删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

快速序列视觉呈现任务下的脑电分类算法

本站小编 Free考研考试/2021-12-21

本文二维码信息
二维码(扫一下试试看!)
快速序列视觉呈现任务下的脑电分类算法
EEG Classification Algorithm for Rapid Serial Visual Presentation Task
投稿时间:2018-10-20
DOI:10.15918/j.tbit1001-0645.2019.s1.034
中文关键词:快速序列视觉呈现脑电信号有监督降维特征提取分类算法
English Keywords:RSVPEEG signalsupervised dimensionality reductionfeature extractionclassification algorithm
基金项目:国家自然科学基金资助项目(61601028,61431007);国家重点研发计划资助项目(2017YFB1002505)
作者单位E-mail
李博闻北京理工大学 信息与电子学院, 北京 100081
刘志文北京理工大学 信息与电子学院, 北京 100081
高小格清华大学 医学院, 北京 100084
林艳飞北京理工大学 信息与电子学院, 北京 100081liyf@bit.edu.cn
摘要点击次数:3927
全文下载次数:352
中文摘要:
提出了一个在快速序列视觉呈现任务下的脑电信号分类算法.将图片序列快速呈现给受试者并将同步采集脑电信号,将脑电信号截取分段作为样本集.通过约束有监督降维后样本与样本中心差值的趋近方向,使用训练集脑电数据训练得到映射矩阵;通过特征提取函数将训练集和测试集的脑电数据样本变换为特征矢量,使用支持向量机对样本进行分类.实验结果表明,算法对24名受试者的脑电信号分类的平均正确率为91.5%,平均AUC达到了0.95,证明脑电分类算法具有良好的分类性能,可以在快速序列视觉呈现任务中准确地识别目标图片.
English Summary:
In this project, we proposed a classification algorithm of electroencephalogram (EEG) signals in order to fulfill the Rapid Serial Visual Presentation (RSVP) task. Firstly, the EEG signals of the subjects were recorded when they received the image sequences and then segmented to creat a sample set. Secondly, by confining the difference between the sample and the sample center after supervised dimensionality reduction, the mapping matrix was obtained after training EEG data from the training set. EEG samples of training set and test set were transformed into feature vectors by using feature extracting function, and support vector machine (SVM) was used to classify the EEG samples. The experiment results showed that the average classification accuracy rate of EEG of 24 subjects was 91.5% and the average AUC was 0.95, which indicates that the EEG classification algorithm has good classification performance and can accurately detect target images in the Rapid Serial Visual Presentation tasks.
查看全文查看/发表评论下载PDF阅读器
相关话题/北京 信息 电子 序列 北京理工大学