删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于栈式稀疏自编码多特征融合的快速手势识别方法

本站小编 Free考研考试/2021-12-21

本文二维码信息
二维码(扫一下试试看!)
基于栈式稀疏自编码多特征融合的快速手势识别方法
A Fast Gesture Recognition Method Based on Stacked Sparse Autoencoders Multi-Feature Fusion
投稿时间:2018-01-21
DOI:10.15918/j.tbit1001-0645.2019.06.014
中文关键词:YCbCr颜色空间模型手势分割栈式稀疏自编码多特征融合手势识别
English Keywords:YCbCr color space modelgesture segmentationstacked sparse autoencodersmulti-feature fusiongesture recognition
基金项目:国家自然科学基金资助项目(61572344);虚拟现实技术与系统国家重点实验室开放基金资助项目(BUAA-VR-17KF-15,BUAA-VR-17KF-14;BUAA-VR-16KF-13);山西省回国留学人员科研资助项目(2016-038)
作者单位
强彦太原理工大学 计算机科学与技术学院, 山西, 太原 030024
董林佳太原理工大学 计算机科学与技术学院, 山西, 太原 030024
赵涓涓太原理工大学 计算机科学与技术学院, 山西, 太原 030024
张婷太原理工大学 计算机科学与技术学院, 山西, 太原 030024
摘要点击次数:788
全文下载次数:551
中文摘要:
针对复杂背景下手势分割提取效果不佳、图像识别率不高、识别困难等问题,研究多特征融合的快速手势识别方法.利用YCbCr颜色空间模型,构建肤色分布模型,从复杂背景中去除大部分非肤色的干扰,从而实现手势分割;接着采用5层栈式稀疏自编码网络框架,分别提取手势感兴趣区域(region of interest,ROI)的纹理图像、形状图像和显著视觉图像作为自编码网络输入,将提取到的不同类型的特征进行线性融合;最后使用基于径向基核函数(radial basis function,RBF)的支持向量机(support vector machine,SVM)分类器进行融合特征数据分类,从而实现不同类型的手势识别.实验结果表明,相比其他手势识别方法,本文方法识别率较高,提取特征更具有代表性,平均识别率可达95.05%.
English Summary:
In order to solve the pro blem of poor gesture segmentation extraction, low image recognition rate and difficult recognition, a multi-feature fusion method was studied for fast gesture recognition. Firstly, a skin color distribution model was established based on the YCbCr color space model, removing the most of non-skin color interference from the complex background, so as to realize the gesture segmentation. And then, taking the texture image of the gesture ROI (region of interest), the shape image and the significant visual image as self-coding network input, the different types of features were linearly merged according as 5-layer stacked sparse autoencoders network framework. Finally, a SVM (support vector machine) classifier based on RBF (radial basis function) kernel function was used to classify the characteristic data, so as to realize the gesture recognition for different types of gestures. Experimental results show that, compared with other gesture recognition methods, the recognition rate is higher and the extraction characteristics are more representative. The average recognition rate can reach 95.05%.
查看全文查看/发表评论下载PDF阅读器
相关话题/计算机科学与技术学院 太原理工大学 山西 图像 空间