删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于BCRLS-AEKF的锂离子电池荷电状态估计及硬件在环验证

本站小编 Free考研考试/2021-12-21

本文二维码信息
二维码(扫一下试试看!)
基于BCRLS-AEKF的锂离子电池荷电状态估计及硬件在环验证
State of Charge Estimation and Hardware-in-Loop Verification of Lithium-ion Battery Based on BCRLS-AEKF
投稿时间:2019-03-05
DOI:10.15918/j.tbit1001-0645.2019.068
中文关键词:有色噪声荷电状态偏差补偿递推最小二乘法遗忘因子自适应扩展卡尔曼滤波法硬件在环实验
English Keywords:colored noisestate of chargebias compensation recursive least squaresforgetting factoradaptive extended Kalman filterhardware-in-loop experiment
基金项目:国家自然科学基金资助项目(51775042)
作者单位E-mail
王志福北京电动车辆协同创新中心, 北京 100081
北京理工大学 电动车辆国家工程实验室, 北京 100081
刘兆健北京理工大学 电动车辆国家工程实验室, 北京 100081liu_zhaojian@126.com
李仁杰北京理工大学 电动车辆国家工程实验室, 北京 100081
摘要点击次数:1335
全文下载次数:369
中文摘要:
研究有色噪声下的锂离子电池参数辨识与荷电状态(SOC)估计,并进行硬件在环实验验证.在动力电池模型的参数辨识过程中,利用带遗忘因子的偏差补偿递推最小二乘法进行偏差补偿,提高了有色噪声数据的参数辨识精度.在此基础上,利用自适应扩展卡尔曼算法进行SOC估计,使得滤波算法中的估计结果可以随着噪声统计特性的变化而自适应更新,实现了模型参数和电池状态的联合估计.最后,借助BMS测试系统模拟电池电压电流信息输出,完成了硬件在环实验以验证所提出的方法.实验结果表明,利用所提出算法估计得到的电池端电压和SOC误差分别小于10 mV和0.5%.
English Summary:
The parameter identification and state of charge (SOC) estimation of lithium-ion battery under colored noise were studied and verified by hardware-in-the-loop experiments. In the parameter identification process of the power battery model, the bias compensation recursive least squares with forgetting factor (BCRLS) was used to compensate the deviation, improving the parameter identification accuracy of the colored noise data. On this basis, an adaptive extended Kalman algorithm (AEKF) was used to estimate the SOC, making the estimation result in the filtering algorithm adaptively updated with the change of the statistical characteristics of the noise, and the joint estimation of the model parameters and the battery state be realized. Finally, the battery voltage and current information output was simulated by the BMS test system, and the hardware-in-the-loop experiment was completed to verify the proposed method. The experimental results show that the battery terminal voltage and SOC error estimated by the proposed algorithm are less than 10 mV and 0.5%, respectively.
查看全文查看/发表评论下载PDF阅读器
相关话题/北京 车辆 北京理工大学 工程 实验室