 二维码(扫一下试试看!) | 基于BCRLS-AEKF的锂离子电池荷电状态估计及硬件在环验证 | State of Charge Estimation and Hardware-in-Loop Verification of Lithium-ion Battery Based on BCRLS-AEKF | 投稿时间:2019-03-05 | DOI:10.15918/j.tbit1001-0645.2019.068 | 中文关键词:有色噪声荷电状态偏差补偿递推最小二乘法遗忘因子自适应扩展卡尔曼滤波法硬件在环实验 | English Keywords:colored noisestate of chargebias compensation recursive least squaresforgetting factoradaptive extended Kalman filterhardware-in-loop experiment | 基金项目:国家自然科学基金资助项目(51775042) | | 摘要点击次数:1335 | 全文下载次数:369 | 中文摘要: | 研究有色噪声下的锂离子电池参数辨识与荷电状态(SOC)估计,并进行硬件在环实验验证.在动力电池模型的参数辨识过程中,利用带遗忘因子的偏差补偿递推最小二乘法进行偏差补偿,提高了有色噪声数据的参数辨识精度.在此基础上,利用自适应扩展卡尔曼算法进行SOC估计,使得滤波算法中的估计结果可以随着噪声统计特性的变化而自适应更新,实现了模型参数和电池状态的联合估计.最后,借助BMS测试系统模拟电池电压电流信息输出,完成了硬件在环实验以验证所提出的方法.实验结果表明,利用所提出算法估计得到的电池端电压和SOC误差分别小于10 mV和0.5%. | English Summary: | The parameter identification and state of charge (SOC) estimation of lithium-ion battery under colored noise were studied and verified by hardware-in-the-loop experiments. In the parameter identification process of the power battery model, the bias compensation recursive least squares with forgetting factor (BCRLS) was used to compensate the deviation, improving the parameter identification accuracy of the colored noise data. On this basis, an adaptive extended Kalman algorithm (AEKF) was used to estimate the SOC, making the estimation result in the filtering algorithm adaptively updated with the change of the statistical characteristics of the noise, and the joint estimation of the model parameters and the battery state be realized. Finally, the battery voltage and current information output was simulated by the BMS test system, and the hardware-in-the-loop experiment was completed to verify the proposed method. The experimental results show that the battery terminal voltage and SOC error estimated by the proposed algorithm are less than 10 mV and 0.5%, respectively. | 查看全文查看/发表评论下载PDF阅读器 | |
马立玲,郭凯杰,王军政.基于改进SVM的车辆传动系统故障诊断方法[J].北京理工大学学报(自然科学版),2020,40(8):856~860.MALi-ling,GUOKai-jie,WANGJun-zheng.AFaultDiagnosisMethodofVehicleTransmissionSy ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21.北京理工大学学报2020年总目次(第40卷)[J].北京理工大学学报(自然科学版),2020,40(12):1369~1386..[J].TransactionsofBeijingInstituteofTechnology,2020,40(12):1369-1386.二维码(扫一下试试看!)北京理 ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21胡宇辉,王旭,胡家铭,龚建伟,王克,李桂鹏,梅程.越野环境下无人驾驶车辆技术研究综述[J].北京理工大学学报(自然科学版),2021,41(11):1137~1144.HUYuhui,WANGXu,HUJiaming,GONGJianwei,WANGKe,LIGuipeng,MEICheng.AnO ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21郭智蔷,吴维,刘洋,李博,苑士华.车辆最佳动力性泛函表达及数值解法[J].北京理工大学学报(自然科学版),2019,39(7):688~693.GUOZhi-qiang,WUWei,LIUYang,LIBo,YUANShi-hua.ObjectiveFunctionalandNumericalSol ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21温丽晶,张春明,郭超,高宇,段璞,欧卓成,段卓平.A320撞击刚性靶体的数值模拟及冲击载荷工程模型验证[J].北京理工大学学报(自然科学版),2019,39(9):881~886.WENLi-jing,ZHANGChun-ming,GUOChao,GAOYu,DUANPu,OUZhuo-cheng, ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21成英,高利,陈雪梅,赵亚男.有人与无人驾驶车辆交叉口驾驶博弈模型[J].北京理工大学学报(自然科学版),2019,39(9):938~943.CHENGYing,GAOLi,CHENXue-mei,ZHAOYa-nan.ADrivingGameModelforMannedandUnmannedVeh ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21刘凯,王威,龚建伟,陈慧岩,陈舒平.越野地形下智能车辆的动力学建模与轨迹跟踪[J].北京理工大学学报(自然科学版),2019,39(9):933~937.LIUKai,WANGWei,GONGJian-wei,CHENHui-yan,CHENShu-ping.DynamicModelingandTr ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21张海鸣,龚建伟,陈建松,王羽纯.非结构化环境下无人驾驶车辆跟驰方法[J].北京理工大学学报(自然科学版),2019,39(11):1126~1132.ZHANGHai-ming,GONGJian-wei,CHENJian-song,WANGYu-chun.StudyofAutonomousVehic ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21.北京理工大学学报2019年总目次(第39卷)[J].北京理工大学学报(自然科学版),2019,39(12):1321~1338..[J].TransactionsofBeijingInstituteofTechnology,2019,39(12):1321-1338.二维码(扫一下试试看!)北京理 ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21赵凯,董明明,赵丰,秦也辰,刘锋,顾亮.基于车辆悬架振动响应的地面分类研究[J].北京理工大学学报(自然科学版),2018,38(2):155~159.ZHAOKai,DONGMing-ming,ZHAOFeng,QINYe-chen,LIUFeng,GULiang.StudyonTerrainCl ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21
| |