删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于Faster R-CNN的车牌识别算法

本站小编 Free考研考试/2021-12-25

doi:10.12202/j.0476-0301.2019239王燕1,
张继凯2,
尹乾1,,
1.北京师范大学人工智能学院,100875,北京
2.内蒙古科技大学信息工程学院,014010,内蒙古包头
基金项目:国家重点研发计划资助项目(2018AAA0100203);内蒙古科技大学创新基金资助项目(2017QDL-B19);内蒙古自治区自然科学基金资助项目(2018MS06019,2019BS06005)

详细信息
通讯作者:尹乾(1975-)女,博士,副教授。研究方向:图像处理、计算智能。e-mail: yinqian@bnu.edu.cn
中图分类号:TP391

计量

文章访问数:354
HTML全文浏览量:108
PDF下载量:45
被引次数:0
出版历程

收稿日期:2019-09-10
网络出版日期:2020-07-22
刊出日期:2020-10-31

License plate recognition algorithm based on Faster R-CNN

Yan WANG1,
Jikai ZHANG2,
Qian YIN1,,
1. School of Artificial Intelligence, Beijing Normal University, 100875, Beijing, China
2. School of Information Engineering, Inner Mongolia University of Science&Technology, 014010, Baotou,Inner Mongolia, China



摘要
HTML全文
(12)(2)
参考文献(35)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:针对传统车牌检测方法定位不准确、检测结果易受环境影响的问题,提出一种基于Faster R-CNN和Inception ResNet_v2的车牌检测算法:通过迁移学习的方式实现精确的车牌定位,用像素点统计法处理车牌图像,实现单个字符的有效提取;mLeNet5卷积神经网络模型用于对单字符进行识别。结果表明,算法对有遮挡及角度倾斜的车牌字符能实现高效、高精确度的识别.
关键词:卷积神经网络/
车牌检测/
字符识别
Abstract:Problems such as inaccurate positioning,and location uncertainty in traditional license plate detection were alleviated by license plate detection algorithms Faster R-CNN and Inception ResNet v2. Accurate location of license plate is now achieved with transfer learning. License plate processing entails pixel counting to effectively extract single character. Single character recognition is then done by mLeNet5 convolutional neural network. Character images are collected under complex conditions including partial occlusion or tilt. Experiments show that this algorithm is effective and accurate.
Key words:convolutional neural network/
license plate detection/
character recognition

相关话题/内蒙古科技大学 北京师范大学 环境 人工智能学院 北京