈摩擦边界被间隙滑动配合所代替,因而在施加大的轴向力之前管材可以在导套内自由滑动.在胀形阶段,夹持段管材的变形很小,对开螺母卡套部件与导套之间的滑动间隙仍旧稳定,滑动摩擦力很小,因而管材可以自由收缩.③除了轴向移动的自由度,管材两端节点的其他自由度被完全约束,加上良好的滑动配合,伺服油缸提供的轴向力加载精确地作用在管材两端.由于翻边特征的特殊固定方式,轴向拉力也可以施加在管材上,这为研究管材在双拉状态下的变形行为提供了非常好的试验条件.
3 试验条件3.1 试验材料试验管材材料为QSTE340 TM高频焊管,长度210 mm(含管材两端夹持段长度各32.5 mm),外径D0=72.5 mm,长径比L0/D0=2.0,变形区长度L0=145 mm,实测原始壁厚t0=3.665 mm.单向拉伸试验测得的屈服强度σs=400 MPa,抗拉强度σb=450 MPa,延伸率≥25%.试验前,在管材表面印上直径2.5 mm的圆形网格,用于测量管材破裂后的面内应变.
3.2 试验设备试验设备为北京航空航天大学飞行器制造工程实验室为完成本试验自主研发的FTBT试验机,如图 5所示.设备最大胀形力250 MPa,压力控制精度0.5 MPa,侧推力0~30 t,位移控制精度0.2 mm.
图 5 FTBT管材自由胀形试验机Fig. 5 Free-end tube bulging test machine
图选项



4 试验数据采集与分析4.1 数据采集试验采用PD-T1精密型超声波测厚仪测量胀形零件顶点厚度t,Novotechnik TMI系列位移传感器测得胀形高度h,及左右油缸的位移S1,S2,KAVLICO PTE5000系列压力传感器测得胀形压力p.控制系统每秒钟输出2组数据,增压时间20 s,系统输出的顶点壁厚、胀形高度和压力曲线如图 6所示.
图 6 试验数据采集曲线Fig. 6 Experimental data
图选项



4.2 理论解析模型如图 7所示,力约束管材自由胀形试验中,在式(1)和式(2)满足的情况下,管材仅受到内压力p的作用,轴向推力F1,F2和内压力p对管材内腔端面Ain的作用力Fp相互抵消.
图 7 力约束管材自由胀形受力平衡示意图Fig. 7 Force equilibrium diagram of free-bulging
图选项


根据前述边界条件和几何关系,列出下列平衡方程[12, 13],可以得到胀形管材顶点的应力应变状态.同时需要做出如下假设:1) 薄壁管成形,忽略管材厚向应力,但考虑内压力p的作用;2) 管材胀形过程中,轴向剖面轮廓曲线始终为余弦曲线;3) 塑性变形过程中,材料体积不变;4) 忽略材料各向异性.首先分析管材顶点的应力状态,在塑性变形阶段,管材轴向仅受到内压力p在管材轴向轮廓的投影,轴向应力可以通过下式得出:
式中,R0为管材原始半径,当管材长径比L0/D0=2.0时,端头效应的影响需要考虑在内,根据薄膜理论及静力平衡条件,此时有
式中,σθ为顶点的环向应力分量;σz为顶点的轴向应力分量;Rθ为顶点的环向曲率半径;Rz为顶点的轴向曲率半径;t为顶点的实时壁厚.假设管材轴向剖面轮廓曲线为余弦曲线:
根据几何关系可得:
式中,有a=h,b=π/l,则
管材两端自由收缩量S1=S2通过图 4(b)可得,将式(3)、式(7)代入式(4)中即可推导出环向应力σθ.管材顶点的真实厚向应变可以通过超声测厚仪采集的实时厚度t得出:
管材环向真实应变为
根据体积不变关系可得轴向应变:
平面应力状态下,根据Von Mises屈服准则推导出等效应力:
根据下式推导出等效应变:
4.3 数据处理与分析将图 4(b)和图 6采集的数据代入前述公式即可获得材料塑性阶段的应力分量(图 8(a))、应变分量(图 8(b)).采用式(13)所述的Swift材料本构拟合材料塑性阶段的等效应力应变曲线如图 8(c)所示.
如图 8(a)所示的应力分量图,环向应力σθ远大于轴向应力σz,受力状态接近于单向拉伸,轴向力的抵消起到了很好的效果,测试结果能够很好地反映管材的环向成形性能.这个结果也是工艺设计所需要的,在实际工程应用中,管材充液成形零件的破裂主要发生在环向.
图 8 应力应变曲线及拟合Fig. 8 Fit of strain stress curve
图选项


图 8(b)所示的应变分量图反映了管材胀形过程中厚度逐渐减薄、环向逐渐拉长的过程,对应的轴向应变则经历了先压缩、后拉伸的过程,轴向力的抵消起到了明显的效果[14].在材料发生弹性变形和塑性变形的中前期阶段,胀形高度很低,内压力对管材轴向的作用很小,管材近似于仅受环向主应力的作用,引起明显的轴向和厚向收缩,因而该阶段的轴向应变为负值.该阶段的应力应变状态非常近似于单向拉伸试验,从图 8(b)中也可以看出在该阶段轴向应变与厚向应变近似相等,与单向拉伸试验类似定义该阶段的厚向异性指数r,则r近似为1.0.在胀形后期至破裂,由于胀形高度的增加,内压力对管材轴向的作用逐渐显著,材料应力状态向着双向拉伸快速转变,此时轴向应变趋势出现了明显的扭转上翘趋势,但最终轴向拉应力的作用还是远小于环向拉应力,因而轴向应变始终为负值.进一步根据Swift材料本构拟合材料塑性阶段的等效应力-应变曲线如图 8(c)所示.拟合所得的塑性强度系数K=895.096,硬化指数n=0.202,初始应变ε0=0.003 29.与材料单向拉伸试验获得的数据相比,试验数据结果基本符合材料在高压流体作用下表现出的特性[15, 16].进一步的数据分析、数值模拟和试验工作需要继续完成,以便相互验证,为材料性能测试和工艺设计提供可靠手段和依据.图 9所示的为国产未退火材料和进口退火两种材料进行多次测试的管材胀形高度与内压力关系曲线,图 4和图 6中的数据均由进口退火材料测试获得.通过图 9可以看出试验系统具有较好的重复性,退火材料会有明显的屈服平台,而未退火材料可以获得更高的胀形高度.
图 9 胀形高度与内压力关系曲线Fig. 9 Bulging height vs internal pressure curve
图选项



5 结 论1) 相对于国际上现有的管材胀形试验机,本文所描述的试验方法和设备解决了3个固有问题:①将实现管端约束的对开螺母卡套部件和密封组件附着在管材两端,从而保证了管材胀形过程中卡套与半圆形导套的滑动间隙,即保证了管端的自由滑动,排除摩擦干扰的同时准确获得了管材胀形时的轴向自由收缩数据;②鉴于翻边特征的良好试验效果,比例伺服油缸可以对管材两端施加精确的推力(或拉力),并能有效阻止管端被夹持材料向变形区的流动;③采用超声测厚仪实时采集管材顶点的厚度变化信息,直接准确测量推导出厚向应变.试验数据的采集具有较好的可重复性精度.2) 在管材胀形过程中,环向应力σθ远大于轴向应力σz,受力状态接近于单向拉伸,轴向力的抵消起到了很好的效果,测试结果能够很好地反映管材的环向成形性能.3) 胀形过程中发生弹性变形和塑性变形的中前期阶段,管材近似于仅受环向主应力的作用,引起明显的轴向和厚向收缩,该阶段的轴向应变为负值,轴向应变与厚向应变近似相等,对应单向拉伸试验可以看出厚向异性指数r近似为1.0.在胀形后期至破裂,材料应力状态向着双向拉伸快速转变,轴向应变趋势出现了明显的扭转上翘趋势,但轴向应变始终为负值.
参考文献
[1] Yuan S J, Liu G.3.04-Tube hydroforming (internal high-pressure forming)[J].Comprehensive Materials Processing,2014,3:55-80.
Click to display the text
[2] Ahmetoglu M, Altan T.Tube hydroforming:state-of-the-art and future trends[J].Journal of Materials Processing Technology,2000,98(1):25-33.
Click to display the text
[3] Lang L H, Wang Z R,Kang D C,et al.Hydroforming highlights:sheet hydroforming and tube hydroforming[J].Journal of Materials Processing Technology,2004,151(1):165-177.
Click to display the text
[4] Ouirane A H B, Boudeau N,Velasco R,et al.Error evaluation on experimental stress-strain curve obtained from tube bulging test[J].Thin-Walled Structures,2011,49(10):1217-1224.
Click to display the text
[5] Thiruvarudchelvan S, Seet G L,Ang H E.Computer-monitored hydraulic bulging of tubes[J].Journal of Materials Processing Technology,1996,57(1-2):182-188.
Click to display the text
[6] Yang L F, Guo C.A simple experimental tooling with internal pressure source used for evaluation of material formability in tube hydroforming[J].Journal of Materials Processing Technology,2006,180(1-3):310-317.
Click to display the text
[7] He Z B, Yuan S J,Lin Y L.Analytical model for tube hydro-bulging test,part I:models for stress components and bulging zone profile[J].International Journal of Mechanical Sciences,2014,87:297-306.
Click to display the text
[8] He Z B, Yuan S J,Lin Y L.Analytical model for tube hydro-bulging test,part II:linear model for pole thickness and its application[J].International Journal of Mechanical Sciences,2014,87:307-315.
Click to display the text
[9] Velasco R, Boudeau N.Tube bulging test:theoretical analysis and numerical validation[J].Journal of Materials Processing Technology,2008,205(1-3):51-59.
Click to display the text
[10] Zribi T, Khalfallah A,BelHadjSalah H.Experimental characterization and inverse constitutive parameters identification of tubular materials for tube hydroforming process[J].Materials and Design,2013,49:866-877.
Click to display the text
[11] Imaninejad M, Subhash G,Loukus A.Influence of end-conditions during tube hydroforming of aluminum extrusions[J].International Journal of Mechanical Sciences,2004,46(8):1195-1212.
Click to display the text
[12] Imaninejad M, Subhash G,Loukus A.Experimental and numerical investigation of free-bulge formation during hydroforming of aluminum extrusions[J].Journal of Materials Processing Technology,2004,147(2):247-254.
Click to display the text
[13] Boudeau N, Malecot P.A simplified analytical model for post-processing experimental results from tube bulging test:theory,experimentations,simulations[J].International Journal of Mechanical Sciences,2012,65(1):1-11.
Click to display the text
[14] Varma N S P, Narasimhan R.A numerical study of the effect of loading conditions on tubular hydroforming[J].Journal of Materials Processing Technology,2008,196(1-3):174-183.
Click to display the text
[15] Liu B S, Lang L H,Zeng Y S,et al.Forming characteristic of sheet hydroforming under the influence of through-thickness normal stress[J].Journal of Materials Processing Technology,2012,212(9):1875-1884.
Click to display the text
[16] Strano M, Altan T.An inverse energy approach to determine the flow stress of tubular materials for hydroforming applications[J].Journal of Materials Processing Technology,2004,146(1): 92-96.
Click to display the text


相关话题/材料 数据 成形 高压 控制

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 飞机载荷谱实测数据双缓冲视景仿真系统设计
    飞机载荷谱实测是将飞机在使用过程中的状态参数、载荷参数等进行信息采集和记录,为飞机全机试验、结构可靠性设计提供试验数据与科学依据[1,2].飞机载荷谱实测数据类型复杂,对于不同的机型,采集参数不同,数据结构也不相同,使得飞机载荷谱数据资源比较难以组织和管理[3,4,5,6].随着测试需求的不断提高和 ...
    本站小编 Free考研考试 2021-12-25
  • 利用气动力的大气制动过程中近心点高度控制
    利用大气阻力实现制动变轨可以节省燃料.已有多次星际探测任务用到了大气制动技术,如Magellan,MarsGlobalSurveyor,MarsOdyssey及MarsReconnaissanceOrbiter[1,2,3].从实际探测任务来看,大气制动技术的确可以节省可观的燃料.随着航天技术的发展 ...
    本站小编 Free考研考试 2021-12-25
  • 基于IFA-ELM的航空发动机自适应PID控制新方法
    民用大涵道比涡扇发动机控制通常采用燃油-转速闭环控制方式.目前国内外普遍采用PID方法对大涵道比发动机进行控制[1,2].虽然PID控制具有一定的鲁棒性,且结构简单、易于工程实现,但由于航空发动机是时变的非线性系统,在全包线内,其参数及特性变化很大,所以单一的PID参数对发动机的全状态控制很难取得令 ...
    本站小编 Free考研考试 2021-12-25
  • 基于经验分布的区间数据分析方法
    符号数据分析(SDA)可以对海量巨维数据的分析提供行之有效的解决思路,因而成为目前统计学研究的前沿领域,具有众多的理论研究成果和广泛的实际应用案例[1,2,3,4].区间数据作为一种符号数据,因其具有广泛的应用价值而得到关注[5,6].尤其在面对海量数据时,采用区间数据可以极大地约简原始数据,进而基 ...
    本站小编 Free考研考试 2021-12-25
  • 非相似余度作动系统动态力均衡控制策略
    未来飞机将向着高机动性、超高速及大功率的方向发展,要求飞机液压作动系统朝着高压化、大功率、变压力、多余度等方向发展[1],但目前液压作动系统存在的一系列问题亟待解决[2,3].在此背景下,功率电传(PBW)作动系统成为了作动系统的发展方向.功率电传作动器包括电动静液作动器(EHA)和机电作动器(EM ...
    本站小编 Free考研考试 2021-12-25
  • 结构振动主动控制系统的非概率可靠性分析
    随着航空航天领域对结构振动的要求越来越严格,传统的振动控制很难满足设计要求,振动主动控制成为目前研究的热点之一.振动主动控制系统针对低频振动控制具有效果好、重量轻等优点,但是其存在对不确定性较为敏感、可靠性低的缺点.然而,在工程实际中,不确定性是普遍存在的,不确定性不仅可以降低主动控制系统的性能,而 ...
    本站小编 Free考研考试 2021-12-25
  • 分层缺陷对复合材料层板压缩性能的影响
    纤维增强复合材料具有比强度、比刚度高及可设计的特点,已广泛应用于飞机结构设计中.复合材料对外来低速冲击敏感,冲击导致的分层损伤使复合材料结构承压时发生局部子层屈曲和分层损伤扩展等现象[1,2],严重影响复合材料结构的压缩性能和剩余强度.国内外****已开展了大量的工作,通过试验和有限元计算研究了含分 ...
    本站小编 Free考研考试 2021-12-25
  • 超低空空投拉平阶段混合迭代滑模控制
    超低空空投主要用于重型装备的精确投放,是大型运输机必备的功能之一[1,2,3].超低空空投过程包括准备、下滑、拉平、牵引和拉起5个阶段,运输机在百米空域经下滑、拉平到达的高度,在空投点,货物由牵引伞牵引出舱[4,5].超低空空投拉平阶段,为保证载机安全性和空投精确性,要求极高精度的轨迹跟踪.然而,地 ...
    本站小编 Free考研考试 2021-12-25
  • 基于数据链的空战对抗建模及增援决策分析
    在信息化战争条件下,航空武器系统越来越倚靠于高效可靠的通信手段来保障其性能发挥.数据链的出现,实现了战场态势共享、精确指挥控制和武器协同打击的无缝链接[1,2],成为武器装备的生命线.另外,衡量航空武器系统整体的作战效能[3,4,5],对于科学研判和有效分析系统的整体性能,具有重要的现实意义.从系统 ...
    本站小编 Free考研考试 2021-12-25
  • 基于舵机指令前馈的电液负载模拟器同步控制
    负载模拟器是飞行器伺服机构半实物仿真的主要设备,用于模拟舵机在飞行过程中所承受的气动载荷,其性能直接影响飞控系统伺服机构评价的置信度[1].负载模拟器的成功应用不但可以缩短飞行器的研制周期、降低研制成本,而且可以提高飞行器研制的成功率.根据实现形式,负载模拟器可分为机械式[2]、电液式[3]、电动式 ...
    本站小编 Free考研考试 2021-12-25