删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于词序列拼积木模型的图像句子标注研究

本站小编 Free考研考试/2021-12-21

本文二维码信息
二维码(扫一下试试看!)
基于词序列拼积木模型的图像句子标注研究
Image Annotation by Sentences Based on Word Sequence Blocks Building Model
投稿时间:2016-07-25
DOI:10.15918/j.tbit1001-0645.2017.11.07
中文关键词:自然语言生成词序列拼积木WSBB图像句子标注N元词序列语义相关性句法模式约束
English Keywords:natural language generationword sequence blocks building(WSBB)image annotation by sentencesN gram word sequencesemantic correlationsyntactic mode constraints
基金项目:国家自然科学基金资助项目(61373108,61173062);教育部人文社科基金资助项目(16YJAZH029,17YJAZH117);江西省科技厅科技攻关项目(20142BBG70011);江西省社科规划基金资助项目(16TQ02);江西省高校人文社科基金资助项目(XW1502、TQ1503);江西省教育厅科技项目(GJJ160497,GJJ160509,GJJ160531);江西省研究生创新基金(YC2016-S262)
摘要点击次数:512
全文下载次数:489
中文摘要:
用句子标注图像,建立图像与文本间的跨媒体关联,以提升信息检索准确率,改善用户检索交互体验.利用KDES模型抽取图像特征,在多核学习模型中融合出MK-KDES特征,准确刻画图像视觉特性;设计自然语言生成模型:词序列拼积木,评估单词与图像内容的相关性,优选单词,并根据单词间的语义相关性与句法模式约束,将单词组合成N元词序列;把N元词序列输入模板生成句子.结果表明:MK-KDES-1特征聚焦于图像的纹理及形状视觉特性,它是改善句子BLEU-1评分的关键;而单词间的语义相关性与句法模式约束是提升句子BLEU-2评分的重要前提.
English Summary:
Based on image annotation by sentences, the cross-media correlations between the images and the texts were constructed to improve the information retrieval accuracy and users' retrieval experiences ultimately. The KDES model was applied to extract image features effectively and the MK-KDES features were obtained in turn by fusing the extracted features in the multiple kernel learning model to interpret the key visual characteristics of the images. A new natural language generation model named word sequence blocks building (WSBB) was designed to evaluate the semantic correlations between the words and the images. And several key words were summarized for generating sentences. According to the semantic correlations and syntactic mode constraints between words, many N gram word sequences were made up of those summarized words to better interpret the images. Finally, sentences were generated by inputting the N gram word sequences into the templates. Experimental results show that, the MK-KDES-1 feature can focus on describing the key texture and shape characteristics of the images, which helps to improve the BLEU-1 scores. Moreover, semantic correlation between the words is an important premise of improving the BLEU-2 scores as well as the syntactic mode constraints.
查看全文查看/发表评论下载PDF阅读器
閻愮懓鍤粩瀣祮閹兼粎鍌�2娑撳洨顫掗懓鍐埡閻㈤潧鐡欓悧鍫gカ閺傛瑱绱�
婢堆囧劥閸掑棛顏㈤棄瀣厴閺勵垳顑囨稉鈧▎陇鈧啰鐖洪敍灞筋嚠娴滃骸顩ф担鏇熺叀閹靛彞绗撴稉姘愁嚦閹稿洤鐣鹃弫娆愭綏閿涘本鍨ㄧ拋鍛婃箒瀵板牆顦块悿鎴︽6閵嗕境ree婢归€涙〃閸掑棗顒熸稊鐘电秹閼板啰鐖哄ǎ杈偓鏇氱瑩娑撴俺顕虫潏鍛嚤20楠炶揪绱濋幀鑽ょ波娴滃棜绉寸€圭偟鏁ら惃鍕瘹鐎规碍鏆€閺夋劖鐓$拠銏℃煙濞夋洖寮锋径宥勭瘎閺傝纭堕敍灞炬箒闂団偓鐟曚胶娈戦惇瀣箖閺夛拷
相关话题/图像 华东交通大学 软件学院 江西 武汉大学

閹存劒璐熺拠鍙ュ敩鐞涱煉绱濋崚鍡曢煩鐠囧墽鈻肩挧鍕灐闁剧偓甯寸亸杈厴閼惧嘲褰�40%閹绘劖鍨氱挧姘舵尪閿涳拷
閹恒劌绠嶇挧姘舵尪閺夊啰娉妴鍌濐嚦娴狅綀銆冮崣顖炩偓姘崇箖娴滄帟浠堢純鎴犵搼闁柨绶炴稉鐑樻拱缁旀瑦甯归獮鍨吅娴肩姭鈧钒IP娴兼艾鎲抽垾婵撶礉閻€劍鍩涢柅姘崇箖鐠囧彞鍞悰銊ф畱閸掑棔闊╅柧鐐复閹存牗鎹i幎銉ㄥ枠娑旀澘鎮楅敍宀冾嚦娴狅綀銆冮懢宄板絿40%閹绘劖鍨氶妴鍌濐嚦娴狅綀銆冪拹顓濇嫳閺堫剛鐝禒璁崇秿娴溠冩惂閿涘苯娼庢禍顐㈠綀9閹舵ǜ鈧倸鐨㈤崚鍡曢煩闁剧偓甯撮妴浣规崳閹躲儱娴橀悧鍥╃搼閿涘苯褰傞崚鏉款劅閺嵚ゎ啈閸ф稏鈧胶娅ㄦ惔锕佸垱閸氀佲偓浣镐簳閸楁哎鈧礁浜曟穱掳鈧傅Q缁屾椽妫块妴浣虹叀娑斿簺鈧浇鐪撮悺锝囩搼閸氬嫬銇囬獮鍐插酱閵嗭拷