删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于改进SVM的车辆传动系统故障诊断方法

本站小编 Free考研考试/2021-12-21

本文二维码信息
二维码(扫一下试试看!)
基于改进SVM的车辆传动系统故障诊断方法
A Fault Diagnosis Method of Vehicle Transmission System Based on Improved SVM
投稿时间:2019-04-02
DOI:10.15918/j.tbit1001-0645.2019.110
中文关键词:支持向量机不平衡数据概率输出模糊隶属度性能分析
English Keywords:support vector machineunbalanced dataprobability outputfuzzy membership degreeperformance analysis
基金项目:
作者单位
马立玲北京理工大学 自动化学院, 北京 100081
郭凯杰北京理工大学 自动化学院, 北京 100081
王军政北京理工大学 自动化学院, 北京 100081
摘要点击次数:1915
全文下载次数:2355
中文摘要:
利用车辆传动系统试验数据对车辆进行故障诊断和性能评价可以实现车辆故障预警,提高可靠性,从而提高车辆性能,但测试数据有数据量大、不平衡、维度高、噪声多的特征,使得传统数据分析算法会产生次优的分类模型.针对上述问题,提出了一种改进的不平衡数据分类支持向量机算法.该算法赋予各样本不同的权值,用马氏距离改进模糊隶属度的设计以排除变量相关性干扰,同时可以输出正常状态下的故障概率.实验结果表明,该算法能够有效提高故障诊断的准确性,概率输出模型可用于故障预警和性能分析.
English Summary:
Fault diagnosis and performance evaluation with vehicle transmission system test data can play a role in fault warning, improving reliability, and further improving vehicle performance.However, the test data are very large and unbalanced, possess high dimensionality and noise, which make the traditional data analysis algorithm produce sub-optimal classification model. In order to solve the above problems, a new improved support vector machine (SVM) algorithm was proposed for imbalanced data classification. The algorithm was arranged to present different weights for each sample, improve the design of fuzzy membership degree with Mahalanobis distance to eliminate the interference of variable correlation, and to output the failure probability under normal state at the same time. The experimental results show that the algorithm can effectively improve the accuracy of fault diagnosis, and at the same time can use the probability output model to carry out fault warning and performance analysis.
查看全文查看/发表评论下载PDF阅读器
相关话题/车辆 北京 北京理工大学 自动化 数据